Армирование стен из монолитного бетона: Армирование Бетонных Стен: Технология Выполнения Работ

Содержание

Армирование Бетонных Стен: Технология Выполнения Работ

Любая монолитная бетонная стена должна быть усилена внутренним армирующим каркасом

Бетон является наиболее востребованным строительным материалом. Его используют при устройстве фундаментов, строительстве стен и перекрытий. Из бетона изготавливают плитку, которая в дальнейшем применяется при отделке. Такая популярность материала обусловлена значительной прочностью застывшего раствора.

При этом, бетонные конструкции являются довольно хрупкими на изгиб. Для того, чтобы устранить данный недостаток применяются различные способы усиления.

В статье мы расскажем для чего необходимо производить армирование бетонных стен, и как данную процедуру можно произвести самостоятельно. Опишем технологии и материалы для армирования бетона.

Содержание статьи

Для чего нужно усиливать бетон

Зачем армируют бетон, ведь это довольно прочный материал. По факту обычный бетонный блок не усиленный каким-либо образом, является крепким лишь на сжатие. Любое растяжение, происходящее под действием различных факторов, приводит к его деформации.

Изменить геометрию монолитная конструкция может в следствии:

  • пучения грунта;
  • сейсмической активности;
  • естественной временной осадки здания;
  • проведения работ по надстройке;
  • изменения планировки строения.

При несоблюдении техники армирования или его полном отсутствии, бетон обязательно начнет разрушаться

Достоинства усиленного бетона

Технологически правильное армирование и заливка бетона решают несколько очень существенных задач:

  • Усиление прочности конструкций даже сложной лекальной формы, например, эркеров или забежных полукруглых ступеней.
  • Делают бетонные элементы здания более устойчивыми к воздействию температурных перепадов.
  • Значительно увеличивают срок эксплуатации строения.
  • Повышая прочность, дают возможность увеличения механических нагрузок на несущие конструкции.
  • Предотвращают растрескивание скрытых бетонных элементов, в том числе подвальных стен.

Материалы

Армирование – это усиление бетонного блока изнутри при помощи различных материалов. Могут использоваться прутки или волокна, которые при растяжении блока не позволяют ему растрескиваться.

На практике материалы армирования можно разделить на 3 группы:

  1. металлические прутья,
  2. композитная арматура,
  3. фибра.

Стальные прутки

Норма длины стального прутка для усиления бетонных конструкций — 11,75 м. Арматура может иметь различный диаметр и марку. В зависимости от маркировки прутки в усиливающий каркас соединяются свариванием или вяжутся проволокой.

В массе бетона соединение стальных стержней с раствором достаточно прочное благодаря рифлению на прутке. Стальной остов внутри монолита перераспределяет нагрузки и сдерживает бетон от растрескивания, поскольку металл имеет большее сопротивление на разрыв. При этом бетон в свою очередь защищает металл от коррозии.

Стальной усиливающий каркас

Композитный материал

Такая арматура имеет довольно широкий спектр исходных материалов, увеличивающийся почти ежегодно. К настоящему моменту более или менее используются стеклопластиковые и базальтопластиковые прутки со спиральной накруткой, имитирующей периодичность профиля стальной армации.

Кроме того, на строительном рынке представлена полиэтиленрефталатовая и углеводородная арматура, не получившая пока широкой популярности. Неоспоримым достоинством композита является низкий вес. Но при устройстве фундаментов или подпорных стен данное преимущество имеет мало значения, а вот прочностные характеристики выступают очень важны.

Композитная арматура, как правило, используется в горизонтальных элементах строения, имеющих опору на грунт

Фиброволокно

Мелкодисперсный материал (фибра) добавляется в раствор на этапе замешивания. При этом само волокно может иметь различный диаметр и длину.

Изготавливают фибру из волокна на основе:

  • стали,
  • стекла,
  • полипропиленовых соединений,
  • базальта.

На заметку! Чаще других применяется усиление стекловолокном, по причинам наличия достаточно высоких прочностных характеристик и наиболее доступной стоимости материала.

Фиброволокно для усиления прочности бетона на разрыв

Способы армации

Независимо от усиливающего материала, технология армирования бетона может так же различаться. В строительстве укрепление цементного раствора может быть произведено несколькими способами. На практике применяют монолитное, сеточное или дисперсное усиление.

Монолитное

Стальное или композитное армирование арматурой бетона — наиболее распространенный способ усиления конструкций в частном строительстве. Особенно часто монолит с внутренним усиливающим остовом заливают при строительстве фундаментов, стен или перекрытий.

Прутья связываются или свариваются в несколько уровней, опускаются в опалубку и заливаются бетоном. При этом каркас из прутьев неподвижен и прочен.

Важно! При связывании в одной линии двух прутков, длина нахлеста должна составлять 40 диаметров стержня. Нахлест связывается, как минимум, в трех местах.

Для сохранения большей упругости прутья в каркас связываются, а не свариваются

Сеточное

Армировка бетона с использованием строительной сетки — быстрый и удобный способ. Сетка выполняется из стальной или композитной проволоки. Данный метод весьма эффективен для усиления бетонных стяжек, ремонта небольших участков монолита.

  • Сетка продается в картах длиной 2 м с различной шириной полотна. При этом размер ячейки может быть разным.
  • При выборе сетки лучше отдавать предпочтение композитному или полимерному материалу.
  • Цена их несколько ниже, чем у стальных карт, но при эксплуатации строения значительно снижается риск возникновения коррозии бетона.

Металлическая армирующая сетка в картах

Волоконное

Усиление бетонной заливки фиброволокном называется дисперсной армацией. Фибра вводится в раствор при затворении. Как правило, данный способ используется при необходимости усилить тонкий слой заливки или в качестве дополнительного укрепления конструкций с повышенной механической нагрузкой.

Например, при устройстве железобетонных лестниц, которые зачастую являются несущим элементом здания, кроме укладки в опалубку стальных прутьев, в раствор замешивается фиброволокно. Это делает конструкцию значительно прочнее и продлевает срок её безремонтной эксплуатации.

На заметку! Инструкция по замешиванию, а также пропорции добавления фибры в раствор прописываются заводом — производителем на упаковке.

Фиброволокно чаще используется в качестве дополнительного усиления к основному армированию

Технология армирования опорных стен

Если с использованием стекловолоконной фибры или сетки любого вида всё просто, то монолитное армирование — процесс, требующий строго соблюдения определенных правил. Мы остановимся на армирование стен из бетона, как на наиболее актуальной теме.

  • Заливая фундамент под дом с подвалом, вы практически устраиваете несущие стены, которые будут служить опорой всему зданию.
  • Данные конструктивные элементы требуют качественного усиления, так как они будут испытывать значительные вертикальные и горизонтальные нагрузки: сверху от веса здания, по бокам от грунта.
  • Именно по этой причине, прочность подвальных или фундаментных стен строения очень важна.

Схема деформации опорной стены подвала в результате давления пучинистого грунта

  • Сразу отметим, что в данном случае, специалисты не рекомендуют использовать композитные прутья, а отдают предпочтение стальным стержням.
  • Это придаст дополнительную подвижность конструкции и ещё больше снизит риск возникновения разломов и трещин.

Совет: При армировании опорных стен может использоваться любая марка металлической арматуры, но соединять каркас лучше связыванием, а не сваркой.

Основные правила

Итоговая задача усиления – получить максимально прочную, но упругую конструкцию.

Каких правил следует придерживаться, устраивая армирование в бетон:

  • Металлическая армация связывается вне стен опалубки. Установка каркаса может происходить крупными частями.

Каркас собирают значительными частями, а затем закладывают в опалубку стены

  • В местах пересечения стержней, прутья должны быть связаны, но не жестко. Необходимо сохранить малую подвижность узла, чтобы при растяжении бетона проволока не порвалась и каркас не утратил целостности.

Металлические прутья лучше фиксировать способом связывания

  • Прутья в каркасе должны сохранять строгое направление вертикальное или горизонтальное. Смещение угла наклона прутка приведет к сдвигу распределения нагрузки, а как следствие — к разрушению части бетонной стены.
  • Укладка усиливающего каркаса производится внутрь опалубки без давления почвы. То есть, внешние стены опалубки не должны соприкасаться с грунтом.

Стальной остов внутри опалубки, готовой к закладке раствора

  • Металлический остов закладывается в подготовленную опалубку на специальные грибки. Расстояние от металла до края бетона не должно быть менее 5 см.

Металлические стержни укладываются на специальные «грибки»

  • Оптимальный размер ячейки армирования для подвальной стены от 25 до 35 см, в зависимости от толщины заливки.
  • Для снижения риска возникновения коррозии, в бетон следует добавлять специальные присадки.

Универсальная присадка в бетонный раствор

  • После того, как каркас связан и установлен в опалубку, происходит заливка раствора — его следует залить единовременно по всему объему опалубки.
  • Залитый монолит накрывают пленкой и оставляют до полного схватывания. Для того, чтобы избежать растрескивания, в первые десять дней бетон следует увлажнять.

Для того чтобы более подробно ознакомиться с процессом армирования бетонных стен стальными прутьями, рекомендуем посмотреть видео в этой статье.

На заметку! Данные правила действительны при устройстве металлического усиливающего каркаса в любой конструкции, не исключение и подпорная стенка из армированного бетона.

Устройство подпорной стены обязательно включает металлическое усиление

Советы специалистов

В любом процессе существуют нюансы и тонкости, которые хорошо понятны специалистам, а непрофессионал не уделит этому должного внимания.

При устройстве металлической армации для подпорной или подвальной стены своими руками, обратите внимание на следующие моменты:

  • Категорически нельзя наращивать армирование в уже залитый бетон. Если обнаружилось, что высоты стены фундамента недостаточно, придется разрушить все и собрать заново с требуемыми размерами. В противном случае, в местах стыковки старого и нового фундамент будет ослаблен.
  • Не стоит использовать стержни уже бывшие в употреблении. Металл стареет и теряет свойства, поэтому для такого важного места как фундамент старые прутья не подойдут.
  • Если арматура покрылась ржавчиной, не красьте и не смазывайте её перед укладкой. Подобные действия только ухудшат сцепление металла с бетоном и никак не остановят процесс окисления.
  • Сгибать стержни в углах при помощи высокой температуры также не рекомендуется. Термическая обработка снижает упругость металла. Если нет возможности согнуть прут, обрежьте его до нужного размера и зафиксируйте угол при помощи вязки проволокой.

На фото пример углового соединения стального армирования

Важно! Многие ошибочно полагают, что чем меньше ячейка, тем прочнее получится монолит. В мелкие ячейки с трудом проникает раствор оставляя пустоты, поэтому если мельчить с каркасной сеткой, то эффект получится обратный.

Заключение

Армирование стен из бетона производится с целью упрочнения монолита на изгиб и продления срока эксплуатации здания в целом. Строители советуют в части подвальных, и подпорных стен использовать для армации металлические стержни периодического профиля.

Технология армирования бетона здесь, как нигде, обязательна к точному и скрупулёзному исполнению. И как всегда, если вы не уверены в своих силах и умении, доверьте работу на столь важном участке профессионалам.

Армирование монолитных стен подвала — особенности процесса

Если вам необходимо армировать стены подвала, то можно справиться с работой и самостоятельно, не прибегая к дорогостоящим услугам. Главное – знать технологию и особенности армирования монолитных стен.

Армирование – это строительный процесс, при котором металлическая арматура используется в качестве одной из составляющих материала для повышения его прочности. Армирование увеличивает сроки службы конструкции, а также улучшает ее рабочие и эксплуатационные характеристики.

С помощью добавления арматуры простой бетон превращается в более прочный и надежный железобетон. При устройстве несущих конструкций (таких, как стены здания) применяется именно второй вариант. Для того чтобы построить стену с нужными техническими характеристиками из обычного бетона, его потребуется очень много. А возводить стены большой толщины не рационально и дорого. Использование арматуры позволяет усилить бетонный слой, не делая его слишком толстым.

Армирование также используется в тех случаях, когда предполагается высокая механическая нагрузка на бетонную конструкцию.

Также нельзя не отметить, что армирование очень хорошо помогает увеличить прочность и устойчивость кирпичной кладки или стены из газобетонных блоков (и их аналогов). Арматура в таких случаях не проходит вертикально сквозь всю стену, а укладывается поясами через каждые несколько рядов. Когда делают бетонную стяжку пола, для армирования обычно пользуются проволокой. Очень важно укрепить стяжку в тех местах, где на нее будет ложиться максимальная нагрузка (например, у входа).

Арматурная конструкция для стены подвала

Стены подвала нуждаются в качественном армировании, так как на них сверху будет давить вес конструкций дома, а по бокам – окружающий постройку грунт.

Для стен небольшого частного подвала вязка арматуры может быть произведена своими руками, без привлечения специалистов.

Правильная вязка стержней.

В случае с подвальными стенами необходимо сделать такую арматурную сетку, которая будет обладать одним важным качеством – упругостью. Лучше использовать именно вязку, а не сварку. Если фундамент здания будет двигаться из-за осадки или пучения грунта, то с вязаной арматурной сетью ничего не произойдет, а сварная может развалиться, если осадка слишком значительна.

Впрочем, устройство монолитных стен подвала может предусматривать и сварной, и вязаный вариант арматурной сетки. Какой именно метод выбрать, следует уточнить у специалистов, ответственных за проектирование сооружения.

Арматурный каркас не должен соприкасаться со стенками опалубки.

Вязка арматуры для стен подвала происходит в местах пересечения стержней. Для этого необходимо будет дополнительно приобрести проволоку, которая используется для скрепления стержней. В большинстве случаев, диаметр этой проволоки составляет несколько миллиметров.

Чтобы связать арматуру, потребуются кусачки или специальное устройство, которое облегчит и ускорит работу. Такое приспособление можно найти только у профессионалов, поэтому можно взять его в аренду в ближайшей строительной фирме. Вне зависимости от того, какой метод армирования буде выбран, прочность стены подвала в любом случае повысится. При заливке бетона очень важно уделить повышенное внимание узлам конструкции.

Как только вы свяжете или же сварите арматурную сеть, необходимо очистить установленную заранее опалубку от грязи и пыли, после чего разметить на ней будущее расположение сетки. Только после проведения всех расчетов можно укладывать арматуру внутрь конструкции.

Укладка арматуры и устройство опалубки для монолитной стены должны производиться без воздействия давления грунта. Иными словами, нужно с обеих сторон от опалубки освободить пространство для нормального проведения работ.

Засыпка грунта производится только после того, как арматурная сеть будет установлена в опалубку и залита цементным раствором. Использование вынутого грунта не всегда оправдано. Для обратной засыпки также пользуются специально подготовленным песком или глиной. Все зависит от типа грунта и особенностей здания.

Особенности укладки арматуры

Армирование монолитных бетонных стен – ответственный процесс, который требует определенных умений и навыков. Стены подвала будут испытывать большую нагрузку, поэтому крайне важно правильно уложить арматуру, снизив до минимума риск разрушения сетки при эксплуатации.

Какие основные правила укладки арматуры можно выделить?

  1. Необходимо проследить за тем, чтобы арматура – проволока и другие ее элементы – даже близко не касались опалубки и были расположены на некотором расстоянии. Если это соприкосновение допустить, то в момент, когда вы будете убирать опалубку, вы вполне сможете повредить арматурную сеть, хотя вероятность этого относительно невысока. Если опалубка не снимаемая, то через это соприкосновение к стальному стержню будет проникать нежелательная влага.
  2. Ячейки арматурной сети должны быть определенного размера. Для подвальных стен оптимальной будет ширина в 25-35 см.
  3. Для пущей надежности и прочности конструкции, получаемой после армирования монолитных стен, рекомендуется уменьшать размер ячеек, предусматривая нагрузку, исходящую от перекрытия (если перекрытие также бетонное). Одновременно с этим, делать размер ячеек меньше 5 см не стоит, потому что цементный раствор в этом случае утратит проникающие свойства, и в процессе бетонирования поверхности начнут образовываться нежелательные пустоты.
  4. Дополнительно следует предусмотреть защиту арматуры от коррозии. Для этого используются специальные добавки в заливаемый бетон. Помимо этого, от поверхности стены арматура должна быть отделена слоем бетона толщиной не менее 15-20 мм. Неважно, выполняете ли вы армирование монолитных стен подвала самостоятельно или с помощью наемных работников – всё нужно тщательно проконтролировать и проверить.
  5. Следует также проследить за тем, чтобы арматурные стержни стояли в опалубке максимально прямо, без каких-либо отклонений (в противном случае давление грунта может привести к негативным последствиям). Конечно, незначительные отклонения (до нескольких миллиметров) допускаются, однако, лучше всего обойтись без них. Для проверки ровности монтажа арматурной сети рекомендуется использовать лазерный или традиционный строительный уровень.

Пример армирования плитного фундамента и монолитных бетонных стен.

По завершении укладки арматуры, необходимо лишний раз проверить правильность установки и монтажа всей конструкции. Главное, чтобы всё соответствовало проекту (если он имеется). Только после этого можно начать заливку раствора.

Тонкости армирования и типичные ошибки

Разумеется, когда домовладелец самостоятельно армирует стены подвала, он может не предусмотреть какие-то моменты и допустить ошибки. Чтобы при эксплуатации подвального помещения не возникало проблем, стоит заранее учесть некоторые факторы:

  • Не стоит пользоваться для создания арматурной конструкции теми стальными стержнями, которые ранее эксплуатировались в других местах. Такая арматура может не выдержать новой нагрузки (давление грунта и перекрытий), поэтому от нее стоит отказаться.
  • Если на новых стержнях перед их установкой вы обнаружили следы ржавчины, то знайте, что их удалять и закрашивать не нужно. Проведение этих мероприятий только ухудшит сцепление стержней с цементным раствором при армировании монолитных стен.
  • Когда вы будете соединять стержни в сеть, то их нужно будет разрезать или сгибать. Для резки подходит традиционная болгарка. А вот для гибки стали, стержень порой предварительно разогревают в целевом месте. Этот подход не является правильным, потому что при нагревании материал будет изменять свою структуру, в результате чего может произойти его разрушение. Отчасти поэтому многие строители не рекомендуют использовать сварку. Конечно, нет ничего страшного, что стержень сломается при эксплуатации в стене небольшого отдельно стоящего подвала, но если такое произойдет в испытывающем высокую нагрузку фундаменте?
  • Ни в коем случае нельзя укладывать арматурную сетку в ту опалубку, куда уже был залит бетон. Если не получилось по каким-либо причинам соблюсти правильную последовательность действий, то необходимо все работы начать сначала. То есть надо убрать залитый раствор, демонтировать опалубку, очистить ее и поставить снова, уложив в нее готовый каркас.
  • Если вы хотите нарастить сделанную арматурную сеть по высоте или длине, то делать это крайне не рекомендуется, потому что при сильной нагрузке в местах наращивания может произойти разрыв. Когда вы уверены, что стены погреба большой нагрузки испытывать не будут, то можно попытаться максимально качественно нарастить каркас, если на то есть необходимость.

При армировании стен подвала нужно учитывать тот момент, что давление грунта с внешней стороны, скорее всего, будет значительным. Поэтому необходимо выбирать качественную арматуру стандартных размеров и связывать ее специальной проволокой. Сварку для скрепления стержней можно использовать только в том случае, если давление грунта не настолько высокое, чтобы оказывать на стену ощутимое воздействие.

В тех случаях, когда дом будет давать осадку, давление грунта также придется принимать во внимание.

Специальный пистолет для вязки стержней.

Очень важно на этапе создания монолитной бетонной стены подвального помещения предусмотреть с ее внешней стороны наличие теплоизоляционного и гидроизоляционного слоя.

Кроме того, выше уже было сказано, что арматурные стержни рекомендуется защитить от коррозии с помощью специальных добавок в бетон.

Самостоятельное выполнение работ

Из всего вышесказанного можно сделать вывод о том, что выполнить армирование монолитной стены можно своими руками и без привлечения специалистов. Однако следует обязательно обратиться за помощью к профессионалам, если вы не можете рассчитать давление грунта, вычислить необходимую толщину стержней, выбрать тип проволоки для обвязки, а также хотите уточнить какие-либо важные нюансы.

Армирование стены из бетона: материалы, этапы работ

Для усиления несущих характеристик выполняется армирование бетонной стены. Материал после застывания и вызревания набирает значительную прочность. Конструкции из такого средства хрупкие при изгибе. В строительной практике применяются разные методики для укрепления монолитных изделий, которые отличаются технологией исполнения и видами применяемого армирующего материала для создания усиливающего каркаса.

Инструменты и материалы

Чтобы выполнить армирование монолитных стен, следует подготовить:

  • Раствор для заливки несущих конструкций. Применяется бетон высокого качества, приготовленный самостоятельно или купленный в специализированной организации по производству и реализации строительных материалов.
  • Арматура. Для создания усиливающего каркаса выбираются стальные прутья, композитные элементы, фиброволокно.
  • Инструменты и материалы для соединения фрагментов каркаса. Сварочный аппарат, вязальная проволока, плоскогубцы с кусачками, вязальный пистолет.
  • Опалубка. Это доска, брус, щиты, элементы.
  • Инструменты для трамбования раствора. Промышленный вибратор, подручные средства.

Главная функция армировочного каркаса — обеспечение прочности и усиление тех частей сооружения, которые подвергаются наибольшим нагрузкам.

Чем армируют?

НаименованиеХарактеристика
Элементы из сталиВыполнены в виде гладких или рифленных прутьев, сеток вязанных и сварных, швеллеров, двутавровых балок, уголков
Имеют различные размеры и параметры прочности
Каркас из металла балансирует внутренние нагрузки и предохраняет конструкции из бетона от растрескивания
Композитные средстваЕсть большой ассортимент: волокна из стекла, базальта, углерода которые погружаются в полимерный материал
Арматура имеет низкий вес и антикоррозийную природу
Применяются при строительстве 1 или 2-х этажных зданий
Фиброволоконная арматураФибра из волокон: стальных, базальтовых, полипропиленовых, стеклянных
Конструкция имеет низкий вес
Строение с таким каркасом обладает низкой несущей способностью

Армирование монолитных стен СНИП — МастерСам

СТЕНЫ ИЗ МОНОЛИТНОГО БЕТОНА

5.82. Наружные и внутренние стены из монолитного бетона при применении переставных опалубок возводятся одновременно или последовательно (сначала внутренние стены, а затем наружные или наоборот).

Внутренние монолитные стены рекомендуется проектировать однослойными. Наружные стены могут быть однослойными или слоистыми.

5.83. Для возведения несущих стен из монолитного бетона рекомендуется применять тяжелые бетоны класса не ниже В7,5 и легкие бетоны класса не ниже В5. В зданиях высотой четыре и менее этажей допускается в несущих стенах применять легкие бетоны класса В3,5. Для внутренних стен плотность легких бетонов должна быть не ниже 1700 кг/м 3 .

5.84. Монолитные однослойные наружные стены рекомендуется проектировать из легкого бетона плотной структуры. При межзерновой пористости бетона не более 3 % и класса бетона не ниже В3,5 в нормальной и сухой по влажности зонах допускается наружные стены проектировать без защитно-декоративного слоя. Наружные легкобетонные стены без защитно-декоративного слоя следует окрашивать гидрофобными составами.

Наружные однослойные стены рекомендуется проектировать из легких бетонов с плотностью не более 1400 кг/м 3 . При технико-экономическом обосновании в однослойных наружных стенах допускается применять легкие бетоны плотностью более 1400 кг/м 3 .

5.85. Слоистые наружные стены можно проектировать из двух или трех основных слоев. Двухслойные наружные стены могут иметь утепляющий слой с наружной или внутренней стороны. В трехслойных наружных стенах утепляющий слой располагается между бетонными слоями.

5.86. Двухслойные наружные стены с утеплителем с наружной стороны могут быть монолитными и сборно-монолитными.

Монолитные стены возводят в два этапа. На первом этапе в переставных опалубках из тяжелого бетона возводят внутренний слой стены, на втором – наружный слой из теплоизоляционного легкого монолитного бетона.

Сборно-монолитная стена состоит из внутреннего монолитного слоя, выполняемого из тяжелого бетона, и наружного слоя – из сборных элементов.

5.87. Двухслойная наружная стена с утеплением с внутренней стороны состоит из наружного монолитного бетонного слоя, внутреннего утепляющего слоя – из газобетонных блоков толщиной не более 5 см или из жестких плитных утеплителей (например, из пенополистирола) толщиной не более 3 см и внутреннего отделочного слоя (рис. 26, а).

Ограничение толщин утепляющих слоев связано с обеспечением нормального тепловлажностного режима стен.

Тяжелый бетон целесообразно применять при расчетных зимних температурах, не превышающих минус 7°С. В остальных случаях необходимо применять легкие бетоны.

Рекомендуется два варианта возведения наружных монолитных стен с утеплением с внутренней стороны:

сначала на внутреннем щите опалубки укладывают слой утеплителя, затем опалубку собирают и бетонируют слой из монолитного бетона. При этом можно применять некалиброванные по толщине плиты утеплителя;

плиты утеплителя устанавливают после бетонирования стен.

При этом необходимо применять калиброванные по толщине плиты утеплителя.

При проектировании двухслойных стен с утеплителем с внутренней стороны следует учитывать, что возведение таких стен проще, чем стен с утеплителем с наружной стороны, но их применение ограничивается условием отсутствия точки росы в пределах толщины утепляющего слоя.

5.88. Трехслойные наружные стены рекомендуется проектировать сборно-монолитными, состоящими из внутреннего несущего слоя монолитного тяжелого бетона и утепленной сборной панели-скорлупы, устанавливаемой с наружной стороны. Панель-скорлупу можно устанавливать до и после возведения монолитной части стены (рис. 26, б).

Допускается трехслойные наружные стены проектировать с наружными и внутренними слоями из монолитного бетона и утепляющим слоем из жестких плитных утеплителей (рис. 26, в).

Рис. 26. Наружные стены монолитных зданий

а – двухслойная; б – трехслойная с наружным слоем из сборной панели скорлупы; в – то же, с внешними слоями из монолитного бетона

1 – блочная опалубка; 2 – панель-скорлупа; 3 – монолитный бетон стены; 4 – рабочие подмостки; 5 – крепежная система панели-скорлупы; 6 – утеплитель; 7 – связь; 8 – щиты опалубки; 9 – бадья; 10 – рассекатель; 11 – бетон

5.89. Конструктивное армирование стен следует предусматривать двух типов в зависимости от напряженного состояния стены:

если от расчетных нагрузок в сечении стены возникают растягивающие напряжения или в полностью сжатом сечении стены минимальные сжимающие напряжения в бетоне s £ 1 МПа (10 кгс/см 2 ), то конструктивное армирование рекомендуется принимать по всему полю стены, при этом количество вертикальной и горизонтальной арматуры должно быть не менее 0,025 % соответствующего поперечного сечения стены;

в остальных случаях конструктивную арматуру устанавливают только по контуру стены, а в пересечениях несущих стен, в местах резкого изменения толщин стен, у граней дверных и оконных проемов и у граней отверстий устанавливают вертикальную арматуру площадью сечения не менее 1 см 3 .

Вертикальную конструктивную арматуру рекомендуется проектировать в виде гнутых (Г-образных) каркасов.

Стыкование вертикальных каркасов по высоте здания рекомендуется производить в уровне перекрытий внахлестку без сварки. Величина перепуска определяется расчетом. При конструктивном армировании стен величина перепуска принимается не менее 200 мм независимо от диаметра вертикальной арматуры. При сборных перекрытиях стыкование арматурных каркасов рекомендуется производить сдельными стержнями, устанавливаемыми между торцами плит перекрытий.

Роль горизонтальной конструктивной арматуры в случае применения неразрезных монолитных, а также сборных и сборно-монолитных перекрытий, опертых по контуру или трем сторонам, выполняет конструктивная арматура в перекрытиях, расположенная параллельно стенам. В случае применения сборных балочных перекрытий рекомендуется устанавливать дополнительную горизонтальную арматуру в местах сопряжения их с монолитными стенами.

5.90. Расчетное армирование стен из монолитного бетона на внецентренное сжатие из плоскости рекомендуется выполнять арматурными блоками, собираемыми из Г-образных каркасов на строительной площадке. Следует предусматривать дифференцированное расчетное армирование по высоте здания в соответствии с изменением усилий в конструкциях.

Уменьшение расчетного армирования по высоте здания следует осуществлять за счет более редкого расположения вертикальных каркасов и (или) уменьшения диаметра вертикальных стержней.

5.91. Повышение трещиностойкости монолитных стен (ограничение по трещинообразованию или ширине раскрытия трещин) может быть достигнуто за счет выбора рациональных конструктивных систем и конструктивно-технологического решения стен; рационального применения материалов в наружных и внутренних стенах в соответствии с указаниями пп. 5.92-5.93.

5.92. Для предотвращения образования сквозных вертикальных температурно-усадочных трещин рекомендуется назначать отношение длины стены к высоте этажа не более двух.

В случае, если длина стены превышает вдвое высоту этажа, то в глухих участках стен рекомендуется устраивать вертикальные технологические швы.

5.93. Для ограничения раскрытия наклонных трещин во внутренних стенах верхних этажей зданий перекрестно-стеновой конструктивной системы с несущими наружными стенами разность D перемещений сопрягаемых участков наружной и внутренней стен не должны превышать величин, приведенных в табл. 7.

Армирование ленточного фундамента по СНиП

Армирование ленточного фундамента: СНиП

Вес любого здания через фундамент передается на грунт. Основание здания не позволяет строению разрушиться. Все требования к фундаментам и информация о них собрана в сборники правил СНиП. Руководствуясь этими документами можно сделать вывод, что армированный ленточный фундамент является самым распространенным при возведении зданий в местах неглубоко промерзающих почв.

Цель армирования

Ленточный фундамент имеет не обычную конструкцию: его длина во много раз больше, чем ширина и глубина. Вследствие такого устройства основы здания почти все нагрузки, которые на него действуют, распределяются вдоль.

Самостоятельно бетонный монолит не может выдержать это давление. И, чтобы сгладить силы, действующие на разрыв, применяется укрепление бетонного фундамента стальной арматурой. Этот процесс и получил название армирование.

Основным нагрузкам подёргается верхняя часть фундамента (сжатие) и нижняя(растяжение), поэтому следует усиливать именно эти части основания. Для середины основания это не имеет смысла, потому что там не наблюдается повышенных нагрузок.

Требования

Основные проекты и условия возведения конструкций из железобетона указаны в СНиП 52-01-2003 «Бетонные и железобетонные конструкции». Данный эталон устанавливает, как правильно монтировать стальную арматуру. Основные условия, предъявляемые к процессу:

  1. • Размеры основания не должны мешать правильному положению арматуры в траншее.
  2. • Зашитый покров над арматурой должен предохранять арматуру от воздействия внешней среды и надежно сопротивляться нагрузкам.
  3. • Расстояние между отдельными прутьями не должно препятствовать правильной состыковке и заполнению бетоном.

При усилении фундамента следует использовать арматуру только высокого качества. Монтирование каркасных сеток для ленточных фундаментов должно происходить в строгом соответствии со СНиП 3.03.01-87 «Несущие и ограждающие конструкции».

Основные принципы

Перед заливкой ленточного фундамента бетоном необходимо грамотно скомпоновать армированный пояс с помощью стальной арматуры. Толщина и глубина основания зависит от будущих нагрузок на здание и используемых материалов для стен.

Ленточный фундамент можно обустроить двумя способами:

  • • использовать готовые блоки заводского изготовления;
  • • залить на месте в готовую траншею.

При использовании заводских блоков можно выделить слабое место: скрепление изделий между собой. Их соединяют армированным бетоном, что не очень надежно. А при заливке бетонным раствором получится надежный и прочный монолитный фундамент.

Монтаж каркаса из арматуры на месте строительства требует соблюдения ряда важных условий:

  1. • Арматура должна находится на расстоянии не менее 5 см от края опалубки.
  2. • Забиваются вертикальные прутки, к которым потом привязываются горизонтальные ряды. Можно и приварить с помощью сварки – это увеличит темп армирования. Но при нагреве металл теряет свою прочность и лучше все-таки вязать мягкой проволокой.
  3. • Один горизонтальный пояс способен сдерживать вертикальную деформацию примерно в пространстве 30-35 см. То есть, для основы высотой в 70 см достаточно двух поясов, а если высота больше, то и количество рядов нужно увеличивать.
  4. • Очень важное значение имеет монтаж армирования в углах фундамента, так как на них приходится самая большая часть нагрузок. При угловом соединении лучше согнуть свободные концы буквой «Г» и прикрепить их к вертикальным пруткам: внутренние к внутренним, а внешние – к внешним.

При проектировании и армирование фундаментов возникает множество вопросов, и чтобы избежать проблем при изготовлении армированного каркаса своими руками, нужно внимательно изучить все нормы и требования ГОСТов, и СНиП.

Армирование ленточного фундамента – правила, схемы, инструкции

Возведение фундаментного основания зданий это важнейший этап строительства, который определяет дальнейшую надежность и долговечность постройки. Поэтому при выполнении этой работы не допустима непродуманная экономия на расходах материалов и самовольные изменения проектных решений принятых специалистами.

Ленточные фундаменты пользуются заслуженной популярности при строительстве объектов индивидуальной застройки. Это объясняется возможностью универсального применения для самых различных зданий на большинстве распространенных типов грунтов.

Они отличаются высоким уровнем надежности и возможностью выполнения монтажа своими руками. Ленточные фундаменты нельзя применять для строительства зданий на неустойчивых грунтах, в заболоченной местности и на вечной мерзлоте.

Описание конструкции ленточного фундамента

Несущее основание этого типа представляет собой заглубленную в землю железобетонную монолитную ленту. Она монтируется под все несущие стены и тяжелые перегородки. Глубина заложения фундамента определяется в зависимости от следующих исходных параметров:

  • общий вес строительных конструкций здания с учетом снеговых нагрузок, мебели и установленного оборудования;
  • тип и строение грунтов на участке;
  • глубина залегания грунтовых вод;
  • нижняя точка промерзания грунта в холодное время года.

В результате фундамент небольших легких зданий домов быть мелкозаглубленным и иметь нижнюю опору на глубине 500-800 мм. Для тяжелых больших зданий и при наличии подвала подошва монолитной конструкции должна находиться ниже точки промерзания грунта более чем на 400 мм.

Ширина фундаментной ленты в ее верхней части зависит от толщины возводимых стен и должна превышать ее более чем на 100 мм, но в любом случае не мене 300 мм. В нижней части может быть предусмотрено наличие более широкой опорной подошвы, которая устраивается при большом весе строительных конструкций или слабых грунтах. Однако правильный расчет такой опоры довольно сложная инженерная задача. Данные о поперечном сечении фундаментной ленты и об общей массе строительных конструкций позволяют правильно рассчитать конструкцию армирующего каркаса.

Расчет фундамента должен быть выполнен на профессиональном уровне

Наличие армирующего каркаса повышает прочность фундаментного монолита и позволяет более равномерно распределить весовую нагрузку на грунт. При проектировании элементов здания всегда учитываются реальные данные, на основании которых получают результат способный обеспечить долговечность и надежность постройки.

На основании этого можно сделать вывод, что для разработки проекта необходимы специальные знания и опыт подобных работ. Поэтому выполнение расчетов и определение проектных схем рекомендуется поручить специалисту, а вот монтажные работы можно выполнять самостоятельно. Если только вы не собираетесь построить небольшой сарай, баньку, хозяйственные постройки или легкий гараж.

Расчет необходимого количества материалов

При определении нужного количества арматуры следует учитывать, что продольные струны и поперечные прутки имеют разный диаметр и цену. Имея проект подсчитать количество необходимого для армирования материала не сложно. Только следует предусмотреть запас 7-10% на остатки в виде коротких обрезков и на нахлесты при соединении прутов на длинных участках.

Если вы производите расчеты самостоятельно, то рекомендуется принять:

  • диаметр арматуры 10 мм для продольных участков длиной до 3-х метров;
  • 12 мм на участках более 3-х метров;
  • поперечная арматура с гладкой поверхностью диаметром 8 мм.

Кроме этого не забудьте приобрести вязальную проволоку (сварка прута для железобетона запрещена), а так же фиксаторы «звездочка» и «опора», которые устанавливаются на каждый крайний прут через каждые 3 метра.

Общее количество продольных армирующих струн определяется по суммарному сечению. Согласно СНиП общая площадь сечения арматуры должна быть не менее 0,1% от поперечного сечения фундаментной ленты. Если в результате вы определите, что для армирования достаточно всего 2-х прутов, то эту количество необходимо увеличить до 4-х. При этом принимая минимальное сечение прутов в 10 мм. Поперечные прутки никаких нагрузок не несут и считаются фиксирующими элементами.

Шаг поперечных прутков (хомутов) должен быть не более трех четвертей высоты фундаментной ленты и меньше 500 мм. В местах примыкания двух прямых конструкций и на углах шаг должен уменьшаться вдвое. Существует много специально разработанных схем вязки углов элементов и примыкающих участков. Перед началом работы рекомендуем с ними ознакомиться.

Что нужно знать про арматуру

Для ленточных фундаментов обычно применяют горячекатаную арматуру классов A-II и A-III с диаметром от 10 мм с периодическим профилем (рифленую), который обеспечивает надежное сцепление металла с бетоном. Пруты класса A-I с гладкой поверхностью и сечением 8-10 мм применяют для изготовления связующих хомутов и перемычек.Adblock
detector

чертежи и схемы усиления проемов, углов и отверстий

Бетон является самым востребованным в мире строительным материалом. Его используют при строительстве фундаментов, стен частных и многоэтажных жилых домов, мостов и тоннелей, дамб и дорог. Однако зачастую применяется не бетон, а железобетон – при строительстве используется армирующий материал разного вида. В данной статье подробно разберем зачем, как и когда необходимо выполнять армирование монолитных стен из бетона.

Зачем армировать бетонные стены: преимущества и недостатки

Бетон – высокопрочный материал, способный выдерживать огромные нагрузки без вреда для себя. Для чего же его ещё и армировать? Ответ прост. Данный материал переносит нагрузки на сжатие, не деформируясь и не растрескиваясь. Однако любые другие нагрузки, например, изгиб или растяжение, для бетона могут оказаться критическими. Возведенные из него стены покрываются сетью трещин, деформируются и даже рассыпаются. Конечно, это недопустимо при строительстве объектов, которые должны прослужить многие десятилетия.

Поэтому перед заливкой бетона в опалубку будущей стены, в неё предварительно устанавливают арматуру или арматурный каркас. Данное решение имеет множество достоинств:

  • повышение прочности материала, способность выдерживать все виды нагрузок;
  • возможность строительства сложных архитектурных деталей, вроде полукруглых ступеней или эркеров;
  • отсутствие трещин;
  • повышение срока службы бетонных построек;
  • устойчивость к пучению почвы.

То есть, качественно и правильно выполненное по технологии армирование, позволяет вывести бетон на новый уровень, избавив от недостатков и наделив дополнительными преимуществами для строительства стен и других конструкций.

Пример монолитного здания нестандартной формы, построенного из композиции бетона и арматуры.

Однако тут есть и недостатки, правда, их немного. В первую очередь это повышение стоимости строительства. Стоит материал для армирования стен недешево, поэтому нужно заранее провести расчет и составить смету, прежде чем приступать к закупке материала и начинать строительство. Кроме того, повышаются затраты времени на подготовку к заливке. Тут всё зависит от выбора способа армирования бетона – приходится ли вносить специальные добавки в смесь, собирать каркас или же выполнять другие подготовительные работы, требующие наличие определенного навыка, а иногда и дорогостоящих инструментов.

Способы армирования монолитных стен

Следующий важный вопрос, связанный с армированием стен – выбор подходящего материала. Хотя обычно на ум приходят классические прутки из железа, сегодня в строительстве широко используются многочисленные аналоги. Изучить следует все варианты, чтобы лучше вникнуть в тему.

Способов армирования стен существует три:

  1. Монолитное.
  2. Сеточное.
  3. Волоконное (дисперсное).

Каждый из них следует поподробнее разобрать, чтобы узнать способ и сферу применения.

Монолитное

Монолитное армирование является самым распространенным. Это те самые прутки, о которых говорилось выше. Используется при возведении практически всех видов бетонных построек, включая стены. Из стальной либо композитной арматуры собирается каркас, который помещается в опалубку и заливается бетонной смесью.

Следует отметить, что желательно для сборки каркаса пользоваться не сваркой, повреждающей прутья, а специальным оборудованием и вязальной проволокой. Такой подход позволяет, получить прочный каркас не повреждая арматуру. Для небольших объемов работ рекомендуется использовать крючок для вязки арматуры. Если же предстоит выполнить тысячи вязальных соединений, то лучше подойдет специальный пистолет, особенно для мало опытных строителей.

Сами прутки бывают разного размера, и могут иметь как гладкую, так и ребристую поверхность. Конечно, это влияет на эксплуатационные качества арматуры, поэтому подходить к выбору следует ответственно.

Сеточное

Следующий вариант – сеточное армирование. Тут тонкая проволока соединена в карты. Толщина проволоки и размер ячеек может различаться, поэтому есть возможность выбрать наиболее подходящий материал. Подходит, если нужно выполнить армирование бетонной стяжки, усилить отверстие в бетонной стене или же отремонтировать небольшой участок монолита, к примеру, цокольного этажа. Встречаются как классические стальные сетки, так и композитные, полимерные. Стальные являются наиболее прочными и дешевыми, но при этом они боятся коррозии. Композитные – самые дорогие, зато объединяют в себе прочность и устойчивость перед влагой.

Волоконное

Наконец, третий вариант армирования – волоконное. Оно заметно отличается от способов описанных выше. Тут используется дисперсное армирование. В готовый раствор, вводится фибра – мелкое волокно, напоминающее что-то среднее между нитками и пухом. Получившийся бетон лучше противостоит не только растяжению и изгибу, но и истиранию, ударам.

Разновидности фибры для армирования бетона.

Данный вид армирования используют, если нужно повысить прочность тонкого слоя бетона. Но также он находит применение, если нужно дополнительно укрепить конструкцию, на которую приходится механическая нагрузка. Относится это к проблемным участкам, таким, как лестницы в многоэтажных домах. Чтобы повысить прочность ответственного объекта, используют не только монолитное, но и волоконное армирование.

Технология выполнения армирования

От выбранного материала зависит и технология использования. Проще всего дело обстоит с волоконным армированием. Фибру добавляют в бетон и тщательно перемешивают. Когда она распределится по всему объему раствора, его заливают в соответствующие формы и дожидаются застывания – никаких дополнительных или подготовительных работ выполнять не нужно. Иногда, для усиления ответственных конструкций, фибру комбинируют с арматурой.

На видео ниже, пример того какую нагрузку способен выдержать бетон армированный только металлической фиброй.

Сеточное армирование самый простой в исполнении способ армирования. Готовые сетки соединяются между собой в единый каркас, который обставляется опалубкой и заливается бетоном.

Иначе обстоит дело с классической арматурой. Как уже говорилось выше, её могут укладывать в опалубку или собирать из неё каркас будущей стены – всё зависит от конкретного вида строительства. Чаще всего сначала собирается стальной каркас, затем устанавливается опалубка, в которую заливают бетонную смесь. Данный способ армирования монолитных стен является самым популярным, именно его разберем подробнее.

Пример выполнения армирования монолитной бетонной стены стальной арматурой: фото, чертежи и схемы

Для того чтобы подробнее изучить технологию, рассмотрим на примере, как правильно выполняется армирование монолитной стены толщиной 25 см. В качестве основных прутов используются арматура класса А500С диаметром 12 мм, размер ячейки основной сетки 200х200 мм. Для конструктивных элементов используем арматуру класса А1. Вязку арматуры выполняют крючком, используем вязальную проволоку толщиной 1,2 мм.

Следует запомнить, что минимальный процент армирования стен равен 0.1 % от площади поперечного её сечения, а максимальная площадь рабочей продольной арматуры равна 5 %. От процента армирования зависит и расход арматуры на 1 м3 бетона.

Как уже говорилось выше, каркас собирают либо до установки опалубки либо после. В нашем примере усиления бетонных стен лифтовых шахт, удобнее всего с начало выставить внутренние ядра, а затем  вокруг них собрать каркас.

Перед тем как начинать выполнять армирование следует почистить от бетона выпуска арматуры и выровнять из по вертикали.

Процесс вязки основной сетки, начинается с монтажа вертикальных прутов, затем к ним с шагом 20 см привязываются горизонтальный. Размер нахлеста арматуры в стене согласно чертежу 40 диаметров арматуры, для 12 мм, это 48 см, больше можно меньше нет. Стыковку горизонтальных прутов необходимо выполнять в шахматном порядке.

После того как связали 2 слоя основной сетки, выполняем усиление углов стен согласно схеме приведенной ниже.

Чертеж по выполнению армирования угла монолитной стены.

Для вязки угла используются “пэшки” из арматуры диаметром 12 мм, их размер 750х175х750 мм.

С низу на фото финальный вид выполненного армирования угла бетонной стены.

На следующем этапе устанавливаем “эски”, такое название они получили из-за своей формы. Шаг их  установки 40 см, в шахматном порядке.

Бывает такое что “эски” не получается поставить, для этого один конец полностью не загибается, после их одевают, а второй конец загибают вручную, с помощью самодельного приспособления как на фото ниже.

Пример установки “эсок”, при армировании стенки парапета.

На схеме ниже показано как выполняется армирование проема в стене. Для обрамления используется арматура диаметром 16 мм, шаг 100 мм. Защитный слой бетона для арматуры, которая находится по бокам проема – 50 мм, для верхней – 40 мм. К основной арматуре вяжутся “пэшки” из прутов толщиной 8 мм, размер 350х175х350 мм.

Важно чтобы арматура от края проема заходила в стенку на 40 диаметров прута, для 16 мм, это 64 см.

Чертеж по выполнению армированию дверного проема в монолитной стене.

Принцип усиления отверстия такой же как и у дверей. Просто в данном чертеже отверстие находится у края стенки, что не позволяет запустить 16 арматуру на 64 см. Поэтому её запускают на 37 см по бокам, а 27 см делают загиб, внутрь другой стенки. Как это выглядит смотрите на фото ниже.

Схема для выполнения армирования отверстий в стенах из бетона.

Финишный вид выполненного армирования отверстия.

На собранный каркас устанавливают фиксаторы защитного слоя для арматуры, после монтируется опалубка и заливается бетон.

Пример установки фиксатора “звездочка” на арматуре.

Как видите, армирование бетонных стен является не таким простым процессом, существуют свои особенности и нюансы. Важно изучить вопрос подробно и глубоко, чтобы избежать ошибок в процессе армирования, которые могут сказаться на монолитной конструкции в будущем. Напоследок порекомендуем видео материал по теме, где арматурщик с опытом рассказывает и показывает особенности армирования железобетонных стен.

Если у вас, после изучения статьи, все же остались вопросы, задавайте их в комментариях, мы обязательно вам поможем.

толщина, опалубка, армирование, усиление проемов, как сделать своими руками

Монолитные стены  – ограждающая конструкция в системе монолитно-каркасной технологии. Сочетание бетона и металлической арматуры даёт хорошие эксплуатационные качества при невысокой стоимости.

Преимущества и недостатки

Монолитно-каркасная технология имеет следующие преимущества:

  • здания возводятся в сжатые сроки;
  • единая конструкция без швов прочна и надёжна, непродуваема, мостиков холода не образуется;
  • помещения монолитных домов имеют свободную планировку;
  • легко выполняются сложные архитектурные арочные, криволинейные элементы;
  • повышенный срок эксплуатации монолитных железобетонных строений;
  • ровная гладкая поверхность стен отделывается без подготовительных работ.

К недостаткам монолитных стен относят низкую звукоизоляцию, обязательное утепление стены, способность бетона проводить вибрацию.

Минимальная толщина

Основная задача стены, как ограждающей конструкции – сохранять тепло.

Толщина наружной стены регулируется теплотехническим расчётом, принимается от расчётных значений температур климатического района, зависит от выбранных материалов утепления и отделки.

Размер всегда задан проектом, отступать от него не рекомендуется.  Толщина монолитной бетонной стены варьируется от 250 до 450 мм, при расчётной температуре климатического района от -20 до -40 град. Внутренние стены проектируют однослойными.

Толщина стены из монолитного железобетона всегда меньше стены из кирпичной кладки, что увеличивает площадь помещений при прочих равных значениях.

Устройство своими руками

Технология возведения монолитных стен не требует специальных навыков и умений. С составом работ по силам справиться звену из 2-3 человек. Домашний мастер с помощником сэкономит на оплате рабочим.

Опалубка

Монолитные стены возводятся с помощью опалубки – строительной конструкции, представляющей собой форму для заливки бетонной смеси.

Опалубка бывает двух видов: съёмная и несъёмная. Съёмная опалубка переставляется в процессе заливки, удаляется после набора прочности бетоном.

Несъёмная форма остаётся частью стены, дополняя бетон нужными качествами.  Самые распространённые опалубки из вспененного полистирола выполнены в виде блоков. Блоки соединяются замками. Пенополистирол с бетоном образует трёхслойный пирог, утепляет бетонный слой, звукоизолирует конструкцию.

Армирование

Армирующий каркас устанавливается в переставную опалубку сразу после сборки. В несъемной опалубке арматура просчитана и установлена производителем.

На монолитную стену действуют сжимающая и изгибающая нагрузки. На сжатие работает бетон, деформацию изгиба воспринимает арматура.

Каркас монолитной стены двойной. В малоэтажном строительстве допустимо применять сетки из арматуры сечением 8 мм.

Рифлёное сечение прутов хорошо сцепляется с бетонной смесью, гладкие пруты анкерятся загибами на концах.

Выход арматуры на поверхность не допускается. Максимальный шаг продольной арматуры в сетке 25 см.

Поперечный шаг ограничен расстоянием 35 см. Длины стержней продольной арматуры подбирают на всю высоту конструкции.

Если по каким-то условиям обойтись без стыка невозможно, арматуру соединяют внахлёст, без применения сварки. Длина нахлеста зависит от диаметра арматуры и указана в архитектурном проекте дома. Сварные стыки ломаются при вибрации, вызванной уплотнением бетона.

Усиление проёма

Любой проём ослабляет сечение конструкции, становится уязвимым местом. Периметр оконных, дверных проёмов дополнительно укрепляется.

[stextbox id=’alert’]Важно! Неверное армирование проёмов приводит к растрескиванию и деформации монолитной конструкции.  [/stextbox]

Толщина и количество арматурных прутов будут зависеть от ширины проёма, приложенной нагрузки и принимаются согласно проектного значения. Армируются горизонтальные и вертикальные плоскости. При укладывании бетонной смеси опалубку подпирают до достижения необходимого отвердения.

Заливка

Самостоятельные работы по возведению стены начинаются со сборки опалубки. В собранную из щитов форму устанавливается каркас из арматурных стержней, затем заливается бетонная смесь.

Очерёдность заливки стен зависит от типа опалубки:

  • несъёмную опалубку заполняют от пространства под оконными проёмами по направлению к углам здания;
  • съёмную форму заливают рядами, на высоту не более 50 см за раз (для лучшего уплотнения бетонной смеси).

[stextbox id=’alert’ defcaption=»true»]В переставной опалубке залитому бетону не дают полностью схватиться для того, чтобы получить монолитную конструкцию без швов.[/stextbox]

В обоих случаях тщательно наполняются и вибрируются углы. При подаче бетона механизированным способом скорость движения смеси снижают для качественной заливки, уменьшая сечение рукава.

Бетон уплотняется вибратором, в зависимости от времени года осуществляется уход. Зимой раствор прогревается, летом, в жаркую погоду, железобетон поливают водой, предотвращая растрескивание. От осадков открытая часть формы закрывается полиэтиленовой плёнкой.

[stextbox id=’info’ defcaption=»true»]После окончания бетонных работ необходимо в обязательном порядке произвести проверку прочности бетона.[/stextbox]

Применение

Каркасно-монолитная технология одинаково успешно применяется во всех сферах строительства. Монолитные стены встречаются в многоэтажной застройке, частном секторе, общественных зданиях.

Технология востребована:

  • при точечной застройке внутри квартала;
  • недостатке места для разработки грунта под котлован;
  • невозможности подъезда крупной строительной техники, башенных кранов;
  • в районах с повышенной сейсмической активностью.

В индивидуальном домостроении применение монолитных стен экономит затраты на перевозку и хранение конструкций, погрузочно-разгрузочные работы.

Полезные видео

Подробно и понятным языком объясняется весь процесс устройства монолитных стен в своем доме:
[yvideo number=»OTFUAoPkKTQ»]
Сборно-монолитная стена, подробности в видео ниже:
[yvideo number=»R2w9rWo2cos»]
Посмотрите процесс заливки бетона в опалубку при устройстве стен, используется автомиксер с насосом:
[yvideo number=»bgiS6IjnRMc»]
Монолитные стены из железобетона – новое, весомое слово в современном строительстве.

этапы, видео (зачем армировать монолитные стены)

Армирование является одним из основных видов бетонных работ. Технологический процесс заключается в применении металлической арматуры, которая выступает в качестве основного составляющего материала.

Данную технологию используют, когда необходимо произвести армирование монолитных стен подвала.

Это позволяет не только упрочнить конструкцию, но и сэкономить материал, в частности бетон, которого потребуется значительно меньше, при этом стены будут иметь небольшую толщину.

Зачем нужно армировать монолитные стены?

Для усиления бетонной конструкции используется металлический каркас, который изготавливается из стальной арматуры диаметром от 6 до 12 мм. Толщина стальных прутов зависит от предполагаемых нагрузок и эксплуатационных характеристик подвального сооружения.

Результатом армирования монолитных стен погреба является создание надежного и сверхпрочного железобетонного сооружения с высокими физико-механическими показателями и увеличенными сроками эксплуатации. Рекомендуем предварительно ознакомится видами армирующей сетки. Необходимость в армировании возникает и в случае, когда предусмотрена большая механическая нагрузка на железобетонную конструкцию.

Давление происходит в нескольких направлениях:

  1. Сверху нагрузку создает конструкция здания.
  2. С боков давит грунт, который окружает строение по всему периметру.

Именно эти неблагоприятные воздействия и должна выдерживать конструкция погреба.

Как осуществляется процесс армирования?

При создании арматурной сетки, применяется методика связывания или сваривания соединений. Оптимальные размеры ячеек – 25-35 см.

Если применить первый вариант, то такая каркасная конструкция будет обладать необходимой упругостью, которая обеспечит хорошую устойчивость к любым движениям, происходящим в стенах погреба из-за большого количества осадков или при пучении грунта.

Сварная конструкция может получить серьезные разрывы, которые повлекут за собой разрушения. Про анкеровку арматуры в бетоне читайте тут.

Армирование монолитных стен осуществляется в несколько этапов:

  • монтируется опалубка и очищается от грязи и пыли;
  • устанавливается каркас металлический внутрь конструкции так, чтобы прутки не соприкасались с опалубкой, а между ними было достаточное пространство для проведения бетонных работ (5-7 см). В случае их соприкосновения при удалении опалубки будет нарушена целостность армирующего слоя, а через полученный дефект откроется доступ вредной для железобетонной конструкции влаги:
  • когда каркас полностью установлен и закреплен – заливается бетон, и на этом этапе уделяется повышенное внимание соединениям каркаса.

Правила укладки арматуры в ленточный фундамент читайте на этой странице. Как происходит в реальности армирование монолитных стен, можно увидеть на видео, в статье ниже.

https://www.youtube.com/watch?v=u0NDyTl8t_Y

Перед тем как приступить к армированию стен погреба производятся тщательные расчеты на количество материала (опалубку, арматуру, бетон) в соответствии с проектом. Только при правильных расчетах можно получить надежное и прочное сооружение, которое прослужит долгий период, на протяжении которого не будет подвергаться воздействиям со стороны грунта. Зачем используют фибру для бетона можно узнать перейдя по ссылке.

Монолитный бетон

Монолитный бетон подходит для всех типов цокольного строительства. Это распространенная форма строительства подвала для жилых помещений из-за относительно простого применения, адаптируемости и стоимости. Монолитный бетон часто является единственной подходящей формой конструкции для переоборудования подвалов под существующей недвижимостью из-за его относительной простоты размещения на месте.

Как и каменная кладка, монолитные стены чаще всего устанавливаются как армированные конструкции, но могут использоваться «простые» (без армирования) в соответствии с инструкциями, приведенными в Руководящем документе TBIC.

Как правило, монолитные стены строятся из стальных арматурных стержней для предотвращения образования трещин в конструкции, при этом особое внимание уделяется армированию угловых соединений. Обычные бетонные стены обычно не относятся к конструкции типа B из-за более критической потребности в контроле размеров трещин. Качество изготовления является ключевым моментом для успешной реализации защиты типа B.

Гидравлические ограничители входят в состав строительных швов, и особое внимание необходимо уделять рабочим швам и составным частям бетонной смеси.Для монолитного бетона требуется время, чтобы высохнуть, прежде чем можно будет наносить водоотталкивающие покрытия.

Бетонные полы

На уровне подвала полы обычно монолитные. Выбор системы будет частично зависеть от согласования с конструкцией стены. Полы на уровне первого этажа в жилых домах могут быть построены с использованием различных методов строительства из бетона, включая монолитные, блочные и балочные, пустотелые сборные элементы или гибридные системы.

Как правило, можно и выгодно перекрыть всю ширину подвального помещения конструкцией пола. Бетон легко превосходит минимальные требования строительных норм по пожарной и внешней нагрузке и обеспечивает отличную звукоизоляцию между помещениями.

Пожалуйста, обратитесь к Части A (Конструкция — Стены и фундаменты) нашего руководства по строительным нормам для получения дополнительной информации. Вся информация верна с поправками 2013 года.

Заливка монолитного бетона

Ссылки по теме

Соответствующие участники

itu Concrete — обзор

Стрелочные переводы для перекрытий без балласта отличались стабильной конструкцией, меньшей высотой пути, меньшим количеством заливки — монолитный бетон , удобством и быстротой строительства.Строительство может быть начато до мобилизации рельсов. Они широко используются в китайских HSR (например, Ухань – Гуанчжоу, Шанхай – Ханчжоу, Пекин – Шанхай, Пекин – Шицзячжуан и Шицзячжуан – Ухань).

1.

Конструктивное проектирование

В зоне разворота существует два типа пути перекрытий: путь плит с выравнивающим слоем и путь с заполнителем. Путь перекрытий с выравнивающим курсом состоит из стрелочных переводов, плит, основания и выравнивающего участка. Стрелочная плита будет доведена до готового выравнивающего слоя.Между плитой и выравнивающим слоем будет помещен самоуплотняющийся бетон. Стрелочная плита соединена с основанием посредством стальных-образных ферм, закрепленных на дне плиты. Путь ограничен в продольном и поперечном направлении силой сцепления и силы трения между днищем поворотной плиты и основанием, а также усилием сдвига Π-образной стальной фермы. Разворотная плита изготовлена ​​из бетона C55, имеет уклон бокового дренажа 0,5% на поверхности плиты. Станина опорного рельса не имеет уклона. Основание выполнено из самоуплотняющегося бетона C40 глубиной 180 мм с хорошей текучестью, примерно на 400 мм шире плиты в поперечном направлении, с уклоном дренажа 4% на выступающей кромке.Выравнивающий слой выполнен из бетона C25 глубиной 130–200 мм, что примерно на 300 мм шире плиты основания в поперечном направлении. Он не может быть усилен. На дне плиты предусмотрены-образные стальные фермы для встраивания в основание, чтобы объединить плиту и основание. См. Рисунок 9.15 для конкретной структуры.

Рисунок 9.15. Конструкция пути в зоне разворота с выравнивающим курсом.

Путь перекрытий с заполнителем состоит из стрелочных переводов, поворотных плит, заполнителя и основания.На готовое бетонное основание будет подогнана поворотная плита. Между ступенчатой ​​плитой и основанием будет размещена шпатлевка. В отверстия на плитах стрелочного перевода и в основании будут вставлены штифты. Путь ограничен в продольном и поперечном направлении силой сцепления и силы трения между днищем поворотной плиты и основанием, а также усилием сдвига Π-образной стальной фермы. Разворотная плита изготовлена ​​из бетона C55, имеет уклон бокового дренажа 0,5% на поверхности плиты. Станина опорного рельса не имеет уклона.Наполнители должны иметь хорошие конструкционные характеристики (текучесть, расширение и степень диссоциации), механические свойства (прочность на сжатие, прочность на сдвиг) и долговечность. Обычно используется эмульгированный асфальтовый раствор. Бетонное основание C40 может быть непрерывным в зоне разворота, примерно на 400 шире, чем плита разворота в поперечном направлении, и иметь уклон дренажа 4% на выступающей кромке. Плиты стрелочного перевода и основание надежно соединяются шпильками.

Ступенчатые плиты могут быть заблокированы для облегчения производства и строительства.Плита стрелочного перевода простирается от центра расширительного зазора перед стрелочным рельсом до положения, определяемого путевой структурой в задней части стрелочного перевода. На стрелке и переходе плиты разделены котлованом под стрелу. Согласно требованиям к переоборудованию, на плите должно быть зарезервировано место для стрелочной машины. Для стрелочных переводов № 18 в Китае максимальная и минимальная длина стрелочного перекрытия составляет 5900 и 4560 мм соответственно.

Глубина перекрытия связана с условиями эксплуатации железнодорожной линии (нагрузка на поезд), высотой пути, структурой перемычки (характеристики бетона, приложение предварительного напряжения или скорость общего армирования) и высотой опорного рельсового полотна.Согласно механическому анализу и расчету конструкционной арматуры, глубина плиты определена как 240 мм (включая высоту опорного рельса).

Так как геометрия пути в стрелочном переводе изменчива, поперечная ширина плиты стрелочного перевода может также изменяться в продольном направлении линии. При проектировании необходимо обеспечить достаточную прочность и устойчивость плиты, глубину защитного слоя бетона и минимальное расстояние 300 мм от втулки до стороны плиты. Ширина плиты будет непрерывно изменяться.Кромка перекрытия проходит по прямой линии на главном пути, меняющейся в зависимости от типа линии криволинейного рельса. Две соседние плиты будут иметь одинаковую ширину, чтобы края стрелочного перевода были гладкими и эстетически привлекательными. При транспортировке хотя бы один из размеров (длина и ширина) должен быть больше 3500 мм. В Китае максимальная ширина плиты для стрелочного перевода № 18 составляет 5445 мм.

Боковое опорное основание рельса по всей длине шириной 260 мм расположено на верхней части стрелочного перекрытия, минимальная высота которого у основания рельса составляет 12 мм.Для китайских креплений общая высота подкладок составляет 56 мм, а минимальный зазор между основанием рельса и поверхностью плиты составляет 68 мм, что соответствует требованиям к рабочему пространству для небольших гусеничных подъемных машин во время технического обслуживания.

Конструктивная арматура поворотной плиты состоит из верхнего и нижнего слоев с шагом между слоями 100–120 мм. Каждый слой имеет форму перекрещивающейся сетки со средним шагом сетки 120 мм (в продольном направлении) × 125 мм (в поперечном направлении). Как продольная, так и поперечная арматура марки HRB335 ϕ 12 и ϕ 14 мм.Минимальная глубина защитного слоя бетона для основной арматуры — 30 мм.

Для безбалластного стрелочного перевода земляного полотна плиты соединяются с основанием с помощью Π-образной арматуры ( ϕ 12 мм, Grade HRB335), закрепленной на дне плиты. Между тем, нижняя часть плиты имеет грубую поверхность (шероховатость), чтобы обеспечить надежное соединение с самоуплотняющимся бетоном основания. Для безбалластного стрелочного перевода на мосту плиты соединяются с помощью шпатлевки и шпилек, при этом проделывание отверстий будет выполняться в соответствии с детальной схемой армирования, чтобы избежать столкновения с арматурой во время других операций по проделыванию отверстий.Каждая плита должна быть закреплена не менее чем восемью шпильками.

В Китае для безбалластных плит пути используются три типа изоляции: термоусаживаемые гильзы, арматура с эпоксидным покрытием и пластиковые изоляционные зажимы для армирования. Балластные плиты пути изолированы боковой арматурой с эпоксидным покрытием, электрическое сопротивление между арматурой не менее 2 МОм. Спиральная арматура вокруг втулки и закладных гаек для электрооборудования не должна контактировать с арматурой поблизости во время производства; следовательно, на прилегающие арматуры будет нанесен изоляционный слой, и спиральное армирование втулки может быть установлено после высыхания покрытия для достижения требуемых изоляционных характеристик стрелочного перевода.

2.

Анализ напряжений

Необходимо разработать расчетную модель «балка-плита-плита» для поворотной плиты при вертикальной нагрузке поезда. В модели стрелочные рельсы моделируются балочными элементами, стрелочная плита и основание считаются элементами оболочки, а выравнивающий слой рассматривается как упругая фундаментная плита.

Напряжение коробления поворотной плиты может быть получено по теории Вестгаарда в двух случаях: «холодный вверху + горячий внизу» и «горячий вверху + холодный внизу».«В обоих случаях используется одинаковый температурный градиент. Для поворотной плиты или плиты основания глубиной 220 мм коэффициент напряжения коробления приблизительно равен 1,0 с помощью следующего уравнения:

(9,15) σqx = σqy = EαtβhTgh3

(9,16) Mq = qqh36

, где

σqx = максимальное продольное напряжение коробления

σqy = максимальное поперечное напряжение коробления

E = преобразованный модуль упругости железобетона

αt = коэффициент расширения бетона

βh = глубина плиты поправочный коэффициент температурного градиента

Tg = температурный градиент

h = глубина стрелочного перекрытия; и

Mq = изгибающий момент поворотной плиты, вызванный перепадом температуры.

Изгибающий момент поворотной плиты под действием поперечной силы:

(9,17) Mq = 12 × 0,3 × Q × H / a

, где 1/2 означает, что верхний и нижний изгибающие моменты плиты одинаковы, равняется половине общей стоимости при боковой нагрузке; 0,3 — коэффициент распределения поперечной силы в продольном направлении пути; Q — поперечная сила, принятая равной 70 кН; H представляет собой зазор между точкой действия боковой силы и верхом плиты, равный глубине плиты 0.22 мес.

Под влиянием осадки земляного полотна и деформации прогиба моста, учитывая, что плиты стрелочного перевода и основание согласованы по деформации, изгибающий момент на соответствующей плите стрелочного перевода будет:

(9,18) Mu = EIρmax

, где EI — упругость при изгибе. модуль поворотной плиты, ρmax — деформационная кривизна фундамента. Для обеспечения рациональности и экономической эффективности проектирования комбинированные нагрузки на дополнительный изгибающий момент осадки земляного полотна могут принимать коэффициент комбинации, равный 0.5.

С учетом сочетания нагрузок в продольном направлении комбинация «вертикальная нагрузка поезда + температурная деформация» (основные силы) будет принята в качестве расчетной нагрузки, а комбинация «контрольная нагрузка вертикального поезда + температурная деформация + неоднородная осадка». фундамент »(основные силы + дополнительная сила) будет приниматься в качестве контрольной нагрузки. В поперечном направлении комбинация «вертикальная нагрузка поезда + поперечная нагрузка + температурная деформация» (основные силы) будет принята в качестве расчетной нагрузки.

Прочность и наличие трещин в поворотных плитах можно проверить с помощью расчетного изгибающего момента, проверить изгибающий момент, размеры конструкции и арматуру.При расчетной нагрузке сжимающее напряжение бетонной плиты составляет 5,82 МПа, растягивающее напряжение арматуры — 172,83 МПа, ширина трещины — 0,18 мм. При контрольной нагрузке сжимающее напряжение бетонной плиты составляет 6,42 МПа, растягивающее напряжение арматуры — 190,63 МПа, ширина трещины — 0,19 мм в допустимом диапазоне.

3.

Прочие проверки

Помимо вышеуказанной проверки, прочность плиты во время производства, транспортировки и строительства будет также проверена, дополненная проверкой прочности Π-образной арматуры, напряжения сдвига бетона при встроенная втулка и вокруг подъемной втулки и т. д.

Качество стального штампа, формирование арматурного каркаса и размещение заделанной втулки являются критическими процессами при производстве стрелочных переводов. При укладке важны высокая точность и быстрая настройка.

Системы монолитных бетонных стен | WBDG

Введение

The Executive House в Чикаго широко известен как первый железобетонный небоскреб. На момент завершения в 1959 году это было самое высокое железобетонное здание в Соединенных Штатах, 39 этажей или 371 фут.В 1962 году башни-близнецы Марина-Сити в Чикаго установили новый рекорд на высоте 588 футов над уровнем земли. Эти характерные круглые железобетонные башни также послужили ранним примером монолитной системы бетонных стен. Впоследствии башня Lake Point Tower в Чикаго, построенная в 1968 году, и One Shell Plaza в Хьюстоне, построенная в 1970 году, установили новые рекорды на высоте 645 футов и 714 футов соответственно. Хотя оба последних здания облицованы материалами, отличными от бетона, их инновационные структурные системы отражены в их фасадах и создают прецедент для многих монолитных бетонных стеновых систем, которые можно увидеть по всей территории Соединенных Штатов.

Описание

Монолитная бетонная стеновая система — это открытая структурная система, которая также служит фасадом. Отверстия или проемы в конструкционной системе обычно заполняются окнами, кладкой или каким-либо другим облицовочным материалом.

Основы

Системы монолитных бетонных стен обычно определяются структурной системой здания, которая состоит из системы устойчивости к вертикальным (гравитационным) нагрузкам и системы устойчивости к боковым (ветровым и сейсмическим).Система устойчивости к вертикальным нагрузкам может быть далее подразделена на горизонтальный каркас (система перекрытий) и вертикальный каркас (колонны и стены). Боковая устойчивая система включает в себя стойкие к моменту рамы, стены на сдвиг, скрепленные рамы или комбинацию этих систем.

Бетонная конструкция, спроектированная и построенная в Соединенных Штатах, регулируется минимальными положениями ACI Строительного кодекса . В то время как большинство конструктивных положений кода Код диктует минимальные требования к прочности (безопасности), код Код также предписывает требования к удобству эксплуатации и долговечности.Определенные факторы, влияющие на конструкцию структурной системы, также влияют на внешнюю стену. Эти факторы включают прогиб, растрескивание, покрытие бетона и защиту от коррозии.

Проблемы с производительностью

Тепловые характеристики

Монолитные бетонные стены получают свои тепловые характеристики в первую очередь из-за количества изоляции, размещенной в полости или внутри опорной стены.

Защита от влаги

Самая распространенная система защиты от влаги, используемая с системами монолитных бетонных стен, — это барьерная система, включающая в себя надлежащую герметизацию стыков.В некоторых случаях, когда требуется дополнительная защита от влаги, также используется нанесение герметика или бетонного покрытия. Герметики могут быть прозрачными или пигментированными, если используются для улучшения внешнего вида сборного железобетона. Пленкообразующие покрытия обычно обладают более высокими эксплуатационными характеристиками, но оказывают значительное влияние на внешний вид сборного железобетона.

Монолитная бетонная стена также должна быть спроектирована так, чтобы обеспечить соответствующий уровень прочности для запланированного воздействия.Долговечность можно повысить, указав минимальную прочность на сжатие, максимальное соотношение воды и цемента и соответствующий диапазон увлеченного воздуха.

Пожарная безопасность

1

При относительно высоких температурах, возникающих при пожарах, гидратированный цемент в бетоне постепенно дегидратируется, превращаясь обратно в воду (пар) и цемент. Это приводит к снижению прочности и модуля упругости (жесткости) бетона, что в некоторых случаях может привести к растрескиванию. Общая огнестойкость бетона зависит от типа заполнителя, содержания влаги, плотности, проницаемости и номинальной толщины.Некоторые считают, что «карбонатные» заполнители, такие как известняк, доломит и известняк, улучшают общую огнестойкость бетона из-за их способности поглощать часть тепла от огня. Точно так же бетон с более низкой удельной массой (плотностью) также будет обеспечивать повышенную огнестойкость, как и высушенный легкий бетон. Напротив, бетон с относительно низким содержанием влаги, низким водоцементным соотношением и сильно непроницаемый бетон может расколоться при воздействии огня.

1 Густаферро, Арманд Х., «Огнестойкий бетон», Архив журнала MC

Акустика

Система монолитных бетонных стен и фасад из сборных железобетонных панелей будут обеспечивать аналогичные характеристики в отношении передачи звука от внешней стороны к внутренней части здания. Дополнительную информацию см. В разделе «Системы сборных железобетонных стен», а также ссылки на веб-сайты промышленных и торговых ассоциаций, перечисленные в конце этого раздела.

Прочность материала / отделки

Ключевым вопросом, который необходимо решить при проектировании монолитного фасадного элемента, является долговечность, связанная с воздействием окружающей среды, например, влажностью, карбонизацией бетона и другими факторами, которые могут способствовать повреждению и разрушению бетона.

Разрушение бетона может происходить по двум основным причинам: коррозия закладной стали, приводящая к ухудшению качества бетона, и разрушение самого бетона. Бетон обычно обеспечивает защиту встроенной арматурной стали за счет своей щелочности.

Разрушение бетона из-за коррозии закладной стали обычно связано с влажностью и обычно проявляется в виде растрескивания и отслоения бетона. Если закладная арматурная сталь не защищена щелочной средой бетона и сталь подвергается воздействию влаги, возникает коррозия.Корродированная сталь значительно расширяется в объеме, что приводит к расширяющим силам на соседний бетон, вызывая его растрескивание и скалывание. Это визуально проявляется в растрескивании и расслоении бетона, а также в появлении пятен ржавчины на месте стального заделывания.

Карбонизация приводит к потере щелочности бетона до уровня арматурной стали. Карбонизация обычно происходит только вблизи открытой поверхности бетона, но в некоторых случаях может распространяться до уровня стали.Как только это происходит, бетон не обеспечивает защиты встроенной арматурной стали, и начинается коррозия. Карбонизация происходит из-за комбинации влаги и углекислого газа.

Коррозия закладной арматурной стали часто возникает из-за хлорида кальция, добавленного в бетон в качестве ускорителя во время первоначального строительства или позже из-за солей, используемых в северном климате. Хлорид-ион в сочетании с влагой приводит к коррозии закладной стали и, как следствие, к разрушению окружающего бетона.Морская вода или другая морская среда содержат большое количество хлоридов.

Открытая поверхность бетона также уязвима к атмосферным воздействиям. Обычно это может наблюдаться как эрозия бетонной пасты. Особенно в северных регионах, где осадки оказались очень кислыми, воздействие привело к более значительной эрозии пасты на открытых поверхностях.

Повреждения от замерзания-оттаивания возникают в результате замерзания бетона, насыщенного водой.Повреждения этого типа проявляются в виде разрушения поверхности, включая сильные трещины, распространяющиеся на бетон. Случайно было обнаружено, что бетон из портландцемента, содержащий микроскопические пузырьки воздуха, обеспечивает устойчивость к циклическому замораживанию и оттаиванию. Воздухововлечение обеспечивает «предохранительные клапаны», которые защищают бетон. В настоящее время воздухововлекающие агенты обычно (но не всегда) добавляются в цемент или бетон, используемые в открытых областях применения, которые находятся в районах США, подверженных отрицательным температурам.

Реакции щелочных заполнителей возникают, когда щелочи, обычно присутствующие в цементе, вступают в реакцию с кремнеземистыми заполнителями в бетоне, который подвергается воздействию влаги. В результате реакции образуется гель, похожий на зубную пасту, который образуется в течение многих лет или десятилетий, пока создаваемые силы не расширятся и не раскроют бетон. Большинство таких вредных агрегатов может быть обнаружено опытным путем или испытанием, а малощелочные цементы могут использоваться в новом строительстве для предотвращения значительных реакций.

Сульфатная атака возникает в результате реакции чрезмерного количества сульфатных солей с компонентами цемента, подверженными воздействию влаги.Реакция приводит к развитию расширяющих сил, которые в конечном итоге раскалывают бетон. Сульфатные соли могут поступать из окружающей среды (например, сульфатные воды или твердые вещества) или из одного или нескольких компонентов бетона (например, заполнителей, цемента или запатентованного продукта, обеспечивающего быстрое схватывание).

Существуют и другие формы разрушения бетона, включая повреждение от замораживания-оттаивания, реакцию щелочного заполнителя и сульфатное воздействие, но они менее распространены в системах монолитных бетонных стен.

Ремонтопригодность

Долговечность бетона и сопротивление разрушению зависят от долговечности, правильной конструкции и качества изготовления.Это также будет верно для материалов, используемых для ремонта существующего бетона. В конструкции смеси для долговечного заменяющего бетона должны использоваться материалы, аналогичные материалам исходной бетонной смеси, и включать воздухововлечение, соответствующий выбор заполнителей и соответствующее содержание цемента и воды. Хорошее качество изготовления должно касаться надлежащего смешивания, размещения и отверждения. В любом случае, хороший состав смеси повысит качество изготовления прочного ремонтного бетона.

При проектировании ремонта существующего бетона необходимо установить параметры для определения целей проекта на основе визуальной оценки и лабораторных исследований.Ключевой проблемой является эстетика ремонта, чтобы он максимально соответствовал существующему бетону как визуально, так и конструктивно. Еще одна важная задача — выбрать ремонтные работы, которые позволят сохранить как можно больше исходного материала; однако необходимо удалить достаточное количество поврежденного бетона, чтобы обеспечить надежный ремонт.

Любой ремонт существующего бетона требует надлежащей подготовки основания для приема ремонтного материала. Обычно это включает в себя пескоструйную очистку, струйную очистку или другие подходящие средства для обеспечения чистой поверхности, к которой ремонт может надлежащим образом приклеиваться.Связующие вещества обычно используются на поверхности основы, чтобы улучшить адгезию при ремонте. Существующая арматурная сталь, которая обнажается во время ремонта, может потребовать очистки, грунтования и окраски антикоррозийным покрытием. В большинстве случаев ремонтный участок следует укрепить и механически прикрепить к имеющемуся бетону. Армирование может быть обычной сталью, сталью с эпоксидным покрытием или нержавеющей сталью, в зависимости от условий.

Правильная укладка и отделка ремонта важны для достижения соответствия оригинальному бетону.Соответствующее отверждение необходимо для долговечного ремонта; Рекомендуется влажное отверждение, чтобы сократить время отверждения и вероятность растрескивания поверхности и усадки.

Подготовка пробных ремонтов и макетов для уточнения конструкции ремонта, а также для оценки ремонтных процедур — мудрая процедура. Мокапы также позволяют оценить визуальную и эстетическую приемлемость ремонтного дизайна.

Поскольку разрушение бетона в первую очередь является результатом проникновения влаги, восстановление может также повлечь за собой нанесение декоративного поверхностного покрытия или прозрачного проникающего герметика.Эти водостойкие покрытия и герметики должны быть воздухопроницаемыми и стойкими к щелочам.

Сегодня на рынке доступны различные методы и технологии ремонта, позволяющие снизить скорость коррозии встроенной арматуры и связанного с ней разрушения бетона. Одним из методов является катодная защита, при которой используется вспомогательный анод, так что весь арматурный стержень является катодом. (Коррозия — это электрохимический процесс, при котором электроны перемещаются между катодной (положительно заряженной) и анодной (отрицательно заряженной) областями на металлической поверхности; коррозия происходит на анодах.) Катодная защита предназначена для снижения скорости коррозии закладной стали в бетон, что, в свою очередь, снижает износ бетона.

Катодная защита — это только один из многих развивающихся методов защиты бетона. Другой доступный в настоящее время метод — повторное ощелачивание, которое включает возвращение бетона в его естественное щелочное состояние.

Приложения

Системы монолитных бетонных стен используются в США в течение многих десятилетий.Большая часть раннего развития этого типа строительства произошла в Чикаго, в первую очередь из-за влияния Портлендской цементной ассоциации и инженеров-конструкторов-новаторов, таких как Фазлур Хан. О постоянстве этого типа зданий свидетельствует ряд выдающихся монолитных бетонных зданий, построенных в 1950-х и 1960-х годах, которые все еще существуют и продолжают функционировать.

См. Приложения с учетом климатических требований в отношении конструкции ограждающих конструкций здания.

Новые проблемы

Постановления, касающиеся обслуживания фасадов, включая системы монолитных бетонных стен, были приняты в Нью-Йорке и Чикаго.По мере увеличения инвентаря старых зданий, техническое обслуживание фасадов этих зданий и проблемы безопасности жизни, связанные с их ухудшением, также будут увеличиваться.

Механизмы, которые обычно способствуют разрушению систем монолитных бетонных стен, хорошо известны. Улучшение стандартов проектирования и технологии ремонта приведет к повышению производительности.

Необходимость придания ограждающих конструкций взрывобезопасности вынудила пересмотреть вариант конструкции монолитного бетонного фасада.

Дополнительные ресурсы

WBDG

Продукты и системы

См. Соответствующие разделы в соответствующих спецификациях руководства: Unified Facility Guide Specifications (UFGS), VA Guide Specifications (UFGS), DRAFT Federal Guide for Green Construction Specifications, MasterSpec®

Публикации

Организации

Другое

Армирование проемов в монолитных стенах | Журнал Concrete Construction

Стальной арматурный стержень вокруг проемов является важным структурным элементом монолитных бетонных стен, независимо от того, построены ли они со съемными формами или изоляционными бетонными формами (ICF).Правильное размещение арматуры помогает предотвратить растрескивание бетона вокруг отверстий из-за структурных нагрузок или усадки.

Международный жилищный кодекс определяет графики армирования проемов в домах, построенных с монолитными стенами, если ширина проема превышает 2 фута. Точные требования зависят от сил, действующих на конструкцию, что требует наличия минимум одной вертикальной планки вдоль каждой стороны каждого проема в пределах 12 дюймов от края. Диаметр стержня равен диаметру другой вертикальной арматуры стены.

Горизонтальное усиление требуется сверху и снизу каждого проема шириной 2 фута или более. Горизонтальная перекладина сверху образует структурную перемычку. Во всех случаях эти горизонтальные штанги должны выходить как минимум на 24 дюйма за обе стороны отверстия. Минимальная арматура составляет один стержень №4 с центром на расстоянии от 1½ до 2½ дюймов от края проема, чтобы обеспечить достаточное бетонное покрытие.

Для более широких отверстий и больших условий нагружения размер стержня может увеличиться, может потребоваться два стержня и могут потребоваться S-образные хомуты между верхним и нижним стержнем.В случае двух полосок одна расположена над другой. В зависимости от нагрузки на перемычку может потребоваться глубина от 8 до 24 дюймов. Центр верхней горизонтальной перекладины должен находиться на расстоянии от 1½ до 2½ дюймов от верха перемычки. Любые требуемые хомуты изготавливаются из арматурного стержня минимум №3. Расстояние между хомутами определяется глубиной перемычки и не должно превышать половины глубины перемычки (D) за вычетом нижнего бетонного покрытия.

Некоторые строители также добавили короткие диагональные перекладины на каждом углу.Они обеспечивают дополнительную защиту от образования трещин по углам, но обычно не требуются.

Все стержни должны иметь бетонное покрытие в соответствии с ACI 318. Обычно оно составляет 1½ дюйма для стержней в бетоне, подверженных воздействию погодных условий, но может быть уменьшено до дюйма, если они не выставлены или когда формы остаются на месте. Они должны надежно удерживаться на месте, чтобы избежать смещения во время укладки бетона. Обычно это достигается с помощью проводки или привязки их к форме стяжек.

Если вертикальные стержни опускаются в законченную опалубку, они ввинчиваются в различные предварительно установленные удерживающие устройства внизу и привязываются вверху.Это может быть сделано с помощью «воротника» (короткого отрезка трубы из ПВХ, продетого через дюбель), продев вертикали между смещенными горизонтальными стержнями или в углубление в бетоне ниже, рядом с каждым дюбелем. Поскольку некоторые официальные лица возражают против того, чтобы хомут опирался на фундамент ниже, его вместо этого можно поднять и прикрепить к штифту на фут или более.

— Питер Вандерверф — президент Building Works Inc. (www.buildingworks.com), консалтинговой фирмы, которая помогает компаниям внедрять новые строительные продукты.Информацию предоставили Ассоциация портлендского цемента и Ассоциация бетонных оснований.

Процесс строительства бетонной стены, включая материалы

🕑 Время чтения: 1 минута

Возведение бетонных стен — решающий этап в строительстве. Он сконструирован как несущая конструкция для передачи нагрузок с пола на стену под ним или на фундамент, а также для разделения пространства в многоэтажных зданиях. Более того, бетонная стена является желательным структурным элементом в сейсмоопасных районах, поскольку она демонстрирует удовлетворительные характеристики во время землетрясений.Поэтому он очень сильно контролирует безопасность здания. Поэтому при его строительстве следует соблюдать особую осторожность. Наконец, помимо правильного процесса строительства, материалы, используемые для строительства бетонных стен, играют важную роль в улучшении характеристик стены в течение ее срока службы.

Материалы, используемые при строительстве бетонных стен

При строительстве бетонных стен используются разные типы материалов. Эти материалы должны соответствовать применимым нормам и спецификациям, таким как требования ACI 318-14:

  1. Цементы; Существуют различные виды цемента, наиболее известным из которых является портландцемент.
  2. Агрегат
  3. Песок
  4. Добавки
  5. Стальная арматура
  6. Опалубочные материалы; древесина, сталь, алюминий, пластик, композит из цемента и пенопласта или композит из цемента и древесной щепы

Оборудование , используемое в конструкции бетонных стен

  1. Оборудование для смешивания и доставки бетона
  2. Оборудование для уплотнения и отделки бетона
  3. Средства защиты рабочих

Процесс строительства бетонной стены

1.Размещение арматуры

Обычно, если толщина стены меньше 100 мм, то арматура укладывается в один слой. Однако арматурные стержни следует укладывать в два слоя, если толщина стенок больше 200 мм.
Стальные стержни укладываются по горизонтали, и по вертикали, в стене в виде сетки в соответствии с проектными чертежами. Предусмотренный размер стальных стержней, расстояние между ними и бетонное покрытие должны быть обеспечены с максимально возможной точностью. С натяжной стороны стены кладут арматурные стержни.После того, как арматура будет полностью уложена, начинается операция по установке опалубки.

Рис. 1: Крепление горизонтальной арматуры бетонной стены

Рис. 2: Вертикальное армирование бетонной стены

В местах стыков стальные стержни должны быть удлинены для обеспечения постоянного сопротивления. Кроме того, он стыкуется с арматурным стержнем с другой стороны, перекрывая заданное расстояние. Аналогичное перекрытие должно быть предусмотрено для концов арматурных стержней и стального стержня, поворачивающего угол.

Рекомендации по технике безопасности при размещении арматуры

Есть определенные советы, которые необходимо учитывать при установке арматуры, чтобы обеспечить безопасность рабочих:

  • Установите заглушки или деревянный желоб на выступающие концы арматурных стержней.
  • В качестве альтернативы, согните арматуру так, чтобы удлиненные концы больше не стояли вертикально.
  • Если рабочие работают на высоте над оголенными арматурными стержнями, необходимо принять меры по предотвращению падения, чтобы предотвратить гибель людей на строительной площадке.

Рис. 3: Пластиковые колпачки, размещенные на экструдированных стальных стержнях по соображениям безопасности

2. Опалубка бетонной стены

3. Строительные швы в бетонных стенах

  • Строительные швы должны быть выполнены и расположены так, чтобы не ухудшать прочность стены.
  • Бетон на стыке строительных швов, который необходимо придать шероховатость, чтобы создать надлежащую связь между ранее залитым и вновь залитым бетоном.
  • ACI 350 указывает максимальное расстояние 12,19 м между строительными швами и 3,65 м между углом стены и строительным швом шкафа.
  • Минимальная длина заделки арматуры строительного шва 305 мм должна быть предусмотрена с обеих сторон шва.

4. Производство бетона

Бетон должен производиться на бетонных заводах под строгим контролем качества и доставляться на объект с использованием подходящих транспортных средств, таких как транзитные смесители.

Рис. 7: Производство бетона

5. Заливка бетона

  • Заливка бетона начинается после того, как опалубка и ее стяжки, штифты и клинья надежно закреплены.
  • Рассмотрены подходящие меры для предотвращения утечек.
  • После этого нанести масло на поверхность опалубки.
  • Затем свежий бетон заливается насосами или любым другим подходящим способом.
  • Бетон необходимо уплотнить во время укладки и обработать вокруг закладных элементов и арматуры, а также в углах опалубки.
  • Если используются несъемные формы, бетон должен укрепляться за счет внутренней вибрации.

Однако если используется самоуплотняющийся бетон, то для уплотнения бетона используется только штифтовый вибратор. Следовательно, для уплотнения самоуплотняющегося бетона не требуется внутренней вибрации.

Рис. 8: Заливка бетона

6. Снятие опалубки

Опалубку бетонных стен можно снять через 1-2 дня после окончания укладки бетона. Снятие опалубки бетонной стены должно выполняться осторожно.В жилых домах раннее удаление опалубки может быть достигнуто путем отверждения / отверждения горячим воздухом. Это увеличит темпы строительства.

Рис. 9: Снятие опалубки бетонных стен

7. Обработка бетонной стены

  • Метод и период отверждения могут варьироваться в зависимости от условий окружающей среды.
  • Если деревянные формы используются и остаются на месте, стену следует поддерживать влажной с помощью обрызгивания или любого другого подходящего метода. Опалубка помогает удерживать влагу и повышает экономию отверждения.
  • В качестве альтернативы можно снять опалубку и использовать подходящий и практичный метод отверждения.
  • При температуре бетона выше 5 ° C процесс отверждения должен длиться не менее 7 дней.

Рис. 10: Отверждение железобетонных стен

Съемные опалубки (монолитные)

Монолитные бетонные стены (CIP) изготавливаются из товарного бетона, помещенного в съемные опалубки, возводимые на месте. Исторически это была одна из самых распространенных форм подвальных стен зданий.Те же методы, что и ниже уровня, можно повторить со стенами выше уровня, чтобы сформировать первый и верхние уровни домов.

Первые попытки освоить эту технологию были предприняты Томасом Эдисоном более 100 лет назад. Он видел преимущества строительства домов из бетона задолго до того, как это стало широко известно. По мере развития технологий усовершенствования формующих систем и изоляционных материалов повысили легкость и привлекательность использования съемных форм для строительства одной семьи. Эти системы сильны.Собственная тепловая масса в сочетании с соответствующей изоляцией делает их достаточно энергоэффективными. На внутренние и внешние поверхности можно нанести традиционную отделку, поэтому здания выглядят как каркасные, хотя стены обычно толще.

История

Томас Эдисон с моделью бетонного дома (около 1910 г.). Фото любезно предоставлено Министерством внутренних дел США, Служба национальных парков, Национальный исторический комплекс Эдисона.

Технология заливки бетона в съемные формы — начало индустрии строительства из железобетона — восходит, по крайней мере, к 1850-м годам, вскоре после того, как был запатентован портландцемент.В домах на одну семью съемные опалубки преимущественно использовались для нижних (подвальных) стен. Томас Эдисон был одним из первых, кто осознал потенциал для качественного применения и выполнил несколько демонстрационных проектов, несколько домов на одну семью, полностью построенных из бетона.

С тех пор достижения в технологии формовки и укладки, бетонных смесей и стратегии изоляции сделали строительство бетонных домов с использованием съемных форм общепринятой строительной техникой.

Преимущества

Монтируемая на месте конструкция дает преимущества как строителям, так и владельцам зданий.

Владельцы ценят:

  • прочные стены
  • безопасность и устойчивость к стихийным бедствиям
  • защита от плесени, гнили, плесени и насекомых
  • способность блокировать звук
  • для изолированных систем, энергоэффективность и, как следствие, экономия затрат

Подрядчики и строители, такие как:

  • знакомство
  • расширяет бизнес и включает в себя не только подвалы
  • экономически эффективные строительные технологии

Компоненты, включая изоляцию

Монолитные бетонные системы (CIP) относительно просты.Необходимые шаги включают размещение временных форм и укладку свежего бетона и стальной арматуры. Хотя дозирование бетона возможно на месте, товарный бетонный бетон широко доступен и обычно доставляется поставщиком товарного бетона. А в 2011 году среднее расстояние до большинства объектов проекта от завода по производству готовой смеси составляло всего около 14 миль.

Хотя неизолированные стены были обычным явлением в прошлом, изменение требований энергетического кодекса в большей или меньшей степени устраняет стены без изоляции в большинстве климатических условий.Это относится ко всем типам систем, включая бетон, дерево и сталь. Энергия просто слишком важна с точки зрения ее стоимости и воздействия на окружающую среду. Тепловая масса бетона помогает сдерживать перепады температуры, но не может обеспечить улучшенные энергетические характеристики, требуемые правилами, если стеновая система не содержит изоляцию. Поэтому в прошлом изоляция могла быть дополнительным компонентом монолитной системы, но она все чаще используется в современном строительстве.

Самыми распространенными опалубочными материалами для заливки бетона являются сталь, алюминий и дерево.Многие деревянные системы изготавливаются по индивидуальному заказу и могут использоваться только один или несколько раз. С другой стороны, системы формовки стали и алюминия рассчитаны на многократное повторное использование, что снижает затраты. Металлические панели обычно имеют ширину от двух до трех футов и разную высоту, чтобы соответствовать стене. Наиболее распространены панели высотой восемь и девять футов.

Установка, подключение, отделка

Заливка бетона на месте состоит из нескольких отдельных шагов: установка опалубки, размещение арматуры и заливка бетона.Строители обычно сначала помещают формы в углы, а затем заполняют их между углами. Это помогает при правильном выравнивании форм и, соответственно, стен. Арматурные стержни (сокращенно «арматура») могут быть возведены либо перед формированием фасада в виде каркаса, либо после установки одной стороны опалубки. После того, как обе опалубочные поверхности связаны вместе и закреплены, бетон загружается в опалубки через желоб грузовика, ковш или насос. Формы всегда должны заполняться с соответствующей скоростью, основанной на рекомендациях производителя опалубки, чтобы предотвратить проблемы.Несмотря на то, что выбросы металлических и деревянных форм случаются редко, потенциально может произойти несоосность.

Для односемейного жилищного строительства толщина стен может составлять от четырех до 24 дюймов. Неизолированные стены обычно имеют толщину от шести до восьми дюймов. Стены с изоляцией обычно толще, если они содержат внутренний слой изоляции: внутренний или внешний слой стены должен выполнять структурную функцию. Монолитные стены обычно толще, чем каркасные стены (деревянные или стальные).

Армирование в обоих направлениях поддерживает прочность стены. Вертикально стержни обычно размещаются на расстоянии от одного до четырех футов по центру и привязываются к дюбелям в основании или цокольной плите для обеспечения структурной целостности. Горизонтально стержни обычно размещаются на расстоянии около четырех футов в жилых помещениях. По углам и вокруг проемов (двери, окна) размещаются дополнительные бруски, которые помогают контролировать растрескивание и обеспечивают прочность.

Проемы для дверей и окон требуют наличия баксов, чтобы окружать проем, удерживать свежий бетон во время укладки и обеспечивать подходящий материал для крепления оконных или дверных рам.

Полы и крыша могут быть бетонными или деревянными и из легкой стали. Ригели крепятся болтами, вклеенными в отверстия в бетоне. В случае тяжелых стальных перекрытий внутри опалубки устанавливаются сварные пластины, которые встраиваются в свежий бетон. Это обеспечивает крепление для стальных балок, ферм или уголков.

Опалубка стены подвала, используемая в качестве опалубки в новой системе реберного перекрытия. Регулируемая форма ребер поддерживает форму палубы и может охватывать от 12 до 16 футов.

Отделка систем CIP зависит от наличия изоляции и формы поверхности. Поочередно отделку можно прикрепить планками обшивки. С системами бетонных стен съемной формы можно использовать практически любую отделку. Стеновая плита остается самой распространенной внутренней отделкой. Экстерьер намного разнообразнее и зависит от предпочтений клиента. Формовочные вкладыши, прикрепленные к внешней поверхности формы, могут придавать любую текстуру; в качестве альтернативы, после снятия формы к стене можно прикрепить другие традиционные виды отделки, такие как кладка или сайдинг.

Изоляция может быть размещена на внутренней или внешней стороне или в центральной части стены. Чтобы разместить утеплитель на лицевой стороне, в пенопласт вставляют пластиковую арматуру, которая встраивается в бетон. Они имеют фланцы, чтобы удерживать пену, а фланцы служат для крепления отделки и приспособлений. Лицевую изоляцию можно наносить и после снятия опалубки. Если пена закладывается в опалубку до укладки бетона, используются композитные фитинги для связывания двух бетонных поверхностей (через слой пенопласта).Внутренняя стена обычно является структурным слоем, поэтому она толще и содержит арматуру, тогда как на внешний бетонный слой нанесена отделка. Пенопласт — чаще всего пенополистирол (EPS). Это может быть экструдированный полистирол (XPS), который прочнее, но и дороже.

Устойчивое развитие и энергия

Одно из главных преимуществ утепленных монолитных стен — это снижение расхода энергии на обогрев и охлаждение здания. Изоляция, тепловая масса и низкая инфильтрация воздуха способствуют экономии энергии.Типичное значение R для пен EPS и XPS составляет, соответственно, четыре и пять на дюйм. Тепловая масса действует как аккумуляторная батарея, удерживая тепло или холод, смягчая колебания температуры. Монолитные стены имеют на 10–30 процентов лучшую воздухонепроницаемость, чем сопоставимые каркасные стены, потому что бетонная оболочка содержит мало стыков. В дополнение к экономии энергии и денег, связанных с отоплением и охлаждением, бетонные стены также обеспечивают более стабильную внутреннюю температуру для пассажиров, повышая их комфорт.Монтируемые на месте системы также подходят для использования переработанных материалов. Бетон может быть изготовлен с использованием дополнительных вяжущих материалов, таких как летучая зола или шлак, чтобы заменить часть цемента. Заполнитель может быть переработан (измельченный бетон), чтобы снизить потребность в чистом заполнителе. Большая часть стали для армирования перерабатывается. Некоторое количество полистирола также производится из переработанных материалов. Некоторые из этих методов способствуют достижению баллов в определенных системах зеленого рейтинга, таких как LEED®.

Строительные нормы и правила

Для домов на одну и две семьи Международный жилищный кодекс (IRC) касается фундаментов и стен ниже уровня в Разделе R404 и стен выше уровня в R611 для домов до двух этажей плюс подвал.Для больших зданий, таких как многоквартирные и коммерческие постройки, инженеры следуют Международным строительным кодексам (IBC) при проектировании конструкций.

Сравнительная стоимость

Монолитный бетон требует возведения временных опалубок, поэтому это трудозатратно. Но многие типы форм можно использовать повторно, поэтому опалубка не требует больших затрат. Кроме того, бетон исторически более стабилен в цене, чем дерево или сталь.

Жилой проект CIP

Форма древнего искусства вдохновляет современный экологичный дом

Дом Origami-Loft House площадью 3300 квадратных футов в Венеции, Флорида, не совсем маленький, но он живет еще больше, добавлено исследование чердак, читальный зал и игровая комната в типичные жилые помещения.Ощущение простора возникает по многим причинам: высота верхнего потолка 24 фута, геометрические складки на стенах, которые создают отдельные комнаты, и много света — каждая комната выходит на улицу, а окна с фрамугой и внутренние стеклянные перегородки позволяют свету свободно течь.

Этот проект расположен в традиционном районе на участке в четверть акра, с уважением к окружающей среде. С улицы дом представляет собой разумно выполненный фасад, в то время как задняя часть дома имеет драматические изгибы и каскадные объемы.Дизайнер Джонатан Паркс Архитектор (JPA) выбрал монолитные бетонные стены, чтобы обеспечить сложную геометрию и открытость, обеспечивая при этом прочность, необходимую для противостояния прибрежной погоде вдоль Мексиканского залива, которая включает длительный сезон ураганов.

Как видно из гостиной, высокие потолки и открытая планировка придают интерьеру ощущение простора. Фото любезно предоставлено К. Пятте.

Как и многие современные проекты, этот дом был спроектирован с учетом экологических требований. Начиная с энергосберегающей системы монолитных бетонных стен и изоляции на основе сои, оболочка защищает от высоких температур Флориды.Комбинация активных и пассивных солнечных методов значительно снижает потребность здания в энергии, при этом обеспечивая все необходимое и удобства, общие для домов во Флориде. Это включает в себя горячую воду для дома и бассейна за счет пассивного солнечного нагрева воды, а также высокие внутренние потолки, помогающие контролировать внутреннюю температуру. Собирая солнечную энергию, владельцы получают дополнительные 21–26 кВт / ч в день, а использование приборов Energy Star снижает потребление энергии.

Энергия, однако, не единственная мера устойчивости, учитываемая при проектировании и строительстве дома.Некоторые виды отделки выполнены из переработанных материалов, а внутренние полы покрыты древесиной с низким содержанием летучих органических соединений (ЛОС). Снаружи ландшафтный дизайн спроектирован с минимальными потребностями в воде, в том числе пастбищной траве полевых цветов, для экономии использования пресной воды. Буквально со всех сторон этот бетонный дом обеспечивает красивый внешний вид, энергоэффективность и экологичный дизайн.

Малоэтажный коммерческий проект CIP

Пышная бетонная автостоянка плывет в Сарасоту

Готовый стать визитной карточкой на горизонте Сарасоты, Флорида, гараж на Палм-авеню и магазины розничной торговли включают в себя множество уникальных торговых площадей по адресу на уровне земли и обеспечивает стоянку для 763 автомобилей, 35 мотоциклов и 80 велосипедов.В качестве примера многофункционального объекта — гаража и магазина — проект Palm Avenue показывает, насколько универсальны бетонные конструкции.

Используя архитектурный бетон как структурную и эстетическую среду, Jonathan Parks Architect создал пышное здание свободной формы, чтобы передать дух местной художественной культуры. Монолитная конструкция устраняет необходимость в поперечных стенах и колоннах между помещениями, обеспечивая открытый план этажа с высокими потолками. Эта беспрепятственная планировка вместе с перфорированными металлическими «парусами», покрывающими фасад, создают яркую, воздушную и безопасную атмосферу для пешеходов и проезжей части, пропуская свет и естественную вентиляцию, защищая автомобили от посторонних взглядов.

Монолитный бетон также позволил дизайнерам создать игривую скульптурную конструкцию лестницы, которая сама по себе вызывает интерес людей и поощряет ее использование, а не лифт.

Используя гражданский вклад и уловив дух местной художественной культуры, этот проект площадью 240 000 квадратных футов был разработан для города Сарасота архитектурной фирмой JPA и построен Suffolk Construction. Результатом стал культовый, удобный, экологически ответственный дизайн, который удовлетворяет функциональные, стратегические и эстетические потребности города и вносит свой вклад в общий успех центра Сарасоты.

Гараж имеет удобную планировку, включая широкий пандус и односторонний транспортный поток, чтобы уменьшить конфликт транспортных средств и облегчить маневрирование на парковочных местах и ​​из них. Эффективное движение транспортных средств достигается за счет проектирования парковочных мест под небольшим углом и широко открытой скоростной рампы, свободной от припаркованных автомобилей.

Хотя сертификация еще не завершена, проект разработан для достижения золотого уровня LEED Core & Shell v3, отчасти за счет использования комбинации ливневой воды, материалов для интерьера, освещения и солнечной энергии для подзарядки электромобилей.Основные моменты зеленых компонентов указаны ниже.

  • Подземное хранилище и цистерна для хранения и очистки ливневых стоков с площадки. Часть воды повторно используется для оросительной системы.
  • Внутренние материалы превосходят требования LEED для выделения летучих органических соединений и других токсичных химикатов.
  • Потребление энергии снижается за счет светодиодного освещения и системы управления энергопотреблением, которая обеспечивает искусственное освещение только тогда и там, где это необходимо.
  • Навес для автомобиля на солнечных батареях расположен на крыше, а плагины для электромобилей предусмотрены на первом этаже.

Владелец: Город Сарасота
Архитектор: Джонатан Паркс Архитектор
Подрядчик: Саффолк Констракшн
Гражданские, ландшафтные и путевые работы: Кимли-Хорн и партнеры
Инженер-конструктор Мур 22 MEP, Противопожарная защита : TLC Engineering for Architecture
Eco Consulting: Carlson Studio Eco Consulting
Консультанты по парковке: DKS Associates
Конструкционный бетон: Ceco Concrete Construction
Изготовитель алюминиевых парусов: Mullet’s Aluminium Product, Mullet’s Aluminium Product, .

Ресурсы

Совет по бетонным домам
(Совет ассоциации бетонных фундаментов)
Ассоциация бетонных фундаментов является голосом и признанным авторитетом подрядчика по монолитному бетону для жилищной бетонной промышленности. Совет по бетонным домам — это те члены, которые привержены позитивному и конструктивному развитию вышеупомянутой индустрии съемных форм для дома из бетона.
Свяжитесь с CHC для получения дополнительной информации.

Совет по бетонным домам
P.O. Box 204
Mount Vernon, Iowa 52314
866.232.9255 / Факс: 320.213.5556
www.cfawalls.org

Заявление об ограничении ответственности

Список организаций и информационных ресурсов не является ни одобрением, ни рекомендацией Portland Cement Association (PCA) . PCA не несет никакой ответственности за выбор перечисленных организаций и продуктов, которые они представляют. PCA также не несет ответственности за ошибки и упущения в этом списке.

UNIT II — ЦЕМЕНТНЫЙ БЕТОН IN-SITU В СТРОИТЕЛЬСТВЕ — McGANS’s

Блок -02

Монолитный цементный бетон в строительстве

Обычный бетон в монолитном строительстве без арматуры (стальная арматура)

Определение монолитного строительства

Монолитный бетон, также известный как монолитный бетон, представляет собой метод бетонирования, который выполняется на месте или в бетонном компоненте, готовом в позиции .Монолитный бетон является предпочтительным выбором для бетонных плит , плит и фундаментов, а также для компонентов , таких как , как балки, колонны, стены, крыши и т. Д.

Достоинства монолитного строительства

  1. Подходит к любой форме здания.
  2. Его можно считать более или менее монолитным, поскольку стыки возникают только в результате разных заливок одной и той же конструкции.
  3. Легко используется для двухсторонних структурных систем.
  4. Может применяться для пост-натяжения.
  5. Краны не нужны.

Одним из огромных преимуществ монолитного бетона является его гибкость как при дозировании, так и при смешивании, укладке, выдержке и сушке. У каждого есть возможность произвести необходимые изменения в зависимости от текущей ситуации на месте.

Недостатки монолитного строительства

  1. Бетон при заливке монолитных свай обычно выполняется с высоты, поэтому качество работ не может быть гарантировано.
  2. Поскольку сборные сваи отливаются на заводах, оборудованных оборудованием и роботами, для сборных свай требуется меньше труда, но это не относится к литым на месте сваям, которые требуют интенсивного труда.
  3. В монолитных сваях расходуется больше бетона, так как на стройплощадке наблюдается достаточная потеря бетона, иногда из-за плохого качества изготовления.
  4. После заливки бетона в монолитные сваи требуется время, достаточное для того, чтобы набрать расчетную прочность, что требует времени.Таким образом, для быстрого строительства эта набивная свая не рекомендуется.
  5. Поскольку качество бетона неоднородно по всей партии, обычно проводятся испытания на осадку и прочность на месте, чтобы в некоторой степени гарантировать качество.

Процедура монолитного строительства на месте

Общий технологический процесс с заливкой на стройплощадке Строительство начинается с подготовки и возведения опалубки и армирования. Как опалубка, так и арматура должны быть на месте, прежде чем можно будет начать какую-либо конкретную связанную деятельность.

  • Формы — это структурные элементы, предназначенные для поддержки и формования свежего бетона в процессе его отверждения и упрочнения. Как правило, они временные, однако иногда они предназначены для того, чтобы их постоянно оставляли на месте в конструкции в качестве несущей конструкции.
  • Обычно в течение нескольких дней бетон становится достаточно прочным, чтобы выдержать расчетную нагрузку, и опалубку можно снять, чтобы использовать в другом месте на участке.
  • Повторное закрепление опалубки используется для замены опалубки и продолжения поддержки бетона при приложении к нему строительных нагрузок.

БАЛКА ОПАЛУБКА И УСИЛЕНИЕ

  • Когда вся опалубка и арматура установлены, затем подается влажный бетон, который укладывается в опалубку вокруг арматуры.
  • Открытая бетонная поверхность, требующая выравнивания и разглаживания, закончена, и начинается отверждение.
  • Во время отверждения принимаются меры для контроля температуры и влажности бетона.

Одно единственное событие укладки бетона обычно приводит к появлению множества железобетонных элементов.Иногда бетон укладывают в опалубку каждого элемента индивидуально, как на колонны, но часто кладут монолитно.

Укладка монолитного бетона — это укладка бетона в одну большую систему опалубки, которая состоит из нескольких меньших систем опалубки, каждая из которых соответствует отдельному бетонному элементу.

Вибрация не используется для транспортировки бетона внутри опалубки, а просто используется для его уплотнения. Избыточная вибрация приводит к расслоению бетонной смеси, а низкая вибрация приводит к образованию сотовой матрицы.

Отделка бетона выполняется сразу после выравнивания, пока бетон еще влажный, и обычно включает в себя движение поплавком по поверхности по бетону. Это делается для того, чтобы удалить небольшие дефекты с поверхности и заделать обнаженный заполнитель чуть ниже поверхности бетона.

Отверждение бетона — это период времени непосредственно после укладки бетона, в течение которого свежеуложенный бетон укрепляется и затвердевает.

Опалубка — один из ключевых элементов, используемых при монолитном строительстве

  • 1 Опалубка
  • 2 Опалубка
  • 3 Центровка
  • 4 стадии
  • 5 Строительные леса

Опалубка:

Это временная конструкция, которая используется как форма для заливки бетона. Это вертикальное или горизонтальное расположение, позволяющее удерживать бетон на месте до тех пор, пока он не приобретет прочность и форму.

Вы видели на изображении указанную ниже форму колонны моста? Вы когда-нибудь задумывались, как привести бетон в такую ​​форму. Все это возможно с помощью опалубки. Сначала из стали или чугуна подготавливается желаемая форма, а затем устанавливается опалубка без зазоров для заливки бетона.

Опалубка:

Это часть опалубки, или ее можно назвать производной от опалубки. Опалубка — это временное вертикальное устройство, которое используется для придания бетону желаемой формы.
или
Опалубка, поддерживающая вертикальное расположение, известна как опалубка.

С технической точки зрения опалубка для колонн, фундаментов, подпорных стен называется опалубкой.

Центровка:

Центрирование — это временное устройство и часть опалубки, предназначенная для поддержки горизонтальных элементов.
или
С технической точки зрения опалубка для балок перекрытия и перекрытий называется центрированием.

Стадия:

Ступень — это временный элемент, который используется для поддержки опалубки (может использоваться для центрирования или опалубки).

Это делается с помощью подпорок, домкратов, H-образных рам, системы замков чашки, деревянных балок и т. Д. (См. Изображение ниже для более ясного понимания).

Строительные леса:

Опалубка

предназначена для поддержки элементов конструкции, тогда как строительные леса предоставляются в качестве рабочей площадки вокруг здания для работы на высоте. Строительные леса представляют собой подвижную / фиксированную платформу, более подробную информацию см. На изображении ниже.

Опалубка бетонных лестниц

Бетонные лестницы также требуют временной опалубки и необходимых деревянных опор. Как и в случае с деревянными лестницами, проверьте высоту от пола до этажа в качестве первого шага при подготовке плана. Разделите этот общий подъем на подходящее количество подступенков и затем рассчитайте пропорциональный размер подъема, как описано в главе, посвященной деревянным лестницам. Лестничный пролет должен быть легким и удобным для подъема.Для этого необходимо соблюдать определенные размеры.

— Максимальный подъем 190 мм.

— Минимальный ход 255 мм.

— Один проход плюс два подъема должен равняться от 585 мм до 625 мм.

— Перед заливкой бетонная арматурная сетка укладывается на место.

— Наружная бетонная лестница также должна иметь уступ 6 мм на верхней части ступеньки, чтобы дождевая вода могла стекать.

Опалубка для бетонной стены

Опалубка для бетонной стены обычно возводится с обеих сторон стены.Арматурные стержни укладываются на проволоку перед установкой распорок и обвязкой стены. Расстояние между шпильками составляет примерно 600 мм. Все шпильки закреплены.

  1. a) Опалубка для высокой бетонной стены:

Существует два метода крепления стеновых опалубок: один с выступом, а другой — без него.

— Стеновые опалубки без перегородки: Обшивка сделана из панелей удобного размера и помещается между двумя рядами стоек. Проволочные стяжки используются для удержания обшивки с распорками между ними, чтобы удерживать их на правильном расстоянии друг от друга.

Опалубка для бетонной стены

Опалубка для бетонной стены обычно возводится с обеих сторон стены. Арматурные стержни укладываются на проволоку перед установкой распорок и обвязкой стены. Расстояние между шпильками составляет примерно 600 мм. Все шпильки закреплены.

  1. a) Опалубка для высокой бетонной стены:

Существует два метода крепления стеновых опалубок: один с выступом, а другой — без него.

— Стеновые опалубки без перегородки: Обшивка сделана из панелей удобного размера и помещается между двумя рядами стоек.Проволочные стяжки используются для удержания обшивки с распорками между ними, чтобы удерживать их на правильном расстоянии друг от друга.

  1. б) Опалубка для бетонной стены и откоса:

На наклонной поверхности земляная поверхность может составлять одну сторону опалубки.

  1. c) Опалубка для стены фундамента:

Плита предназначена для бетонных дорожек, проездов, цистерн, полов и т. Д. Поскольку плиты относительно тонкие, давление на опалубку невелико, что требует менее прочной конструкции.Почву слегка выкапывают и колышки вбивают в землю с интервалом примерно 600 мм. Доски прибиваются к колышкам.

  1. a) Порядок изготовления бетонной плиты перекрытия:

Сначала установите предварительно собранные деревянные формы с помощью строительного троса на нужную высоту и линию. При необходимости сильно закрепите формы, чтобы они не ослабли при заливке бетоном. Измерьте диагонали, чтобы убедиться в прямоугольности. Заполните деревянные формы бетоном.

  1. b) Соединение бетонной плиты:

Очень редко любой тип бетонной конструкции можно построить без швов. В бетонных работах есть два типа швов — строительные и усадочные.

— Строительный шов появляется там, где бетонирование остановлено или отложено до такой степени, что свежий бетон должен быть уложен против затвердевшего бетона.

— Бетон расширяется и сжимается при экстремальных температурах или при изменении температуры.В процессе затвердевания он может дать усадку. Для устранения случайных трещин в бетон встраиваются усадочные швы.

.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *