Арматура для бетона: Арматура для бетона: виды, расход, применение

Содержание

Арматура для бетона: виды, расход, применение

Тяжелый бетон это прочный материал, который обладает высокой «несущей» способностью «на сжатие». В то же время его способность воспринимать растягивающие и изгибающие напряжения оставляют желать лучшего.

СодержаниеСвернуть

Поэтому для обеспечения стойкости сооружений ко всем видам механических нагрузок применяется арматура для бетона, закладываемая сооружение на этапе подготовки к заливке. Бетон без арматуры может воспринимать лишь незначительные нагрузки на изгиб и растяжение. При превышении определенной величины, измеряемой в МПа или кгс/см2 конструкция начинает идти трещинами или полностью разрушается.

Арматура под бетон: виды и классификация

Арматура, применяющаяся в современном строительстве, классифицируется в соответствии со следующими факторами:

  • Материал изготовления – углеродистая сталь или стеклопластик.
  • Технология производства и физическое состояние: стержневая, канатная и проволочная.
  • Вид профиля сечения: круглый, гладкий или рифленый.
  • Работа арматуры в бетоне: напрягаемая или ненапрягаемая.
  • Назначение: рабочая, распределительная и монтажная.
  • Способ установки: сварная или связанная мягкой стальной, медной или алюминиевой проволокой.
Диаметр арматуры, ммПрофильНазначение
6гладкиймонтажная/для формирования хомутов
8монтажная/возможно применение в качестве армирующих элементов буронабивных свай
10периодический (рифленый, ребристый)рабочая/используется для небольших построек с учетом параметров грунта
12рабочая/самые распространенные варианты для возведения ленточного или плитного железобетонного основания
14
16рабочая/используется для больших домов на сложном грунте

Также армирование бетона арматурой может быть иметь поперечный или продольный характер:

  • Поперечное армирование исключает образование наклонных трещин от скалывающих механических нагрузок и связывает бетон сжатой зоны с арматурой в «растянутой» зоне.
  • Продольное армирование воспринимает нагрузку на «растяжение» и препятствует возникновению вертикальных трещин в нагруженной зоне.

Какой вид, тип, диаметр и количество арматуры использовать в каждом конкретном случае, указывается в проектной документации на то или иное здание или сооружение. Тем не менее, многих застройщиков, которые возводят дома, и сооружения без проекта интересует распространенный вопрос: какой расход арматуры на 1 м3 бетона необходимый для обеспечения долговечности сооружения. Рассмотрим расход арматуры на куб бетона подробнее.

Сколько арматуры нужно на куб бетона

Этот законный вопрос задают себе многие застройщики частных и дачных домов, возводящих объекты капитального строительства без разработки дорогостоящего проекта.

При определении количества арматуры на куб бетона учитываются следующие факторы: условия эксплуатации в конкретном регионе России (состояние грунта, глубина промерзания почвы и высота стояния грунтовых вод), вес сооружения, тип конструкции и технические характеристики доступной арматуры.

Приблизительные нормы расхода стального армирования диаметром 12 мм на ленточный фундамент частного дома следующих габаритов 9х6 метров – 18,7 кг на 1 м3 тяжелого бетона.

Отмечая, что расчет характеристики – расход арматуры на м3 бетона должен производиться в каждом конкретном случае индивидуально. В соответствии с требованиями действующего нормативного документа СНиП 52-01-2003, в общем случае количество продольной арматуры не может быть меньше 0,1% от площади поперечного сечения конструкции.

В качестве примера рассмотрим сечение ленточного фундамента частного дома высотой 1 метр и шириной 0,5 метра.Для его усиления потребуется 1х0,5= 0,05 м2 арматуры соответствующего сечения.

Абстрагируясь от нормативных документов регламентирующих количество арматуры на 1 м3 бетона, сообщим читателям этой публикации практические нормы расхода, обеспечивающие высокий уровень прочности и долговечности частного здания.

Образец расчета арматуры для фундамента

Правильно уложенная на фундамент рабочая арматура увеличит его прочность на разрыв и изгиб. Есть еще и вспомогательная арматура, устанавливаемая вертикально. Она обеспечивает прочностью на срез.

В обоих вариантах используются различные виды армирования, что следует учитывать:

  • Первые шаги начинаются с того, что по периметру опалубки, собранной в ленточном котловане, вбиваются вертикально прутья. При этом выдерживаются одинаковые расстояния между стержнями – 50-80 см. Диаметр самой арматуры находится в пределах 0,8-1 см, а высота прутьев равна глубине котлована.
  • К вспомогательным прутам вяжут внизу и вверху горизонтальные пояса, количество прутьев в которых выбирают с учетом рекомендаций, приведенных в таблице:
Ширина пояса, смКоличество прутьев
Не более 40 см2
Более 40 см3

При достаточно глубоком котловане допускается в горизонтальных поясах прокладывать по четыре прута.

  • Расстояние от наружного края пояса до оконечной точки вертикального стержня не должно превышать 10 см.
  • Чтобы армировочный каркас был единой неподвижной конструкцией, особое внимание нужно уделять соединению углов. Здесь лучше использовать систему перекрестных лент, объединив между собой пруты двух горизонтальных поясов. Не помешает для усиления углов и использование арматурной сетки.

Нужно взять во внимание и такой момент – арматура для ленточного фундамента не должна ложиться на землю. Рекомендуется использовать бетонную подложку. До того, как будет выполняться окончательная сборка каркаса, делают первую заливку толщиной в 5-7 см. Когда бетон застынет, можно выполнять сварку (или привязку) друг с другом нижнего и верхнего поясов.

Немного математики

До того, как приступать к укреплению ленточного фундамента, необходимо произвести расчет арматуры. Это позволит заранее запастись нужным количеством материала и выбрать правильные параметры.

Сначала рассматривают схему будущего дома, чтобы определиться с количеством лент под фундамент. У стандартного здания четыре наружные стены и несколько внутренних (в нашем случае пусть будет две несущих), значит, всего лент фундамента – шесть.

Математические вычисления можно рассмотреть на конкретном варианте.

К примеру, строится дом квадратного типа с длиной стены 10 м. Количество прутьев в каждом из основных поясов берется по 2. В данном случае расчет арматуры будет выглядеть так:

  1. Длина дома умножается на количество лент и количество прутьев в двух поясах:
    10 х 6 х 4 = 240 м – общая длина основной арматуры с прутьями d=12 мм.
  2. К периметру дома прибавляют длину внутренних стен (допустим, каждая по 10 м):
    40 + 2 х 10 = 60 м – общая длина ленты.
  3. Предыдущий параметр умножают на 5,4 – средний коэффициент на каждый метр ленты:
    60 х 5,4 = 324 м – общая длина вспомогательной арматуры

Расчет производился для ленты высотой 80 см и шириной 40 см. Математические действия достаточно просты, так что рассчитать нужное количество прутьев не составит труда.

Если идет речь о фундаменте, то это арматура диаметром не менее 12 мм сваренная или связанная в формате ячейки габаритами 50х50 миллиметров. Стены здания из бетона допускается армировать в продольном направлении с шагом 0,4-0,5 метра. При этом сцепление арматуры с бетоном обеспечивается ее конструктивными особенностями – продольным и поперечным рифлением.

Заключение

В заключение повествования стоит отметить, что системных рецептов по армированию конструкций приемлемых для всех возможных случаев нет и не может быть. Частный застройщик, принимающий решение, сколько арматуры на 1 м3 бетона должен руководствоваться климатическими условиями и массой планируемого сооружения.

Это переменные величины, нуждающиеся в уточнении в каждом конкретном случае строительства здания и сооружения.

Как правильно сделать расчёт арматуры и армировать фундамент

Собственноручное производство железобетонного фундамента — наиболее ответственный из всех этапов строительства. Требуемая жёсткость и прочность обеспечивается закладной арматурой, поэтому сегодня мы устраним пробелы в понимании функций армирования и поясним методологию расчёта арматуры для фундамента.

Как работает фундаментное армирование

Бетон обладает превосходной прочностью на сжатие. Это означает, что если бетонный брусок поместить под пресс, он начнёт разрушаться только под очень высоким давлением.

Реалии эксплуатации ЖБИ таковы, что нельзя точно предусмотреть, какие силы будут действовать в отдельно взятой точке массива. Всё потому, что конфигурация бетонного изделия значит не так много, как физико-механические характеристики основы, на которой это изделие установлено. А они почти всегда непредсказуемы.

Нагрузка в бетоне распределяется неравномерно. Максимальное напряжение приходится на точку опоры, при этом всегда действует правило рычага — сила возрастает пропорционально плечу воздействия. Если подвесить бетонную балку за оба края, воздействие на центр будет напрямую зависеть от длины балки.

Схема работы балки на изгиб: a — бетонная балка; б — железобетонная балка; 1 — арматура.

Также интересен характер и направление деформаций в разных точках. При изгибе одна сторона будет сжиматься, но это, как мы выяснили, не сулит больших неприятностей. Гораздо хуже, что с обратной стороны изделия бетон будет растягиваться, что при невысоких показателях упругости выльется в трещину и слом.

Главная задача арматуры — не позволить бетону растягиваться. Это достигается за счёт сил трения, которые передают нагрузку от бетонного слоя закладным элементам, имеющим модуль упругости гораздо выше, чем у бетона. И, конечно, арматура должна быть распределена максимально равномерно, чтобы каждый отдельный участок конструкции не имел слабых мест с плохой перевязкой. Иначе армирование теряет всякий смысл.

Чем укрепляют фундамент

Существует два типа арматуры. Рабочая арматура выполняет непосредственную функцию армирования — принимает на себя нагрузку в приложенной плоскости. Конструктивная арматура служит для упорядочивания линий рабочего армирования в слое бетона и получения дополнительных связей, если это необходимо.

В качестве рабочей арматуры традиционно используется горячекатаные стержни периодического или гладкого профиля по ГОСТ 5781–82. Стальная арматура может быть свариваемой и несвариваемой, в зависимости от термомеханического укрепления и области использования.

Для фундамента в качестве рабочего армирования целесообразно применять именно периодический профиль, который обладает наивысшим показателем сцепления с окружающей массой. Вспомогательное армирование, напротив, выполняется гладкими стержнями, хотя это не категоричное правило.

Важен и материал, марка стали определяет класс арматуры. Наиболее востребованы для частного застройщика классы А400–А600: они наиболее широко распространены на строительных базах и не требуют специальных средств стыковки: весь каркас собирается вязкой. Всё чаще применяют композитную арматуру (ГОСТ 31938) из пластика, укреплённого углеродным и стекловолокном. Такая арматура значительно легче стальной и абсолютно не подвержена коррозии, а вот насколько это важно в рамках конкретного проекта — решать только вам.

Основные параметры армирования

В каждом конкретном расчёте есть ряд ключевых значений, описанных в пособии к СНиП 2.03.01:

1. Плотность закладки арматуры (коэффициент армирования). Определяется по поперечному срезу изделия как отношение суммы сечений арматурных стержней к сечению бетонной массы. Установленный нормами минимум — 0,05%, хотя коэффициент может увеличиваться по мере роста отношения длины сегмента к его высоте вплоть до 0,25%.

2. Толщина стержней. При длине сегмента свыше 3-х метров используется арматура диаметром не менее 12 мм, более 6-ти метров — свыше 14 мм, а при протяжённости от 10-ти метров — 16 мм и более.

3. Распределение армирования. Если фундамент имеет глубину около метра, то какую грань укреплять от растяжения: верхнюю или нижнюю? Что лучше — малое количество толстых стержней или много линий тонкой арматуры? На практике часто всю рабочую арматуру помещают у одной грани, разбивая на как можно большее число прутьев, не мешающих заливке бетона. Затем такой же пояс дублируется у противоположной грани.

4. Коэффициент надёжности (переармирование) — прямо вытекающее из предыдущего пункта понятие. Прочность фундамента может быть намеренно завышена в 2 или 3 раза на случай непредвиденных изменений в геоморфологии региона или при отсутствии на момент строительства завершённого проекта.

Последнее должно относиться к разряду исключений, но на практике так строится чуть ли не половина объектов ИЖС. Проблема в том, что без исчерпывающих проектных данных вы не имеете возможности точно установить вес здания, определить по нему достаточную площадь и глубину залегания, соответствующие опорной способности грунта, затем по нормативным пропорциям рассчитать линейные характеристики фундамента, а из них вывести оптимальные методы укрепления его структуры, адекватные расчётной нагрузке.

Конфигурация арматуры для НЗЛФ, ленты и плиты

Ленточные фундаменты, залегающие выше глубины промерзания, армируются каркасом прямоугольной формы. Между внешними рёбрами может располагаться неограниченное количество линий армирования, между которыми обязательно соблюдается нормативный просвет. Как правило, такие каркасы состоят из отдельно связанных модулей, длина которых удобна для транспортировки и установки. Конструктивная арматура здесь представлена П-образными или замкнутыми хомутами, опоясывающими прутья рабочего армирования каждые 0,6–1,1 метра.

Армирование прямого участка ленточного фундамента: 1 — рабочая продольная арматура; 2 — конструктивная арматура (хомуты).

Заглубленные фундаменты укрепляются как и лента — каркасом. Линии армирования, как упоминалось, дублированы и сосредоточены у верхней и нижней граней. Дополнительно могут закладываться промежуточные линии, компенсирующие силы давления и пучения грунта, если того требует проект. Между собой армирование соединяется вертикальными прутьями. Это армирование выглядит как конструктивное, но оно же выполняет функцию рабочего, в значительной степени препятствуя скручивающим и боковым давящим деформациям.

Плита армируется наиболее просто: две арматурные сетки, каждая может состоять из нескольких слоёв. Разносятся сетки к верхней и нижней плоскости в соответствии с нормативным защитным слоём. Параметры арматурных сеток — табличные, прут и ячейка рассчитываются в зависимости от габаритов плиты. Что касается рёбер жёсткости под плитой, они формируются как и каркасы МЗЛФ, а затем скрепляются с сеткой плиты вертикальными прутьями конструктивной арматуры.

Вязка, установка и контроль

С линейными участками все просто, но ведь фундамент имеет повороты и пересечения. На них линии сходящихся каркасов соединяются гнутыми закладными элементами из арматуры того же сечения. Края устанавливаются с нахлёстом от 40 до почти 100 номинальных диаметров. Довольно распространена практика укрепления углов фундамента арматурными сетками 12х150х150 мм, особенно на слабых грунтах и в сейсмоопасных регионах.

Армирование примыканий и углов ленточного фундамента: 1 — рабочая продольная арматура; 2 — поперечная арматура; 3 — вертикальная арматура; 4 — Г-образные хомуты.

Каждый последующий сегмент каркаса устанавливается на дистанционных подкладках или кольцах, которые препятствуют нарушению защитных слоёв. Прутья на торцах связываются с нормативным перехлёстом, по 2–3 проволочных хомутах на каждом стыке.

В итоге армирующий каркас должен быть сформирован таким образом, чтобы по нему спокойно могли передвигаться люди. Перед заливкой каркас тщательно проверяется на прочность скрепления. Если при заливке бетоном разойдутся перевязки линий, это чревато полной выбраковкой всей конструкции. Поэтому во время заливки и усадки нужно уделять особое внимание положению и целостности соединений арматуры.

выбор, подготовка и пути создания сетки

Железобетон – это один из самых старых стройматериалов. Несмотря на период использования больше одного века, он применяется и сегодня. Это можно объяснить наличием в нем арматуры, которая повышает прочность железобетонных объектов. Железобетонные постройки приобретают все большую популярность как в промышленном строительстве, так и бытовом. Именно его использование в разных направлениях делает железобетон лидером среди подобных материалов. Давайте попробуем выяснить в чем же заключается суть арматурной работы в бетоне, ее предназначение и особенности.

Бетон и сталь – их соотношение

Каждая строительная компания имеет уникальное соотношение армирующего и бетонного материалов, установленное на практике. Это объясняется рядом преимуществ их сочетания. Среди них можно выделить:

  • повышение эксплуатационных свойств конструкции в результате объединения;
  • повышение свойств прочности бетона под воздействием стали;
  • крепость материала зависит от его возможности сдвига, растяжения и оказанного давления на материал.

Бетон имеет высокие показатели прочности на сжатие. В случае больших нагрузок применение железобетона обязательно. Растяжение стали не влияет на ее прочность. Вследствие этого, возможно строительство высокопрочных конструкций. Связь между бетонным раствором и сталью играет главную роль в определении крепости постройки. Сжатие бетона определяет уровень его прочности. Исходя из этого, железобетон обязательно применяется во избежания разрушения стен под действием нагрузок.

Вернуться к оглавлению

Правила железобетонных материалов

С целью полного соответствия конструкции установленным требованиям, стальные и бетонные материалы должны тесно взаимодействовать между собой. Этот процесс происходит в ходе их адгезии, вследствие чего бетонная смесь затвердевает. В случае слабого сцепления происходит скольжение арматуры в бетоне, и как результат, конструкция рушится.

С целью повышения адгезионных свойств, поверхность прутьев оборудуется специальными выступами. Данная процедура происходит либо во время проката, либо в ходе сплющивания двух стержней перпендикулярно по отношению друг к другу с применением специального оборудования.

Кроме того, на концах арматурных стержней оборудуются крюки для еще большего сцепления. Металлические сетки и каркасы имеют более надежное сцепление с бетоном благодаря неподвижности отдельных стержней.

Перед использованием должна быть проведена полная очистка арматуры от загрязнений и ржавчины, поскольку они препятствуют адгезии.

Пример взаимодействия арматуры и бетона.

Обязательным условием для предотвращения появления ржавчины является создание плотного и толстого бетонного слоя вокруг каждого за прутьев. Бетон, который расположен между сеткой и поверхностью строения, работает в качестве защиты не только от арматурного ржавления, но и обеспечивает ее огнеупорность. Данное свойство возможно в случаях применения плотного бетона, который не пропускает воздух.

В случае несоблюдения нужной толщины слоя защитного бетона возможна потеря огнеупорности материалов и появления ржавчины на армирующей сетке. В свою очередь, слишком толстый защитный слой приведет к снижению прочности строения вследствие смещения арматуры.

Следует отметить, что железобетон не теряет свои качества в случае перепадов температуры. Бетон и арматура обладают почти одинаковым температурным коэффициентом расширения, что позволяет им одновременно удлиняться или укорачиваться при повышении или понижении температуры соответственно.

Вернуться к оглавлению

Выбор стальной арматуры

Железо и бетон – основные составляющие железобетона. Существуют некоторые правила выбора материалов, которые обязательны к выполнению. Согласно этим правилам, арматура может быть создана из таких стройматериалов, как:

  • сталь мягкой прочности;
  • высоко- и среднеуглеродистая сталь;
  • проволока из стали, созданная в ходе холодной протяжки.

Перед выходом в эксплуатацию стержни проходят процедуры по повышению прочности и холодному свертыванию. Обязательной особенностью металла должно быть наличие поверхности с неровностями и зазубринами. Это служит дополнительным сцеплением металла и бетона.

После соединения стержней под углом 90 градусов, они образуют армирующую сетку. Процесс соединения происходит с применением сварочных агрегатов или вязки. Расположение сетки также имеет особенности, она должна покрывать всю площадь железобетонного объекта.

Выделяют еще один вид арматуры под названием листовая. Этот материал являет собой стальной лист, который превращается в своего рода сетку путем прорезания на нем отверстий. Правила расположения листа идентичны вышеупомянутым правилам расположения сетки. Данная арматура применяется в бетонных плитах перекрытий и стен конструкции.

Вернуться к оглавлению

Подготовка стержней к связке

Сначала арматуру проверяют на коррозию.

Работа по арматуре – сложный и длительный процесс. Перед его проведением необходимо подготовить и проверить стержни. Они обязаны быть пригодными к использованию и прочными. После того, как вы убедитесь в качестве материала, можно приступать к работе.

В первую очередь происходит проверка стали на наличие коррозии и соответствие параметрам и свойствам. Следует обязательно учитывать физические дефекты. К расположению сетки в бетоне следует подходить ответственно, поскольку даже небольшое отклонение может привести к необратимым последствиям.

При проверке учитывается сильная разрушающая коррозия стержня. В случае если ржавчиной покрыты небольшие участки прутьев, арматура может быть использована. Однако обработка антикоррозийным раствором такого металла обязательна.

Следующий этап — сгибание стержня. Это необходимо при армировании сложных конструкций, что будут оборудоваться в бетон. Данная процедура проводится при помощи специальных станков. После окончания подготовительных процедур создается арматурная сетка путем связки или сварки. Сетка создается при помощи таких материалов, приспособлений и правил:

  • прутья из стали – подготовленные, проверенные и по необходимости изогнутые;
  • проволока из металла – при создании сетки путем связки;
  • аппарат для сварки – при изготовлении арматуры путем сварки;
  • ровная поверхность – в случае сдвига связки или сварки возможно нарушение конструкции;
  • механизм для подъема – используется при закреплении конструкции из стали;
  • ограничительные приспособления и прокладки – контроль за соблюдением ровной связки и предотвращают смещение арматуры.

Вернуться к оглавлению

Пути создания сетки

Специалист работает с арматурой, а именно ее креплением путем сварки или вязки.

Вернуться к оглавлению

Связка

Этот способ применяется чаще. Это объясняется небольшими финансовыми затратами. В то же время соединительные качества от этого ухудшаются. Однако это не мешает связке быть популярной. Связка происходит отдельно от установленной опалубки. Связка должна проделываться на ровной поверхности во избежание смещений. Для соблюдения ровности применяются прокладочные и ограничительные материалы. Их устанавливают в процессе соединения прутьев.

Крепление должно производиться тщательно и аккуратно, поскольку исправить неточности крайне сложно. Это возможно лишь путем разбора секции арматуры и повторной связки. Вязка может производиться различными материалами. Наиболее распространенным среди них является мягкая, но в то же время прочная металлическая проволока. Кроме того, возможно применение пружинных креплений. Благодаря им крепление происходит быстрее.

Для достижения качественного сцепления с бетоном необходимо правильно рассчитать толщину бетонного слоя, который накладывается поверх сетки. Этот слой защищает арматуру от негативного воздействия воздуха и влаги. Следует подходить ответственно к определению толщины защитного пласта бетона.

Вернуться к оглавлению

Сварка деталей

Если каркас из арматуры достаточно высокий, то для придания ему жесткости делается выбор в пользу сварки.

Еще одним способом конструирования армирующего материала является сварка. Ее популярность объясняется повышенными прочностными качествами, которые положительно сказываются на свойствах железобетона.

Наиболее часто применяется электродуговая сварка. Ее простота и качество являются главными особенностями материала. Сварка может проводиться внахлест под углом или на одной прямой путем соединения двух стержней. Первый способ не требует особого контроля. А второй необходимо контролировать для достижения нужной прочности. Преимущества сварки:

  • соединение внахлест необязательно;
  • поперечное сечение соединений уменьшается;
  • каркас обладает высокой жесткостью.

Это список не исчерпывающий. Стыки стержней необходимо зачистить перед началом работ. Поверхность должна быть обязательно ровной или обработанной для сварки конкретного типа сечения прутьев. На практике часто применяется оборудование, контролирующее горизонтальное и вертикальное расположение стержней.

Контроль за качеством работы должен проводиться на всех этапах и при любом виде работ. Нельзя не упомянуть предварительное сваривание для проверки материала. Данная процедура осуществляется путем сваривания нескольких прутьев и их проверки на прочность.

Вернуться к оглавлению

Поведение железобетона

Каждая конструкция имеет свои особенности, которые являются ключевыми при создании железобетона. Так, давление на балку не является одинаковым. Ее нижняя часть всегда подвержена растяжению. Поэтому арматура должна применяться именно в этом месте.

После армирования давление на балку будет неизменным. Однако благодаря стали, прочность бетона повышена. Сталь обеспечивает сопротивление бетона нагрузкам. Бетонная плита имеет особенности. Опирание этого элемента конструкции может происходить двумя или даже четырьмя ее сторонами. Самое большое растяжение происходит в средине плиты. Исходя из этого, арматура оборудуется с двух сторон плиты.

Вернуться к оглавлению

Заключение

Армирование бетона – это лучшее средство для повышения прочности бетона. Оно помогает добиться надежности конструкции при самых больших нагрузках. От выбора материала зависит качество результата.

Правильное построение схемы работы обеспечит железобетон со всеми надлежащими свойствами.

Как правильно выбрать арматуру для фундамента

Арматура – это довольно общее понятие, под этим названием в данной статье мы имеем в виду элементы, усиливающие бетонную конструкцию. Бетон — не самодостаточен. Это крепкий, но, в то же время, хрупкий материал, не обладающий никакой гибкостью. При появлении трещин бетон просто разваливается. Но совсем другое дело – железобетон!

Железобетон – это комбинированный материал, состоящий из бетона, который несет основную нагрузку, и стальных стержней, помогающих ему в этом. Эти стержни и называются “арматура”. Фактически, это стальной стержень цилиндрической (или близкой к цилиндру) формы. Сталь и бетон очень “подходят” друг другу: они сочетаются между собой, дополняя и тем самым усиливая свойства друг друга. Эти материалы имеют прекрасное сцепление друг с другом.

Виды арматуры

Арматура различается по:

  1. Составу. Металл, используемый для арматуры, может быть как мягкий, так и более твердый (но хрупкий).

  2. Форме. Армирующие стержни могут быть как гладкими цилиндрическими, так и с шероховатостями, выступами разных форм. “Выступы” нужны для того, чтобы усилить сцепление бетона и стали.

  3. Диаметру. Диаметр арматуры для фундамента (и другие её параметры) выбираются в зависимости от задач и нагрузок армируемой конструкции.

  4. Свариваемости. Не всю арматуру можно сваривать при сборке арматурного каркаса. Это свойство зависит от того, какая сталь используется для арматуры. Чтобы применять сварку для сборки арматурного каркаса, сталь арматуры должна быть специально подготовленной при выплавке для этой операции. Если сварить арматуру, не предназначенную для такой операции, то произойдет ухудшение свойств арматуры.

Какую арматуру использовать для фундамента?

Сегодня мы хотим целенаправленно сосредоточиться на вопросе арматуры под фундамент. Фундамент – это самый широко используемый железобетонный элемент в конструкции дома. Вопрос армирования фундамента – один из самых актуальных. Правильно выполненный фундамент – это залог “здоровья” здания, гарантия прочности и долговечности всей конструкции дома.

Так, все же, какая должна быть арматура фундамента дома? Правильно на этот вопрос можно ответить после расчета всей конструкции дома. То есть, чтобы совершенно точно быть уверенным в своем выборе, нужно просчитать конструкцию фундамента и потом выполнить расчёт арматуры.

Мы уверены, что расчет должен выполнять квалифицированный специалист. Но если по какой-то причине вы решите выполнять расчёт сами, то знайте: если ваш дом стоит на не проблемных грунтах, и он не больше двух этажей (без цокольного этажа и без подвала), то под свою ответственность можно воспользоваться типовыми решениями и расчётами. То есть, выбрать параметры фундамента и количество арматуры из предложенных в специализированной литературе, справочниках.

Вот пример стандартных таблиц, из которых можно выбирать свои решения и показания (арматура для ленточного фундамента тоже выбирается по подобным таблицам).

1

10

2

4

2

10

3

6

3

12

2

4

4

12

3

6

5

14

3

6

Если мы не говорим про свайные фундаменты, то большинство фундаментов усиливается металлической арматурой, уложенной вдоль и поперёк (пруты перекрещиваются, образуя единую сетку). Для того, чтобы прутья не сдвигались относительно друг друга во время заливки бетона, они свариваются или связываются между собой вязальной проволокой в каждой точке касания. В теле бетона арматура располагается примерно в пяти сантиметрах от поверхности. Необходимо делать два яруса армирования: верхний (предназначен для работы на изгиб фундамента вверх) и нижний (для защиты от изгиба вниз). В середине фундамента армировку производить не нужно.

Строительство фундамента – работа, требующая вдумчивого и тщательного подхода, ведь цена ошибки – аварийный дом. Необходимо со всей серьезностью отнестись к этому этапу строительства. Также хотим напомнить, что арматуру для фундамента можно выбрать на «Первой Металлобазе»: близко, быстро, и с доставкой!

нормы по стандартам, причины отклонений, алгоритм расчета


Для того, чтобы несущая конструкция была устойчивой, чаще всего ее делают из армированного бетона. При этом количество арматуры и ее другие качественные характеристики напрямую зависят от дальнейшего использования получаемого материала.


В частности, при постройке фундаментов – от дальнейшей несущей нагрузки и устойчивости грунта, на котором будет происходить процесс строительства.

Норма по стандартам


Стандартные нормы рассчитаны для различных случаев. При составлении проекта, они указываются в технической документации, и должны точно выдерживаться. При этом архитекторы учитывают все тонкости, включая нагрузку на конструкцию из армированного бетона, состояние грунта, климатические условия и прочие необходимые условия. Поэтому указать точное количество для абстрактного случая невозможно.


Если же нужно рассчитать для частного строительства мелких бытовых построек, можно использовать приблизительные величины и пользоваться поправкой на возможные усложнения.


Учитывается:

  1. Тип фундамента.
  2. Размер возводимого здания и его вес.
  3. Особенности грунта.
  4. Технические характеристики арматуры.


Если для высотных зданий часто используется центнер арматуры, для небольших сооружений расход арматуры на 1 м3 бетона будет в 2-4 раза меньше, и использовать диаметр 1 см с ребристым профилем.


Тогда приблизительно на ленточный фундамент длиной 9 м. и шириной 6 м. должно использоваться сечение 0.4х1 м., арматуры диаметром 12 мм надо всего 18.7кг. на куб бетонной смеси, а диаметра 6 мм. – 5.9 кг. В общем это составляет 24.6 кг. арматуры.

Причины отклонений


В некоторых случаях расход арматуры может быть больше, чем это обычно используется.


Причинами таких изменений могут стать:


1. Сложные для строительства грунты – плавуны, песочные грунты. Кроме того, возможность землетрясений, чрезмерная влажность, резкие перепады температур может стать причиной дополнительной страховки по безопасности конструкции.


2. Дальнейшее использование зданий. Промышленные корпуса с тяжелым оборудованием, постоянным движением значительного количества ресурсов, детонацией поверхностей требуют особого внимания конструкторов, в том числе по рассмотрению расхода арматуры на 1 м3 бетона.


3. Если материалы, которые уходят на дальнейшую постройку, заменяются на более тяжелые.


Соответственно, если легкие здания строят на плотных грунтах, арматуры уйдет меньше, поскольку ее диаметр будет применяться меньшим.

Столбчатые и плоские


1. Для постройки столбчатых фундаментов используются армированные бетонные столбы, диаметр которых начинается от 15 см. Форма – прямоугольная, круглая или квадратная. Такие столбы обеспечивают фундаменту прочность на растяжение и сжатие, а также оберегают от воздействия сильных морозов.


Есть две технологии, по которым заливаются столбы. По первой в вырытую яму (около 30 см больше нужного размера) устанавливается опалубка, в которую закрепляется арматура и там заливается бетоном. По окончанию застывания бетона опалубка удаляется, и столб окончательно засыпается. По другой технологии отверстие проделывает специальный бур, который внизу проделывает уширение.


Ростверк лента из монолитного железобетона, которая соединяет столбы в единую конструкцию. Он делает фундамент более устойчивым, но не обязателен.


Армирование необходимо вертикальное, с использованием соответствующего диаметра и вертикальной насечки. Соединение толстых прутов ложится на более тонкую, диаметров 6 мм и гладкую. Перевязываются пруты с шагом 70-100 см.


Для ростверка используется поперечное сечение, диаметр 10-12 мм. с поперечными гладкими связками, не несущими на себе нагрузки.


2. Плоский фундамент строится из монолитных железобетонных плит. Чаще всего выбор на нем останавливается, когда грунты пучистые, а стены планируются из неэластичных материалов-  кирпича, керамзита и прочего.


Плиты могут быть ребристыми, что делает их более устойчивыми к нагрузкам и изменениям грунта. Изготовление таких плит более сложно, чем аналогичных плоских. Между ребрами засыпается песок или смесь песка и гравия.


Основа плит – металлические решетки, которые располагаются в верхней и нижней ее частях, связаны между собой. Могут использоваться и стандартные пруты с шагом 20-40 см., в зависимости от веса здания. Диаметр и сечения 10-15 см. Специалисты рекомендуют использовать одновременно продольное и поперечные сечения.

Алгоритм расчета и требуемые данные


При расходе арматуры на 1 м3 бетона во внимание берутся следующие параметры: нагрузка на фундамент, диаметр арматуры, длина прутов.


Для определения нагрузки на основание дома вычисляется площадь стен, кровли, цокольного, междуэтажного и чердачного перекрытия, а далее по таблице вычисляется приблизительный их вес.


Сума найденных результатов – точная нагрузка на фундамент.


Средний вес кровли по материалам, в кг /м. кв.



Средний удельный вес стены толщиной 15 см по материалам, в кг/м. кв.



Средний вес перекрытий по материалам, в кг /м. кв.



Чем больше нагрузка, тем меньше шаг, с которым используются железные пруты, а, значит, и ее конечное количество.


По стандарту диаметр железных стержней зависит от общего сечения всего фундамента, определяется в отношении как 1 к 0.001, то есть не меньше 1%. Для точных расчетов используется следующая таблица:



Для дальнейшего вычисления расхода арматуры на 1 м3 бетона необходимо воспользоваться ГОСТами 5781-82 и 10884-94. Однако есть значения, которые встречаются чаще всего. При диаметре сечения арматуры 8-14 мм ее ребристой поверхности чаще всего нужно 150-200 кг прутов.


В случае постройки колонн — это значение достигает 200-250 кг.


Для того, чтобы узнать, сколько железа необходимо на все здание, вычисляется сумма периметра здания и дины всех простенков.


Умножив данные на количество арматуры в 1 метре кубическом, получается ее общее количество, необходимое для строительства фундамента данного здания.

типы и работа с ней

Назначение бетонной арматуры

Строительство зданий и сооружений проводится при помощи железобетона, железобетонных плит, железобетонных монолитных конструкций.

Бетон достаточно прочный материал, но при растяжении его свойства резко ухудшаются, а добавление в него стального прута (арматуры) увеличивает прочность конструкции в несколько раз.

Составным элементом железобетона является арматура, которая размещается внутри бетона.

Для чего применяется арматура? Располагаясь внутри бетона, она увеличивает его прочность и, соответственно, воспринимаемые нагрузки. Какую именно прочность увеличивает арматура в бетоне? Усилия, которые действуют на бетон, делят на три составляющие. Они могут действовать на бетон как по отдельности, так и в комплексе. Характер создаваемого усилия может создавать:

Виды арматуры : 1-2. Арматура периодического профиля. 3. Проволока периодического профиля. 4. Семипроволочная прядь. 5. Двухпрядный канат.

  • сжатие;
  • растяжение;
  • сдвиг.

Бетон сам по себе выдерживает достаточное усилие на сжатие, а вот при растяжении его свойства ухудшаются примерно в 10-12 раз. Добавление в бетон металла в виде стального прута позволяет улучшить его характеристики. При этом немаловажным фактором является хорошая связь бетона и металла.

Стеновые бетонные панели в своей конструкции содержат вертикальные и горизонтальные направляющие арматуры. Их располагают внутри бетона поближе к внутренней и внешней поверхностям стен. Если сечение стен резко изменяется, в углах уменьшения или увеличения сечений предусматривают дополнительные направляющие. Такое изменение можно встретить, например, по углам дверных и оконных проемов. Применяемая стальная арматура в железобетонных изделиях делится на несколько типов по конструктивным особенностям.

Вернуться к оглавлению

Типы применяемой арматуры

Армирование бетона проводится мягкой сталью с допустимым напряжением в металле, указанным в соответствующих СНиП. В качестве арматуры применяют также:

  • среднеуглеродистую сталь;
  • высокоуглеродистую сталь;
  • холоднокатаную стальную проволоку.

В качестве арматуры используют деформированные стержни с зазубринами. Неровность стержня позволяет обеспечить лучшую механическую связь арматуры и бетона. Эффективность такой связи небольшая и увеличивается, если между составными элементами происходит напряжение на сдвиг. Чем выше усилие на сдвиг, тем выше сопротивление материала за счет лучшего сцепления. Арматура с деформированной поверхностью самостоятельно не применяется, так как присутствует опасность сколов бетона. Чаще всего такая арматура применяется дополнительно со стальной проволокой.

В качестве арматуры для бетона применяется арматурная сетка, которая изготавливается из стальной проволоки. Для соединения проволоки применяется электросварка. Для изготовления сетки могут применяться витые стержни с прочным соединением в местах пересечения. Использование таких стержней позволяет не использовать электросварку. Применяется сетка чаще всего при изготовлении железобетонных плит, используемых как при строительстве домов, так и при строительстве дорог.

Схема работы железобетона при сжатии.

Еще один тип арматуры для бетона – листовая стальная арматура. Конструктивно такая арматура представляет собой пластину листовой стали, в которой делают прорези с их последующим отгибанием. Получается что-то в виде сита. Ячейки такого сита могут иметь различную конструкцию.

Применяется арматура такой конструкции для проведения армирования плит перекрытия, а также стеновых панелей. Стальной лист с прорезями может содержать небольшую шероховатость, которая создаст лучшее сцепление штукатурки с плитой.

Вернуться к оглавлению

Характеристики и работа с арматурой

Прежде чем приступать к проведению установки арматуры в бетон фундамента или стен, следует проверить ее качество и состояние. В первую очередь проверяется наличие ржавчины и ее количество. Не является плохим показателем наличие небольшого слоя ржавчины, так как металл подвержен коррозии при воздействии на него окружающей среды. Но если при протирании жесткой щеткой от металла отделяются достаточно большие кусочки ржавчины, такая арматура попадает под брак. Использовать ее не рекомендуется.

Следующий параметр, на который следует обратить внимание – это диаметр стержня, очень часто при длительном хранении и коррозийном воздействии это значение уменьшается и не соответствует заводской маркировке и значениям, указанным в проекте строения.

Например, при хранении арматуры на складе с химически агрессивной средой значение толщины арматуры может уменьшаться на 1 мм в течении полугода.

При проведении армирования бетона применяют следующие приемы ее обработки:

Схема армирования ленточного фундамента.

  • гнутье;
  • вязка;
  • сварка.

Гнутье арматуры проводится вручную, с использованием специального гибочного станка. Если количество арматуры слишком большое, например, в объемах завода ЖБИ, используют специальные механические станки. Большое внимание уделяется радиусу изгиба арматуры, значение которого указывается в СНиП. Неправильное расположение в бетон арматуры может вызвать его раскалывание. Особенно такое раскалывание возможно в тонких элементах, например, в балках.

Вязка арматуры – не менее важный этап работ при армировании бетона. Во-первых, правильно должно быть выбрано расположение арматуры. Во-вторых, установленная арматурная сетка должна быть зафиксирована, чтобы не было смещений в горизонтальной и вертикальной плоскостях. Упрощается работа по вязке, если проводить ее отдельно от бетонируемой конструкции, но усложняется процесс перемещения. При достаточно массивной конструкции потребуются специальные подъемные механизмы.

Для вязки арматуры применяется специальная мягкая стальная проволока, так называемая вязальная. Можно найти специальные крепления в виде пружин. Использование пружин позволит ускорить процесс.

При проведении вязки арматуры следует правильно выбрать расстояние между стержнями. Значение расстояния выбирается согласно диаметру стержня и не должно быть не менее его диаметра. Если используются различные диаметры, то расстояние принимается относительно самого большого из них. В вертикальной плоскости между главными стержнями должно выдерживаться не менее 12 мм. Исключение составляют только те места, где происходит сращивание или пересечение с поперечными стержнями.

Сварка арматуры широко применяется в настоящее время. Сварку арматуры делят на два вида:

Схема сварки арматурных соединений.

  • сварка «вприхватку»;
  • встык.

При сварке «вприхватку» требуется особая прочность сварного шва. Выполняется сварка путем соединения стержней, находящихся под разными углами.

Проведение сварки встык требует большего внимания, так как сварной шов принимает на себя усилия от растяжения и сжатия.

Для того чтобы сварной шов получился прочным, следует соблюдать основные требования:

  • выполнение работ должно проводиться опытным специалистом;
  • необходимо найти специально предназначенные для работ электроды и оборудование;
  • шов должен подвергаться качественной проверке, особенно на заполнение металлом;
  • значение силы тока для сварки должно быть достаточно высоким.

Для сварки арматуры применяют газовую, электродуговую сварки, а также сварку сопротивлением. Самой приемлемой в плане экономии и качества является электродуговая.

Вернуться к оглавлению

Защита от коррозии

Арматура для бетона должна быть защищена от коррозии. Находясь внутри бетона, стальной стержень фактически не подвергается коррозии, поэтому следует правильно выбирать толщину защитного слоя.

Для того чтобы толщина была выдержана, прежде чем заливать бетон следует проверить правильность расположения арматуры, найти неточности и устранить их.

Толщина защитного слоя должна составлять:

  • для продольной балки – не менее 25 мм;
  • для плит – не менее 1 мм;
  • для конца стержня арматуры – не менее 25 мм;
  • во всех остальных вариантах не менее 1 мм или не меньше диаметра арматуры.

Несоблюдение требований и невыдерживание значения толщины защитного слоя приведет к появлению трещин, коррозии металла и разрушению строения.

Отдельные элементы арматуры могут потребовать дополнительную защиту от коррозии. Это касается тех элементов, которые выходят на поверхность. Для защиты использую шеллак, лак или инертную краску. Применение меди допустимо, но только в тех случаях, если в окружающей среде не присутствует хлористый кальций. Элементы, покрытые цинком, свинцом, кадмием или алюминием в свежем бетоне подвержены коррозии, поэтому использовать такую защиту не рекомендуется.

Разрушение металла ускоряется, если в бетоне присутствуют блуждающие электротоки, чаще всего они возникают при возникновении влажности.

Как правильно армировать бетон и вязать арматуру

Содержание статьи:

Армирование – использование арматуры при строительстве для увеличения прочности и надежности конструкции. Давайте разберемся, зачем нужно армировать бетон и как правильно рассчитывать количество материала для этого процесса.

Зачем армировать бетон

Бетон широко используется в строительстве, как очень прочный материал. Но и у него есть недостатки – при растяжении и изгибе он может потрескаться или лопнуть, что существенно снизит прочность конструкции. Чтобы этого не произошло, при заливке бетон укрепляют металлическими стержнями – арматурой. Она выполняет функцию каркаса, который принимает давление материала на себя и не дает ему разрушиться.

Как правильно связывать арматуру

Армирование бетона делают при заливке фундамента и возведении перекрытий. Для этого прутья устанавливают поперек возможного направления растяжения или прогиба.

Для достижения еще большей прочности арматуру необходимо связать или сварить. Это делается для того, чтобы при заливке тяжелый раствор не сместил стержни и не изменил форму конструкции. Элементы соединения должны прочно прилегать друг к другу, чтобы бетон не разъединил их при наливании.

Сварка считается более крепким и быстрым методом, который однако, редко используется при частном строительстве, потому что требует опыта и мастерства от сварщика.

При строительстве своими руками чаще используют вязку. Этот способ при некоторой подготовке сможет применять даже не очень опытный строитель. При вязке используют специальную проволоку с диаметром 2-3 мм, которая укрепляет конструкцию в местах пересечения стержней.

В специализированных магазинах можно купить и готовый арматурный каркас, но практика показывает, что его соединение не дает форы ни в сроке исполнения, ни в прочности.

Расчет арматуры для армирования фундамента

Количество арматуры и других материалов для вязки зависит от типа фундамента и его формы. Для плиточного фундамента достаточно установить стержни диаметром не менее 10 мм с ребрами жесткости. На выбор диаметра влияют тип грунта и размеры будущего дома: прутья 10 мм подойдут для легко дома, стоящего на надежном грунте, для здания в несколько этажей при строительстве на подвижном грунте понадобится арматура не менее 15 мм.

Для площади плиточного фундамента 6 на 6 метров необходимо построить конструкцию из металлических стержней с шагом 20 см. Для укладки нужно взять арматуру в количестве 31 шт и разложить ее вдоль и поперек – получится 62 прута. Для плиты из бетона необходимо два пояса армирования – сверху и снизу – поэтому количество арматуры нужно удвоить еще раз – 124 стержня. Если пересчитать количество арматуры в погонных метрах, то при длине одного прута в 6 метров нужно закупить 744 погонных метра материала.

Верхний и нижний уровни связывают в узлах пересечения. В этом примере их получается 961. Если толщина плиты будет 20 см, а прутья будет вставляться на глубину 5 см, то для прочной конструкции нужны стержни длиной 10 см или 96,1 погонный метр арматуры.

После установки конструкции ее проверяют на соответствие проекту. После этого можно заливать бетон и выполнять дальнейшие работы по строительству.


Если Вас интересует наш бетон или бетонная смесь позвоните нам — +7 (495) 505-46-60

Также вы можете ознакомиться с ценами и нашей продукцией


Как укрепить бетонную плиту на земле для предотвращения образования трещин

Большинство плит на земле не армированы или номинально армированы для контроля ширины трещин. При размещении в верхней или верхней части толщины плиты стальная арматура ограничивает ширину случайных трещин, которые могут возникнуть из-за усадки бетона и температурных ограничений, осадки основания, приложенных нагрузок или других проблем.

Этот тип армирования обычно называют усадочным и температурным армированием.

Усадочная и температурная арматура отличается от структурной арматуры. Структурная арматура обычно размещается в нижней части толщины плиты для увеличения несущей способности плиты. Большинство строительных плит на земле имеют как верхний, так и нижний слои армирования для контроля ширины трещин и увеличения несущей способности. Из-за проблем с конструктивностью и затрат, связанных с двумя слоями армирования, конструкционные плиты на земле не так распространены, как неструктурные плиты.

Несмотря на то, что существует несколько вариантов армирования неструктурных плит на грунте, в этой статье основное внимание уделяется стальным арматурным стержням и арматуре из сварной проволоки для контроля ширины трещин.

Неограниченный рост ширины трещин приводит к выкрашиванию кромок вдоль трещин вне стыков при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Основы

Стальная арматура и арматура из сварной проволоки не предотвращают растрескивание. Армирование в основном бездействует, пока бетон не потрескается.После растрескивания он становится активным и регулирует ширину трещины, ограничивая ее рост.

Если плиты размещены на высококачественных основаниях с однородной опорой и состоят из бетона с низкой усадкой и правильно установленными стыками с шагом 15 футов или меньше, в армировании, как правило, нет необходимости. Скорее всего, случайных или несвязных трещин будет немного. Если все же возникают случайные трещины, они должны оставаться достаточно плотными из-за ограниченного расстояния между стыками и низкой усадки бетона, что ограничивает будущую пригодность к эксплуатации или техническому обслуживанию.

Когда плиты размещаются на проблемных основаниях с риском неоднородной опоры или состоят из бетона средней или высокой усадки или расстояние между стыками превышает 15 футов, тогда необходимо армирование, чтобы ограничить ширину трещин в случае их возникновения. По мере того, как ширина трещины увеличивается и приближается к 35 мил (0,035 дюйма), эффективность передачи нагрузки через блокировку заполнителя уменьшается, и могут происходить дифференциальные вертикальные перемещения по трещинам или «раскачивание» плиты. Когда это происходит, края трещин становятся обнаженными, и может произойти скалывание кромок, особенно если плита подвергается воздействию колесного транспорта и особенно жестких колесных погрузчиков.Как только начинается отслаивание, ширина трещин на поверхности становится шире, и износ плиты по трещинам значительно увеличивается.

Если усадочные швы неприемлемы и не устанавливаются, требуется усиление усадки и температурного усиления. Такой подход к проектированию иногда называют непрерывно армированными плитами или плитами без стыков, и он позволяет множеству мелких трещин, расположенных близко друг к другу (от 3 до 6 футов), по всей плите.

Неограниченный рост ширины трещин приводит к выкрашиванию кромок вдоль трещин вне стыков при воздействии колесного транспорта, особенно жестких колесных погрузчиков.

Варианты борьбы с трещинами

В общем, существует два варианта контроля трещин в плитах на земле: 1) контроль местоположения трещин путем установки усадочных швов (не контролирует ширину трещин) или 2) контроль ширины трещин путем установки арматуры (не контролирует трещину. расположение).

В варианте 1 мы указываем плите, где происходит трещина, и ширина усадочных швов или трещин в швах в значительной степени определяется расстоянием между швами и усадкой бетона.По мере увеличения расстояний между швами и усадки бетона ширина швов увеличивается. Подобно трещинам, если ширина шва приближается к 35 мил, эффективность блокировки заполнителя для передачи нагрузок и предотвращения дифференциальных вертикальных перемещений по швам может быть значительно снижена. По этой причине многие проектировщики используют устройства для передачи нагрузки, включая стальные дюбели, пластины или непрерывную арматуру через усадочные соединения, чтобы обеспечить положительную передачу нагрузки и ограничить дифференциальные вертикальные перемещения в соединениях.

В варианте 2 мы допускаем случайное растрескивание плит, но контролируем ширину трещин с помощью стальных арматурных стержней или арматуры из сварной проволоки. Обычно с этой опцией не устанавливаются усадочные швы. Вместо этого растрескивание происходит беспорядочно, образуя многочисленные, плотно прилегающие друг к другу трещины. Из-за внешнего вида этот вариант борьбы с трещинами всегда следует обсуждать с владельцем.

Порезка арматуры на стыках

Соблюдайте осторожность при использовании обоих вариантов контроля трещин в одной плите.Если через усадочные стыки проходит слишком много арматуры, стыки становятся слишком жесткими и могут не треснуть и раскрыться, как задумано. Когда усадочные соединения не активируются (т. Е. Трескаются и открываются) из-за армирования, обычно происходит расслоение или случайное растрескивание. Если используются оба варианта, необходимо ограничить количество арматуры, проходящей через стыки, чтобы обеспечить правильную активацию.

Некоторые проектировщики предписывают обрезать всю арматуру в усадочных соединениях, в то время как другие могут предписывать обрезать все остальные стержни или проволоки.Обрезая все остальные стержни или проволоки, оставшаяся арматура поможет обеспечить передачу нагрузки и минимизировать дифференциальные движения панели, но не ограничит срабатывание соединений. Если в спецификациях и строительных чертежах не указано, что делать с температурной и усадочной арматурой в стыках, подрядчикам следует подать запрос о предоставлении информации. Часто подрядчиков необоснованно обвиняют в несоответствующем растрескивании, связанном с этой проблемой проектирования.

Метод «тяни и тяни» для перемещения арматуры из сварной проволоки в указанное место является неэффективным методом, которого подрядчикам следует избегать.

Расположение арматуры

Стальную арматуру и арматуру из сварной проволоки следует располагать в верхней трети толщины плиты, поскольку усадочные и температурные трещины возникают на поверхности плиты. Трещины шире на поверхности и сужаются по глубине. Таким образом, арматура для предотвращения трещин никогда не должна располагаться ниже середины плиты. Арматуру также следует размещать достаточно низко, чтобы распил не порезал арматуру. Для армирования сварной проволокой Институт армирования проволоки рекомендует размещать сталь на 2 дюйма ниже поверхности или в пределах верхней трети толщины плиты, в зависимости от того, что ближе к поверхности.Проектировщики обычно указывают положение армирования, указывая бетонное покрытие (от 1 1/2 до 2 дюймов) для арматуры.

Не рекомендуется размещать один слой арматуры в центре или на средней глубине плиты (за исключением плит толщиной 4 дюйма). Это универсальное место, где проектировщик надеется увеличить несущую способность плиты в дополнение к обеспечению контроля ширины трещин. Однако размещение арматуры в середине плиты не может эффективно решить ни одну из задач.

Стальная арматура и арматура из сварной проволоки должны поддерживаться и в достаточной степени связаны вместе, чтобы минимизировать перемещения во время укладки бетона и отделочных работ. В противном случае арматура может неправильно расположиться в плите. Поддерживайте арматуру стульями или опорами из сборных железобетонных стержней. У стульев должны быть песочные или опорные плиты, а у брусьев должно быть как минимум 4-дюймовое квадратное основание, чтобы они не проваливались в основание. Используйте такие расстояния между опорами, которые гарантируют, что арматура не провисает между опорами и не сдавливается пешеходами или свежим бетоном.Гибкое армирование, включая арматуру из сварной проволоки, требует меньшего расстояния между опорами. Помимо указания типа и количества арматуры, проектировщики должны указать тип и расстояние между опорами, чтобы обеспечить правильное расположение арматуры.

Сварную проволочную арматуру нельзя класть на землю и тянуть на место после укладки бетона. Техника «зацепи-тяни» всегда приводит к неправильной установке арматуры. Как рабочие могут равномерно «зацепить и потянуть» арматуру из сварной проволоки в указанном месте, стоя на арматуре?

Арматура, частично заглубленная в основание, не обеспечивает контроль ширины трещины.Без поддержки стульев или сборных бетонных блоков арматура обычно заканчивается в нижней части плиты или закапывается в основание.

Допуски размещения

Допуск вертикального размещения арматуры в плитах на земле составляет ± 3/4 дюйма от указанного места. Для плиты толщиной 12 дюймов или менее допуск бетонного покрытия составляет — 3/8 дюйма, измеренный перпендикулярно бетонной поверхности, и уменьшение покрытия не может превышать одну треть указанного покрытия.Во многих случаях допуск покрытия имеет приоритет над допуском вертикального размещения. Правильное размещение и поддержка арматуры поможет обеспечить соблюдение этих допусков по вертикальному размещению.

Эта статья была первоначально опубликована 25 февраля 2013 г.

Артикулы:

ACI 117-06. «Спецификация допусков для бетонных конструкций и материалов»

ACI 302.1R-04. «Руководство по устройству бетонных перекрытий и перекрытий»

ACI 360R-06.«Дизайн плит-на-земле»

Положение ASCC № 2. «Расположение катаной сварной проволочной сетки в бетоне»

WRI Tech Facts. «Опоры необходимы для долговременной работы арматуры сварной проволокой в ​​плите на одном уровне» (TF 702-R-08)

WRI Tech Facts. «Как определить, заказать и использовать сварную проволочную арматуру» (TF 202-R-03)

Типы армирования в бетоне

Арматурный бетон

Армирование в бетоне создается из щебня и мелких камней, смешанных с цементом для повышения его прочности и долговечности при сжатии.Однако для армирования этого бетона используются различные материалы, включая арматуру, поликарбонат, конструкционные металлы круглого сечения, GFRC (бетон, армированный стекловолокном) и другие. Он обладает невероятной прочностью и может использоваться в различных областях, включая небольшие декоративные элементы, а также тяжелые конструкционные мосты и плотины.

Традиционная арматура

Арматура используется в заливном бетоне как способ повысить предел текучести и прочность на растяжение. Он предлагается в различных сортах, длине и габаритных размерах.Им легко манипулировать, и его можно сгибать в самых разных формах, чтобы удовлетворить требованиям практически любой разливки.

Бетон с последующим натяжением

Многие современные жилые бетонные плиты и коммерческие полы изготавливаются из бетона, подвергнутого последующему натяжению. В дополнение к использованию традиционной армированной (арматурной) стали, в технике пост-натяжения используются стальные тросы внутри пластиковой втулки или канала, обеспечивающего натяжение после затвердевания бетона. Стальные тросы натянуты под большим натяжением, образуя плотную ленту по периметру плиты.

Бетон, армированный стекловолокном

Бетон, армированный стекловолокном (GFRC), представляет собой легкое решение, позволяющее заливать бетон очень тонкими слоями. GFRC, который часто используется в бетонных столешницах, обеспечивает большую прочность при толщине от одного дюйма и более. Он обеспечивает исключительную прочность на изгиб без необходимости использования других видов армирования. Это позволяет размещать конструкции сложной формы, не беспокоясь о трещинах или сколах. Кроме того, он используется в качестве вторичной арматуры для обеспечения более высокой прочности на разрыв бетонной смеси

Нить ПК

PC (предварительно напряженная бетонная полоса) представляет собой многопроволочный продукт из высокоуглеродистой стали.Он используется для создания сил сжатия. Он часто эффективно используется для сборных конструкций вместе с другими приложениями, включая коммерческие здания, мосты, парковочные площадки и другие проекты, требующие решений для перекрытий на одном уровне. Поликарбонатная прядь, доступная в виде оцинкованного продукта, является эффективным и прочным решением, поскольку ее отношение прочности к весу чрезвычайно велико, а продукт очень рентабелен.

Решения круглых конструкций

Круглый конструкционный металл, который часто называют проволочной сеткой или проволочной сеткой, используется в качестве эффективного армирования при заливке бетона.Многие из этих доступных круглых конструкционных металлов производятся с прикрепленной бумажной основой, используемой для формирования усиливающей опоры для распыления облицовки бассейнов и других форм. Кроме того, армирующие сетки из углеродного волокна предлагают альтернативу использованию легкой арматуры или стальной сетки при укладке бетона. Он имеет значительное структурное усиление для всех типов отливок.

Кроме того, армирующие сетки из углеродного волокна хорошо подходят для бетонных столешниц благодаря своим уникальным свойствам.Их можно легко разместить немного ниже готовой бетонной поверхности, в отличие от традиционной стальной арматуры. Они устойчивы к коррозии и очень легкие.

Подрядчики используют решения по армированию бетона для множества применений, включая создание рабочих поверхностей, заливку облицовки бассейнов и строительство плотин, мостов, проезжей части, плит и патио.

Проблема с железобетоном

Сам по себе бетон является очень прочным строительным материалом.Великолепный Пантеон в Риме, крупнейший в мире купол из неармированного бетона, находится в отличном состоянии спустя почти 1900 лет. И все же многие бетонные конструкции прошлого века — мосты, шоссе и здания — рушатся. Многие бетонные конструкции, построенные в этом столетии, к его концу устареют.

Учитывая сохранившиеся древние постройки, это может показаться любопытным. Важнейшее отличие — современное использование стальной арматуры, известной как арматура, скрытая внутри бетона.Сталь в основном состоит из железа, и одно из неизменных свойств железа — то, что оно ржавеет. Это ухудшает долговечность бетонных конструкций, что трудно обнаружить и дорого ремонтировать.

Хотя ремонт может быть оправдан для сохранения архитектурного наследия знаковых зданий 20-го века, например, спроектированных пользователями железобетона, такими как Фрэнк Ллойд Райт, сомнительно, будет ли это доступным или желательным для подавляющего большинства сооружений. Писатель Роберт Курланд в своей книге Concrete Planet оценивает затраты на ремонт и восстановление бетонной инфраструктуры только в Соединенных Штатах в триллионы долларов, которые будут оплачиваться будущими поколениями.

Для замены старых мостов нужны новые деньги.
1stPix Фила / Flickr.com, CC BY-NC

Стальная арматура была кардинальным нововведением 19 века. Стальные стержни добавляют прочности, позволяя создавать длинные консольные конструкции и более тонкие плиты с меньшей опорой. Это сокращает время строительства, поскольку для заливки таких плит требуется меньше бетона.

Эти качества, продвигаемые напористым, а иногда и двуличным продвижением бетонной промышленности в начале 20 века, привели к его огромной популярности.

Железобетон конкурирует с более прочными строительными технологиями, такими как стальной каркас или традиционные кирпичи и строительный раствор. Во всем мире он заменил экологически чувствительные, низкоуглеродные варианты, такие как сырцовый кирпич и утрамбованную землю — исторические практики, которые также могут быть более долговечными.

Инженеры начала 20 века думали, что железобетонные конструкции прослужат очень долго — возможно, 1000 лет. На самом деле продолжительность их жизни больше примерно 50-100 лет, а иногда и меньше.Строительные нормы и правила обычно требуют, чтобы здания сохранялись в течение нескольких десятилетий, но ухудшение состояния может начаться всего через 10 лет.

Многие инженеры и архитекторы указывают на естественную близость стали и бетона: они имеют схожие характеристики теплового расширения, а щелочность бетона может помочь предотвратить ржавчину. Но по-прежнему отсутствуют сведения об их составных свойствах — например, в отношении изменений температуры, связанных с воздействием солнца.

Многие альтернативные материалы для армирования бетона, такие как нержавеющая сталь, алюминиевая бронза и фибро-полимерные композиты, еще не получили широкого распространения.Доступность простой стальной арматуры привлекает застройщиков. Но многие проектировщики и разработчики не принимают во внимание дополнительные расходы на обслуживание, ремонт или замену.

Дешево и эффективно, по крайней мере, в краткосрочной перспективе.
Луиджи Кьеза / Wikimedia Commons, CC BY-SA

Существуют технологии, которые могут решить проблему коррозии стали, например, катодная защита, при которой вся конструкция подключается к антикоррозийному электрическому току.Существуют также интересные новые методы контроля коррозии с помощью электрических или акустических средств.

Другой вариант — обработать бетон составом, ингибирующим ржавчину, хотя он может быть токсичным и не подходящим для зданий. Есть несколько новых нетоксичных ингибиторов, включая соединения, извлеченные из бамбука, и «биомолекулы», полученные из бактерий.

По сути, однако, ни одно из этих достижений не может решить врожденную проблему, заключающуюся в том, что использование стали внутри бетона разрушает его потенциально большую долговечность.

Экологические затраты на восстановление

Это имеет серьезные последствия для планеты. Бетон является третьим по величине источником выбросов углекислого газа после автомобилей и угольных электростанций. Только на производство цемента приходится примерно 5% мировых выбросов CO₂. Бетон также составляет самую большую долю отходов строительства и сноса и составляет около трети всех отходов свалок.

Переработка бетона сложна и дорога, снижает его прочность и может катализировать химические реакции, ускоряющие распад.Миру необходимо сократить производство бетона, но это будет невозможно без строительства долговечных конструкций.

Рекультивация арматуры: дорогостоящая работа.
Анна Фродезиак / Wikimedia Commons

В недавней статье я предполагаю, что повсеместное признание железобетона может быть выражением традиционного, доминирующего и, в конечном счете, разрушительного взгляда на материю как на инертную. Но железобетон на самом деле не инертен.

Бетон обычно воспринимается как подобный камню, монолитный и однородный материал.Фактически, это сложная смесь вареного известняка, глиноподобных материалов и широкого спектра каменных или песчаных заполнителей. Сам известняк представляет собой осадочную породу, состоящую из раковин и кораллов, на формирование которых влияют многие биологические, геологические и климатологические факторы.

Это означает, что бетонные конструкции, несмотря на все их каменные поверхностные качества, на самом деле состоят из скелетов морских существ, вымоченных в скалах. Этим морским существам нужны миллионы и миллионы лет, чтобы жить, умереть и превратиться в известняк.Этот временной масштаб резко контрастирует с продолжительностью жизни современных зданий.

Сталь также часто считается инертной и упругой. Такие термины, как «железный век», предполагают древнюю долговечность, хотя артефакты железного века сравнительно редки именно потому, что они ржавеют. Если видна строительная сталь, ее можно обслуживать, например, если мост Харбор-Бридж в Сиднее неоднократно красится и перекрашивается.

Однако, когда сталь заделана в бетон, она скрыта, но тайно активна.Влага, проникающая через тысячи крошечных трещин, вызывает электрохимическую реакцию. Один конец арматурного стержня становится анодом, а другой — катодом, образуя «батарею», которая обеспечивает преобразование железа в ржавчину. Ржавчина может расширять арматурный стержень в четыре раза, увеличивая трещины и заставляя бетон расколоться в процессе, называемом скалыванием, более известным как «рак бетона».

Конкретный рак: некрасиво.
Саранг / Wikimedia Commons

Я предлагаю изменить наше мышление и признать бетон и сталь яркими и активными материалами.Это не случай изменения каких-либо фактов, а скорее переориентация того, как мы понимаем эти факты и действуем в соответствии с ними. Чтобы избежать отходов, загрязнения окружающей среды и ненужного восстановления, потребуется мыслить далеко за рамки дисциплинарных представлений о времени, и это особенно верно для строительной отрасли.

Разрушенные цивилизации прошлого показывают нам последствия краткосрочного мышления. Мы должны сосредоточиться на строительстве структур, которые выдержат испытание временем, чтобы не получить громоздкие, заброшенные артефакты, которые не больше подходят для их первоначального назначения, чем статуи острова Пасхи.

Что случилось с бетоном, армированным волокном?

Укрепляет ли бетон добавление фибры или как?

Бетон, армированный сталью, является основой нашего современного общества. Армирование в бетоне создает композитный материал, при этом бетон обеспечивает прочность против напряжения сжатия, в то время как арматура обеспечивает прочность против напряжения растяжения. Но, хотя стальная арматура устраняет одно из величайших ограничений бетона, она создает совершенно новую проблему: коррозия встроенной стальной арматуры является наиболее распространенной формой разрушения бетона.Так что мы с этим делаем?

Эй, я Грейди, и это практическая инженерия. В сегодняшнем выпуске мы тестируем некоторые инновации в армировании бетона.

Хотя незащищенная сталь естественно склонна к коррозии или ржавчине, когда она погружается в бетон, определенные факторы обычно работают для ее защиты. Во-первых, это очевидная защита, заключающаяся в простой защите от внешней среды относительно непроницаемым и прочным материалом. Вода и загрязнения обычно не проходят через бетон к стали.

Вторая форма защиты — щелочная среда. Высокий pH нормального бетона создает тонкий оксидный слой на стали, который обеспечивает защиту от коррозии.

Но в некоторых случаях этой защиты недостаточно. Одним из основных источников коррозии арматуры является соль. Будь то воздействие соленой воды вблизи морской среды или применение солей для защиты от обледенения, чтобы сделать дороги более безопасными в зимний период, эти ионы хлора могут проникать через бетон, разъедая стальную арматуру.А когда сталь корродирует, образуется оксид железа, который расширяется внутри бетона. Это расширение создает напряжение, которое иногда называют окислительным подъемом, и является одной из основных причин разрушения бетона.

Трещины в крышке

Итак, как же предотвратить попадание ионов хлора и других загрязняющих веществ в сталь и появление коррозии? Первая линия защиты — укрытие.

Покрытие — это минимальное расстояние между внешней поверхностью бетона и арматурной сталью.

И, в зависимости от воздействия и области применения, определенные коды указывают разную толщину бетонного покрытия, обычно от 25 до 75 миллиметров или от 1 до 3 дюймов. Укрытие — одна из причин, по которой хорошая бетонная работа требует так много усилий, прежде чем бетон вообще появится на стройплощадке. Установка прочной опалубки и большого количества проволоки, связывающей всю арматуру вместе, помогает быть абсолютно уверенным в том, что, несмотря на все толчки, ходьбу и общий хаос, который возникает, когда пора на самом деле укладывать бетон, арматурный стержень остается там, где он был задуман. встроены в конечный продукт.Пренебрежение этими действиями может привести к тому, что арматурный стержень опустится на дно плиты или окажется слишком близко к внешней поверхности до того, как бетон застынет, что в конечном итоге приведет к преждевременной коррозии арматуры из-за отсутствия покрытия.

Но даже при наличии подходящего покрытия любая трещина в бетоне может привести к прямому контакту загрязняющих веществ и воды с арматурой. И вас не удивит, что трещины в бетоне встречаются не так уж и редко. Большая часть бетона дает усадку при отверждении, что может привести к образованию трещин.Изменения температуры также вызывают расширение и сжатие, что может привести к растрескиванию. Бетон также может треснуть при нормальных, ожидаемых условиях нагрузки из-за того, как сталь воспринимает напряжения в материале.

Одним из способов решения этой проблемы является предварительное напряжение арматурного стержня. Эту тему я кратко обсуждал в предыдущем видео, и я хотел бы углубиться в нее в будущем. Но сегодня я хочу показать еще один вариант уменьшения этих трещин.

Бетон, армированный волокнами

Бетон, армированный фиброй, — это во многом именно то, что вы ожидаете.Это ни в коем случае не новая идея, но наше понимание и использование различных видов волокон в бетонной смеси продолжает расти. Добавление стекла, стали или синтетических волокон в бетон может дать много преимуществ, но одним из самых важных является контроль трещин .

Я построил три почти идентичных железобетонных балки, чтобы показать, как это работает, и дал им отвердеть около недели. У первого в качестве арматуры используется только стальная арматура. Я использую свой гидравлический пресс, чтобы проверить прочность каждой балки и посмотреть, как она работает до выхода из строя.И я использую тонны в качестве меры силы на этих балках, просто потому, что это то, что говорит датчик, но единицы измерения совершенно произвольны для демонстрации. (Если вы предпочитаете SI [Système Internationale, или метрическую систему], просто представьте, что это метрические тонны.)

Когда я увеличиваю нагрузку на балку, вы видите трещины, начинающиеся всего с 3 тонн. Эти трещины образуются из-за того, что сталь немного растягивается, принимая на себя растягивающее напряжение в бетоне. Балка прекрасно выдерживает нагрузку и даже не близка к разрушению, но бетон не может растягиваться вместе со сталью, поэтому он должен треснуть. Вы можете себе представить, как эти трещины могут позволить воде и воздуху контактировать с арматурой и в конечном итоге разрушить бетон.

(Эти трещины — важная часть этой демонстрации, но я пошел дальше и увеличил нагрузку до тех пор, пока балка не сломалась, потому что, эй, это то, для чего подходят гидравлические прессы, верно?)

Для следующих двух балок я включил волокна в бетонную смесь: одна балка имеет стальные волокна, а другая — стекловолокна. Стальная арматура и волокна объединяются, чтобы противостоять растягивающим напряжениям в балках.Арматурный стержень обеспечивает крупномасштабное армирование, чтобы противостоять растяжению по всему элементу конструкции, а волокна обеспечивают мелкомасштабное армирование, чтобы противостоять локальному напряжению, которое вызывает растрескивание.

Когда я нагружаю эти балки по 3 тонны, не видно ни единой трещины. На самом деле, для обоих этих балок я не заметил образования трещин почти вдвое больше. и даже тогда трещины были намного меньше. Обе балки вышли из строя примерно при той же нагрузке, что и первая, чего я и ожидал. Как я уже сказал, волокна на самом деле не добавляют большой прочности балке, но вы можете легко увидеть, что они могут иметь большое значение для предотвращения коррозии стальной арматуры.

Альтернативы стальной арматуре

Вы можете спросить, почему мы вообще используем сталь для армирования? Сталь относительно недорогая, хорошо испытанная и прочная, но существует множество других материалов с превосходными механическими свойствами, которые не подвержены коррозии. Для очень агрессивных сред мы иногда используем арматуру с эпоксидным покрытием или даже нержавеющую сталь, но есть некоторые новые альтернативы, такие как армированные волокном полимеры или стержни из стеклопластика. Это арматура из базальта, переплавленного вулканического камня, пропущенного через крошечные сопла для создания чрезвычайно прочных волокон.

Такие варианты часто стоят дороже, чем стальная арматура, а в некоторых случаях намного дороже. Но главное препятствие для использования этих новых, более инновационных типов арматуры — это не только стоимость. Легко видеть, что эти дополнительные затраты могут быть компенсированы увеличением срока службы бетона. Другой запрет связан просто с отсутствием широкого применения. Инновации в гражданском строительстве происходят медленно, потому что последствия неудач очень высоки. Обретение уверенности в конструкции имеет такое же отношение к инженерной теории, как и к простому наблюдению за тем, насколько хорошо аналогичные конструкции работали в прошлом.

Но многие инженерные катастрофы произошли не из-за плохой конструкции, а из-за плохого обслуживания, поэтому долговечность может быть так же важна для общественной безопасности, как и другие критерии проектирования. В будущем мы обязательно увидим более инновационные способы армирования бетона, в том числе варианты, которые я упомянул в этом видео.

Спасибо за просмотр и дайте мне знать, что вы думаете!

—Это видео взято с канала YouTube Practical Engineering, на котором гораздо больше видео с пояснениями по инженерным вопросам.

Стальная арматура — арматурный стержень для бетона

Harris Supply Solutions поставляет оптовую арматуру предприятиям по всей территории США. Арматурный стержень или арматура — это обычный стальной стержень, который подвергается горячей прокатке и широко используется в строительной отрасли, особенно для армирования бетона. Стальная арматура чаще всего используется в качестве натяжного устройства для армирования бетона и других каменных конструкций, чтобы удерживать бетон в сжатом состоянии. Бетон — это материал, который очень прочен на сжатие, но практически не имеет прочности на растяжение.Чтобы компенсировать этот дисбаланс в поведении бетонной плиты, в нее залита арматурный стержень, который выдерживает растягивающие нагрузки.

Обычная стальная или бетонная арматура поставляется с тяжелыми выступами, помогающими механически связать арматуру с бетоном — это обычно называется деформированной арматурой.

В

Harris Supply Solutions есть арматурный пруток различных размеров, марок и отделок, включая черный арматурный пруток, арматурный пруток с эпоксидным покрытием и сборный арматурный пруток. Мы стремимся иметь то, что нужно нашим клиентам, когда они в этом нуждаются.Как дочерняя компания Nucor, мы имеем доступ к арматуре в США и, при необходимости, за рубежом через Nucor Trading. Мы можем найти то, что вы ищете, что бы это ни было.

Начните работу с Harris Supply Solutions уже сегодня!

У нас в наличии широкий ассортимент арматуры от № 3 до № 10.

Размеры арматуры

Арматурный стержень

без покрытия, мы храним арматуру нескольких марок и длин, чтобы удовлетворить ваши потребности в работе.

Черная арматура

Арматура с эпоксидным покрытием используется в бетоне, подверженном коррозионным условиям.

Арматура с эпоксидным покрытием

Для нужд вашего небольшого проекта у HSSI есть доступ к арматуре, изготовленной нашей материнской компанией, Harris Steel Group, одним из крупнейших производителей в Северной Америке

Сборная арматура

Это руководство может помочь вам выбрать правильный арматурный стержень для вашего приложения, предоставляя информацию о маркировке и свойствах арматурных стержней.

Направляющая арматуры

Для обеспечения безопасности нашей арматурной продукции у нас есть копия паспорта безопасности стальной арматуры Nucor.

Безопасность и соответствие арматурных стержней

Если у вас возникнут дополнительные вопросы по арматурному стержню, но вы не можете найти их на нашем сайте, воспользуйтесь этой страницей CRSI.

Harris Supply Solutions — оптовый дистрибьютор для клиентов, ищущих долгосрочные партнерские отношения. Котировки цен доступны только для владельцев текущих счетов.
Чтобы запросить консультацию, свяжитесь с нами сегодня.

Зачем бетону армирование? — Практическая инженерия

В прошлом видео мы говорили о бетоне 101 и о том, почему бетон является таким прекрасным строительным материалом.Но я не упомянул о его самой большой слабости.

Чтобы понять самую большую слабость бетона, во-первых, нам нужно немного узнать о механике материалов, что является причудливым способом сказать «Как материалы ведут себя под нагрузкой». Под стрессом в данном случае подразумевается не тревога или экзистенциальный страх, а внутренние силы материала. Существует три основных типа напряжения: сжатие (сдвигание), растяжение (растяжение) и сдвиг (скольжение по линии или плоскости).И не все материалы могут одинаково противостоять каждому типу нагрузки. Оказывается, бетон очень силен на сжатие, но очень слаб на растяжение. Но не верьте мне на слово. Вот демонстрация:

Эти два бетонных цилиндра были отлиты из одной и той же партии, и мы увидим, какую нагрузку они могут выдержать до разрушения. Во-первых, испытание на сжатие. (Кляп для ручного насоса). При сжатии цилиндр сломался при нагрузке около 1000 фунтов (то есть 450 кг). Для бетона это довольно мало, потому что я добавил в эту смесь много воды.Причина в том, что моя установка для проверки прочности на разрыв не такая сложная. Я забросил в этот образец несколько болтов с проушиной и теперь вешаю его на стропила в магазине. Я наполнил это ведро гравием, но его веса не хватило для того, чтобы образец не выдержал. Итак, я добавил еще одну гантель, чтобы подтолкнуть ее к краю. Вес этого ковша составлял всего около 80 фунтов или 36 кг — это менее 10% прочности на сжатие.

Все это говорит о том, что веревку из бетона делать не надо.Фактически, без какого-либо способа исправить эту слабость, связанную с растягивающим напряжением, вам не следует делать какой-либо конструктивный элемент из бетона, потому что редко какой-либо элемент конструкции испытывает только сжатие. В действительности почти все конструкции испытывают разные нагрузки. Это не яснее, чем в классическом луче. Эта классическая балка сделана мной из чистого бетона в моем гараже. Приложение силы к этой балке вызывает развитие внутренних напряжений, и вот как они выглядят: верхняя часть балки испытывает сжимающее напряжение.А нижняя часть балки испытывает растягивающее напряжение. Вы, наверное, догадались, где произойдет разрушение этой бетонной балки, поскольку я продолжаю увеличивать нагрузку. Это происходит почти мгновенно, но вы можете видеть, что трещина образуется в нижней части балки, где растягивающее напряжение является наибольшим, и распространяется вверх, пока балка не выйдет из строя.

Вы видите, к чему я клоню: бетон сам по себе не является хорошим конструкционным материалом. Существует слишком много источников напряжения, которым он не может противостоять в одиночку.Итак, в большинстве ситуаций мы добавляем усиление, чтобы повысить его прочность. Армирование в бетоне создает композитный материал, при этом бетон обеспечивает прочность против напряжения сжатия, в то время как арматура обеспечивает прочность против напряжения растяжения. И наиболее распространенным типом арматуры, используемой в бетоне, является деформированная сталь, более известная как арматура.

Я сделал новую балку с парой стальных стержней с резьбой, залитых в нижнюю часть бетона. Эти резьбы должны действовать так же, как деформированные выступы в обычном арматурном стержне, чтобы создать некоторое сцепление между бетоном и сталью.Под прессом первое, что замечаешь, это то, что этот луч намного прочнее предыдущего. Мы уже намного выше силы, которая провалила неармированный образец. Но второе, что вы замечаете, — это то, что сбой происходит немного медленнее. Вы можете легко увидеть, как трещина образуется и распространяется до того, как балка выйдет из строя. На самом деле это очень важная часть армирования бетона сталью. Он изменяет тип разрушения с хрупкого режима, когда нет предупреждения о том, что что-то не так, на вязкий, когда вы видите образование трещин до полной потери прочности.Это дает вам возможность распознать потенциальную катастрофу и, надеюсь, устранить ее до того, как она произойдет.

Арматура отлично подходит для большинства ситуаций с армированием. Это относительно дешево, хорошо протестировано и понятно. Но у него есть несколько недостатков, одним из основных является то, что это пассивное подкрепление. Сталь удлиняется под действием напряжения, поэтому арматурный стержень не может начать работать, чтобы помочь противостоять растяжению, до тех пор, пока у него не появится возможность растянуться. Часто это означает, что бетон должен треснуть, прежде чем арматурный стержень сможет принять на себя какое-либо растягивающее напряжение элемента.Растрескивание бетона не обязательно плохо — в конце концов, мы просим бетон только противостоять сжимающим силам, с которыми он отлично справляется с трещинами. Но в некоторых случаях нужно избежать трещин или чрезмерного прогиба, который может возникнуть из-за пассивной арматуры. В таких случаях вы можете рассмотреть возможность использования активного армирования, также известного как предварительно напряженный бетон.

Предварительное напряжение означает приложение напряжения к арматуре перед вводом бетона в эксплуатацию. Один из способов сделать это — натянуть стальные арматурные стержни во время заливки бетона.Когда бетон затвердеет, напряжение останется внутри, передавая сжимающее напряжение на бетон через трение с арматурой. Таким образом происходит предварительное напряжение большинства бетонных мостовых балок. Обратите внимание на усиление внизу этой балки. Другой способ предварительного напряжения армирования называется последующим напряжением. В этом методе напряжение в арматуре создается после затвердевания бетона. В следующем примере я залил в бетон пластиковые втулки. Стальные стержни могут плавно скользить в этих втулках.Когда балка затвердела, я затянул гайки на стержнях, чтобы натянуть их. Под прессом эта балка была не прочнее, чем обычно армированная балка, но потребовалось большее давление, прежде чем образовались трещины. Кроме того, это было не так драматично, потому что вместо настоящих стальных стержней сначала вышла из строя резьба на гайках.

Я надеюсь, что эти демонстрации помогли показать, почему армирование необходимо для большинства применений бетона — для увеличения прочности на растяжение и для изменения режима разрушения с хрупкого на пластичный.Как и в предыдущем видео, я лишь поверхностно касаюсь очень сложной и подробной темы. Многие инженеры всю свою карьеру занимаются изучением и проектированием железобетонных конструкций. Но я получаю удовольствие, играя с бетоном, и надеюсь, вам это интересно. Я хотел бы продолжить эту серию статей о бетоне, поэтому, если у вас есть вопросы по этой теме, задавайте их в комментариях ниже. Возможно, я смогу ответить на них в следующем видео. Спасибо за просмотр и дайте мне знать, что вы думаете!

Армирование сборного железобетона — NPCA

Автор: Angus Stocking

Обладая удивительной прочностью на сжатие, бетон имеет историю крупномасштабного строительства, уходящую корнями в древние времена — римляне даже использовали формы, напоминающие современное производство сборного железобетона.Сегодня исследователи продолжают изучать римский бетон, чтобы определить, насколько хорошо сооружения, построенные тысячи лет назад, выдержали испытание временем.

Но римляне так и не научились армировать бетон, чтобы компенсировать его относительно низкую прочность на разрыв. Сегодня существует четыре основных способа армирования бетона: арматура, сварная проволочная сетка, предварительное напряжение / последующее напряжение и волокно. Эти технологии позволяют впечатляюще и разнообразно использовать бетон, который у нас ассоциируется с современностью.

Арматура

Использование стальных стержней — старейшая технология человечества для армирования бетона, восходящая к 15 веку. Но первое использование в строительстве было только в 1853 году, когда Франсуа Куанье использовал этот материал в четырехэтажном доме в Париже.

Фотография любезно предоставлена ​​Саймонсом, Dreamstime.com.

Закладка стальных стержней в бетон увеличивает прочность материала на растяжение, что позволяет использовать затвердевший бетон в таких областях, как сборные балки и плиты настила.Это хорошо работает не только из-за присущей стали прочности на растяжение, но и потому, что сталь и современный бетон имеют очень похожие коэффициенты расширения. Поскольку изменения температуры заставляют два материала расширяться и сжиматься, они остаются одного и того же размера относительно друг друга, что позволяет избежать чрезмерного напряжения и растрескивания.

Для эффективного стального армирования в любом применении необходимо тщательно учитывать размер или площадь, прочность и точное размещение стержней. К счастью, это хорошо изученная область, и производители сборного железобетона имеют доступ к исчерпывающим спецификациям и хорошо разработанным кодам и инструментам при проектировании новых элементов (1).

Для эффективного армирования должны быть выполнены два дополнительных условия: хорошее сцепление и защита от коррозии.

Склеивание означает, что стальная арматура должна прилипать к бетону, чтобы она не сдвигалась или не скользила независимо. Это была трудная проблема до наших дней. Относительно простое нововведение: деформированные стальные стержни (обычно ребристые) увеличивают трение между сталью и бетоном. Они обычно не использовались до начала 1900-х годов. Техники склеивания и сращивания сегодня хорошо изучены, и дизайнеры и разработчики имеют хорошие инструменты для прогнозирования характеристик различных схем склеивания.

Коррозия остается проблемой для железобетонных конструкций. Проблема проста — ржавчина занимает в 2 1/2 раза больше, чем сталь, которую она окисляет. Когда это расширение происходит внутри бетона, оно очень разрушительно.

Бетон сам по себе обеспечивает некоторую защиту от коррозии, но проникновение воды в сочетании с минимальным покрытием бетона может в конечном итоге привести к коррозии. Для предотвращения коррозии используются различные методы, в том числе покрытия, более глубокое размещение арматурных элементов и менее проницаемый бетон.В некоторых применениях, особенно в прибрежных конструкциях и настилах мостов, которым приходится иметь дело с соленым воздухом, антиобледенительными солями и растрескиванием при изгибе, используется арматура из оцинкованной или нержавеющей стали с эпоксидным покрытием.

В последние годы использование армированной волокном полимерной арматуры для сборных конструкций увеличилось, особенно в агрессивных средах, подобных упомянутым выше. Поскольку арматура FRP изготавливается из композитных материалов, она устойчива к коррозии, что увеличивает срок службы и долговечность.

FRP легкий, но обычно демонстрирует более высокий предел прочности на разрыв, чем традиционная сталь. Это делает его полезным в различных приложениях, включая настилы мостов, кессоны, дамбы и многое другое. Тем не менее, возросшие затраты, связанные с материалом, ограничили даже более широкое распространение.

Поскольку арматура является старейшей известной технологией армирования бетона, знания и навыки, необходимые для ее использования, легко доступны, а инфраструктура производства и распределения широко распространена.Следовательно, арматура является относительно недорогой по сравнению с другими методами армирования. А с технической точки зрения простые стальные стержни часто являются наиболее эффективным конструктивным армированием.

Но есть и минусы. Арматура — тяжелый материал по сравнению с современными альтернативами, что делает строительство и изготовление потенциально более трудоемким. Сам по себе вес может быть ограничивающим фактором и в крупных сборных железобетонных конструкциях. И существуют пределы несущей способности арматуры для несущих конструкций, поэтому амбиции современных строителей и архитекторов иногда диктуют альтернативные технологии армирования.

Проволока сварная

Армирование сварной проволокой возникло как прямой ответ на очевидные недостатки арматуры. Материал, который немного похож на стальное ограждение, «изготовлен из ряда продольных и поперечных высокопрочных стальных проволок, сваренных сопротивлением на всех пересечениях (2)». Получающаяся стальная решетка по весу прочнее простых стержней по тем же причинам, по которым легкие деревянные фермы прочнее тяжелых балок. Расчетную прочность сварной проволоки обычно сравнивают с арматурными стержнями марки 60.Однако фактическая прочность стали на растяжение сертифицирована в соответствии с более строгими стандартами и может использоваться для уменьшения площади стальной поверхности первоначальной конструкции (и, следовательно, веса), если это разрешено спецификацией.

Фотография файла NPCA.

Решетчатый характер материала обеспечивает сварной проволоке отличные характеристики сцепления с бетоном. В дополнение к сварным узлам из проволоки существует множество поверхностей — в разной ориентации, — за которые бетон может цепляться. Для дополнительной связи сварную проволоку можно изготавливать из деформированной проволоки, а не из традиционной гладкой проволоки.

Поскольку сварная проволока уже изготовлена ​​в виде больших листов в соответствии с требуемой конструкцией стали, персоналу по производству сборного железобетона проще разместить и закрепить сварную проволоку, чем арматурную арматуру, где каждый стержень должен быть размещен и привязан индивидуально. Это может привести к сокращению рабочей силы и экономии времени, а также может снизить риск защемления и растяжения.

«Precasters были одними из первых, кто внедрил инновации в области сварной проволоки, — сказал Тодд Хокинсон, консультант Института армирования проволоки. «На самом деле сварная проволока — это больше техника для магазинов, чем для строительных площадок.Для формирования клеток и других необходимых форм требуются инструменты и пространство, которые можно найти на заводах по производству сборного железобетона ».

Сварная проволока больше подходит для тонкостенных сборных конструкций, таких как своды инженерных сетей и бетонные трубы, потому что в ней используются тонкие проволоки на близком расстоянии, а не на арматуру большего диаметра на большем расстоянии (3). Дополнительные преимущества включают лучший контроль трещин и улучшенную свариваемость, поскольку сварная проволока обычно изготавливается из низкоуглеродистой холоднотянутой стали.

По сравнению с арматурой, основным недостатком сварной проволоки для производителей сборного железобетона являются дополнительные расходы, включая большие первоначальные вложения в оборудование.В большинстве случаев армирования сварная проволочная сетка должна быть сформирована в цилиндры, клетки, квадратные хомуты и другие специальные формы для удовлетворения конкретных потребностей. Гидравлические гибочные станки и резаки, необходимые для работы с листами материала, могут быть дорогими.

Еще один недостаток сварной проволоки — ее легкость. Материал должен быть точно размещен, но при заливке бетона он легче смещается, что затрудняет его размещение и закрепление.

Тем не менее, есть много причин, по которым сварная проволока так широко используется в производстве сборного железобетона — она ​​прочная, универсальная и простая в использовании.Доступны исчерпывающие спецификации и хорошие инструменты проектирования, в том числе многие из WRI.

Предварительное напряжение / Последующее напряжение

Представьте себе ряд из 20 бетонных блоков, выровненных встык. Чтобы присоединиться к ним, вы пропускаете кусок арматуры через пустоты, заполняете его бетоном и оставляете для застывания. Если их поднимать с конца, блоки будут функционировать как единая масса, но провиснут под общим весом. Теперь представьте тот же сценарий, но замените стержень стальными стержнями из высокопрочной стали, помещенными между опорами на каждом конце и растянутыми до 70-80% от предельной прочности.Теперь поместите бетон в пустоту и дайте ему застыть, прежде чем ослабить натяжение кабелей. В этом сценарии прочность бетона на сжатие используется для увеличения прочности на разрыв.

В этом заключается идея армирования бетона после растяжения — собственная прочность бетона на сжатие используется для увеличения прочности на растяжение. Арматуры после натяжения (многослойные тросы) устанавливаются в плитах или других элементах и ​​допускают перекрытие форм. Сухожилия имеют рукава и / или смазывают, чтобы они не сцеплялись с заливным бетоном.После того, как бетон достаточно затвердеет, связки натягиваются с помощью гидравлических домкратов и заклиниваются на месте, чтобы сохранить плотное сцепление. В некоторых случаях цементные растворы затем используются для заполнения пустот вокруг сухожилия, связывая его с новым бетоном. В зависимости от сборного железобетона последующее натяжение может происходить на заводе перед отгрузкой или на строительной площадке.

Фотография файла NPCA.

Предварительное напряжение немного отличается. Сухожилия по-прежнему используются, но твердые анкеры создают напряжение (напряжение) перед заливкой.После затвердевания сухожилия сцепляются с новым бетоном и могут быть отрезаны от анкеров. На большинстве строительных площадок предварительное напряжение нецелесообразно из-за отсутствия достаточно прочных и устойчивых анкерных точек. Это чаще встречается на заводах по производству сборного железобетона, где точки крепления могут быть построены на месте. Как предварительное напряжение, так и последующее напряжение иногда называют «активной» арматурой из-за растянутой, упругой природы арматурной стали.

Преимущество заключается в большей начальной прочности, что приводит к уменьшению прогибов при использовании более тонких бетонных секций.Бетонные балки, армированные последующим напряжением или предварительным напряжением, могут быть спроектированы так, чтобы перекрывать большие расстояния, чем балки, армированные другими методами, потому что они обычно могут быть тоньше и легче. Кроме того, более тонкие балки обеспечивают дополнительное свободное пространство и могут быть более эстетичными для контекстно-зависимых конструкций. Известно, что плиты, армированные активными методами, имеют все меньше и меньше трещин. В амбициозных проектах активное армирование может использоваться для создания структурных элементов со сложной кривой и другой сложной геометрией.

Недостатки связаны с относительной сложностью активного производства и монтажа арматуры. Армирующие элементы остаются под высоким напряжением на протяжении всего проекта, а это означает, что обычные причины отказов, такие как коррозия, могут иметь драматические последствия.

Даже при этих трудностях предварительно напряженная и пост-напряженная арматура остается жизненно важной в современном строительстве и производстве сборных железобетонных изделий. Проще говоря, это может сделать невозможное возможным.

Волокно

Собственно армирование волокном — не новая технология.Римляне иногда использовали конский волос, чтобы снизить вероятность растрескивания бетона. Это та же основная идея, лежащая в основе армирования волокнами — волокнистый материал используется для увеличения прочности бетона на растяжение.

Исторически фибра использовалась в производстве сборного железобетона для повышения долговечности, но не в качестве полноценной замены традиционной арматуры. Но в последние годы исследователи в значительной степени сосредоточились на разработке методов проектирования, позволяющих использовать волокно в качестве основного структурного армирования.Принятие в 2013 г. стандарта ASTM C1765 «Стандартные технические условия для бетонных водопропускных, ливневых и канализационных труб, армированных стальным волокном» и готовящихся к публикации ASTM C1818 «Спецификации для жестких бетонных водопропускных труб, ливневых водостоков и канализационных труб, армированных синтетическим волокном». помогли заложить основу для использования различных типов волокон в качестве варианта армирования в будущем.

Фотография файла NPCA.

Хотя волокна охватывают широкий спектр материалов, включая нейлон, целлюлозу и многие другие, наиболее распространенными типами, которые в настоящее время используются в производстве сборных железобетонных изделий, являются сталь, полипропилен и стекловолокно.

Обычно изготавливаются из углеродистой или нержавеющей стали, стальные волокна предотвращают растрескивание бетонных изделий. Производители разработали стальные фибры различной геометрии, которые по-разному закрепляются в бетоне в зависимости от их формы. Хотя наиболее распространенным применением стальной фибры является строительство плит перекрытия, в последние годы их использование расширилось и теперь включает другие сборные изделия, такие как резервуары (4).

Полипропиленовые волокна являются частью более широкой категории синтетических волокон, которые обеспечивают многие из тех же преимуществ сборным железобетонным изделиям, что и альтернативные стали.Полипропилен изготовлен из тонких нитей моноволокна. Обычно полипропиленовые волокна обладают теми же физическими характеристиками, что и сталь, а также используются для предотвращения трещин и повышения долговечности. Сфера применения полипропилена расширилась и включает септики, могильники и дополнительные сборные конструкции.

Стекловолокно отличается от вышеупомянутых типов тем, что чаще всего используется в архитектуре. Когда в бетонную смесь добавляют стекловолокно, декоративные элементы и системы облицовки могут изготавливаться толщиной до 1/2 дюйма с минимальным весом, снижая нагрузку и обеспечивая отличные термические свойства.Материал также может похвастаться некоторыми из тех же характеристик, что и другие типы армирования волокном, увеличивая прочность на разрыв и делая бетон устойчивым к растрескиванию.

Несмотря на преимущества, которые волокно может предложить сборным железобетонным изделиям, необходимо решить некоторые проблемы, прежде чем оно станет еще более эффективной технологией армирования. Размеры и формы волокон различаются, что затрудняет определение того, какой тип является оптимальным выбором для конкретного проекта, особенно при отсутствии более полного набора стандартов.Кроме того, необходимо проделать большую работу, чтобы обеспечить равномерное распределение волокон по сборным железобетонным конструкциям таким образом, чтобы их можно было воспроизвести и полагаться на них от смеси к смеси.

По сравнению с арматурой или сварной проволокой, армирование волокном не является развитой отраслью. Это больше похоже на все еще развивающийся сектор программного обеспечения, что означает, что новое оборудование и рабочие процессы могут внезапно стать устаревшими. Но даже в этом случае универсальность армирования волокном гарантирует ему место в современном сборном железе, а исследования и инновации продолжают открывать захватывающие возможности.

Постоянно развивающееся

Для технологии, лежащей в основе современной цивилизации, армирование бетона имеет удивительно короткую историю.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован.