Элемент титан: Титан – самый прочный металл

Содержание

Титан – самый прочный металл


Металл, который в итоге назвали «титан», открыли в конце 18 века независимо друг от друга Уильям Грегор (Англия) и Мартин Клапрот (Германия). Грегор новый элемент назвал «менакин», а Клапрот – «титан». Позже выяснилось, что в обоих случаях это был не чистый металл, а его диоксид — минерал рутил. В 1805 году французский учёный Луи Воклен обнаружил титан в минерале анатазе, доказав, что рутил и анатаз — полиморфные разновидности диоксида титана с одинаковой химической формулой ТіО2.


Анатаз (ТіО2), кристалл 2,7 х 2,1 х 2 см. Провинция Хордаланн (Норвегия).




Относительно чистый титан из-за сложности очистки был получен только в 1825 году шведским химиком Якобом Берцелиусом. Предложенное Клапротом название «титан» в честь титанов, персонажей древнегреческой мифологии, позже и утвердилось за этим элементом. И лишь в 1925 году голландские учёные ван Аркель и де Бур получили титан высокой степени чистоты – 99,9 %. Хотя на самом деле чистый титан был впервые получен в 1875 г. русским ученым Д.К. Кирилловым. Результаты его опытов были опубликованы в статье «Исследования над титаном». Но работа малоизвестного российского химика осталась незамеченной.


Титановый кристаллический пруток высокой чистоты (99,99 %), масса 283 г.




После получения титана высокой степени чистоты выяснилось, что его свойства напрямую зависят от степени очистки от примесей. Чистый титан обладает значительной твердостью: в 12 раз тверже алюминия и в 4 раза твёрже железа и меди. В чистом виде титан (Ti) – серебристо-серый лёгкий металл № 22 в Таблице Менделеева с атомной массой 47,86. Он отличается самым большим отношением прочности к массе из всех элементов таблицы. Это значит, что пластина из титана будет весить на 50% меньше, чем из стали, при одинаковой прочности.


По распространённости в земной коре титан находится на 10-м месте, где его среднее содержание (кларк) составляет 5,7 кг/т. Известно более 100 титановых минералов, важнейшими из которых являются: рутил(анатаз) TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит (сфен) CaTiSiO5.


Ильменит (титанистый железняк, FeTiO3) – весьма распространённый минерал лунных горных пород. Эти данные были получены после изучения образцов пород, доставленных на Землю по программе «Аполлон» (НАСА) в 1969-72 годах.


Ильменит (FeTiO3), кристалл 10 см, Ильменские горы, Ю. Урал.




Анализ данных, полученных с лунных орбитальных станций последних лет, позволяет утверждать, что концентрации титана в отдельных областях Луны соизмеримы с концентрациями этого элемента на земных месторождениях. Так как титан в виде сплавов является важнейшим конструкционным материалом в авиа- ,ракето — и кораблестроении, потребности промышленности в этом металле с каждым годом будут расти.


Россия обладает вторыми в мире, после Китая, запасами этого элемента. Минерально-сырьевую базу титана России составляют 20 месторождений, равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений – Ярегское, находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %.

Титан






























Титан

Атомный номер

22

Внешний вид простого вещества

Свойства атома

Атомная масса

(молярная масса)

47,88 а.  е. м. (г/моль)

Радиус атома

147 пм

Энергия ионизации

(первый электрон)

657,8(6,82) кДж/моль (эВ)

Электронная конфигурация

[Ar] 3d2 4s2

Химические свойства

Ковалентный радиус

132 пм

Радиус иона

(+4e)68 (+2e)94 пм

Электроотрицательность

(по Полингу)

1,54

Электродный потенциал

-1,63

Степени окисления

4, 3

Термодинамические свойства простого вещества

Плотность

4,54 г/см?

Молярная теплоёмкость

25,1 Дж/(K·моль)

Теплопроводность

21. 9 Вт/(м·K)

Температура плавления

1933 K

Теплота плавления

18.8 кДж/моль

Температура кипения

3560 K

Теплота испарения

422,6 кДж/моль

Молярный объём

10,6 см3/моль

Кристаллическая решётка простого вещества

Структура решётки

гексагональная

плотноупакованная (?-Ti)

Параметры решётки

a=2,951 с=4,697 (?-Ti) A

Отношение c/a

1,587

Температура Дебая

380 K






Ti

22

47,88

[Ar]3d24s2

Титан


Титан — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов, с атомным номером 22. Обозначается символом Ti (лат. Titanium). Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета. Существует в двух кристаллических модификациях: ?-Ti с гексагональной плотноупакованной решёткой, -Ti с кубической объёмно-центрированной упаковкой, температура перехода α↔β 883 °C


История открытия элемента Титан

Схема атома титана


Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные окислы титана.


 


Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 термическим разложением паров иодида титана TiI4.


Происхождение названия


Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.


 


Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 80-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании — королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.


Нахождение в природе


Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе. В свободном виде не встречается. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiOSiO4, танталит (Fe,Mn)2+Ta2O6 и манганотанталит MnT2O6. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.


Запасы и добыча


Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).


На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т.[2]. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. При современных темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.


Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.


Крупнейший в мире производитель титана — российская компания «ВСМПО-АВИСМА».


Получение

Брусок кристаллического титана (чистота 99,995 %, вес ?283 г, длина ?14 см, диаметр ?25 мм), изготовленный на заводе «Уралредмет» иодидным методом ван Аркеля и де Бура


Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4: TiO2 + 2C + 2Cl2 =TiCl4 + 2CO


Образующиеся пары TiCl4 при 850 °C восстанавливают Mg: TiCl4+ 2Mg = 2MgCl2+ Ti


Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.


Физические свойства


Титан — легкий серебристо-белый металл. Существует в двух кристаллических модификациях: ?-Ti с гексагональной плотноупакованной решёткой (a=2,951 A; с=4,697 A; z=2; пространственная группа C6mmc), ?-Ti с кубической объёмноцентрированной упаковкой (a=3,269 A; z=2; пространственная группа Im3m), температура перехода ?-? 883 °C, ?H перехода 3,8 кДж/моль. Точка плавления 1671 °C, точка кипения 3260 °C, плотность ?-Ti и ?-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см?, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.


Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.


При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).


Титановая пыль имеет свойство взрываться. Температура вспышки 400°С.


Химические свойства


Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок горит на воздухе.


Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF,H3PO4 и концентрированной H2SO4).


Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2-.


При нагревании на воздухе до 1200°C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2амфотерны.


TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанат: TiO2+K2CO3=K2TiO3+CO2.


При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях — желтоватая, сильно дымящая на воздухе жидкость, что объясняется сильным гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.


Восстановлением TiCl4водородом, Al, Si, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твердые вещества с сильно восстановительными свойствами. Ti взаимодействует с Br2 и I2.


С N2 выше 400 °C титан образует нитрид TiNx(x=0,58-1,00). При взаимодействии титана с C образуется карбид титана TiCx (x=0,49-1,00).


При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (x=1,0). При нагревании эти гидриды разлагаются с выделением H2. Титан образует сплавы со многими металлами.


Применение

Часы из титанового сплава


В виде сплавов


  • Металл применяется в химической промышленности (реакторы, трубопроводы, насосы), лёгких сплавах, остеопротезах. Является важнейшим конструкционным материалом в авиа-, ракето-, кораблестроении.

  • Используется в художественном литье[5]

  • Титан является легирующей добавкой в некоторых марках стали.

  • Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.

  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.


В виде соединений


  • Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.

  • Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.

  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.

  • Диборид титана — важный компонент сверхтвердых материалов для обработки металлов.

  • Нитрид титана применяется для покрытия инструментов.

  • Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов —- сегнетоэлектрики.


Анализ рынков потребления


В 2005 компания Titanium Corporation опубликовала следующую оценку потребления титана в мире:


60 % — краска;

20 % — пластик;

13 % — бумага;

7 % — машиностроение.


Цены


15-25 $ за килограмм, в зависимости от чистоты.


Чистота и марка чернового титана (титановой губки) обычно определяется по степени её пластичности.


Физиологическое действие


Нитрид титана


Соединения титана


 


 

Титан — свойства, характеристики, сплаты

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Химические свойства

Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Самые прочные металлы на Земле


Первое качество, с которым ассоциируется у нас металл, это прочность. На самом деле прочность определяется несколькими свойствами, учитывая которые именно сталь и ее сплавы находятся в списке самых прочных металлов.

Что же такое прочность? Это способность материала выдерживать внешние нагрузки, при этом не разрушаясь. При оценке прочности металла учитывается много параметров и качеств: насколько хорошо металл сопротивляется разрыву, как он противостоит сжатию, каков порог перехода от упругого к пластическому состоянию, когда деформация материала становится необратимой, какова способность материала сопротивляться распространению трещин и т.п.


Прочные сплавы и природные металлы


Сплавы представляют собой комбинации разных металлов. Потребность получить самые разные качественные характеристики металлов, среди которых и прочность, привела к появлению различных сплавов. Одним из важных в этом смысле сплавов является сталь, которая представляет собой комбинацию железа и углерода. Итак, какие же металлы принято считать самыми прочными на Земле?


Поскольку для определения прочности металла необходимо учесть очень много факторов, трудно однозначным образом упорядочить металлы от самого «крепкого» до самого «слабого». В зависимости от того, какое свойство считается наиболее важным в каждом конкретном случае, и будет складываться расстановка сил прочности среди металлов.


Сталь и ее сплавы


Сталь — это прочный сплав железа и углерода, с добавками других элементов, таких как кремний, марганец, ванадий, ниобий и пр. Благодаря различным системам легирования стали можно получать совершенно разный комплекс свойств новых сплавов.


Так, высокоуглеродистая сталь — это сплав железа с высоким содержанием углерода — получается прочной, относительно дешевой, долговечной, она хорошо поддается обработке. Из недостатков стоит отметить низкую прокаливаемость и низкую теплостойкость, что делает углеродистую сталь уязвимой в агрессивной среде.


Сферы применения: из углеродистой стали изготавливают различные инструменты, детали машин и сложных механизмов, элементы металлоконструкций. Важным условием применения таких изделий является неагрессивная среда.



Сплав стали, железа и никеля – один из наиболее прочных сплавов. Существует несколько его разновидностей, но в целом легирование углеродистой стали никелем увеличивает предел текучести до 1420 МПа и при этом показатель предела прочности на разрыв доходит до 1460 МПа.


Сферы применения: сплавы на никелевой основе используют в конструкциях некоторых типов мощных атомных реакторов в качестве защитных высокотемпературных оболочек для предохранения от коррозии урановых стержней.


Нержавеющая сталь – коррозионностойкий сплав стали, хрома и марганца с пределом текучести до 1560 МПа и пределом прочности на разрыв до 1600 МПа. Как и все виды стали, этот сплав обладает высокой ударопрочностью и имеет средний балл по шкале Мооса.


Сферы применения: благодаря своим антикоррозийным свойствам нержавеющую сталь широко применяют в самых разных областях – нефтехимической промышленности, машиностроении, строительстве, электроэнергетике, кораблестроении, пищевой промышленности и для изготовления бытовых приборов.


Особо твердые сплавы


Сплавы на основе карбидов вольфрама, титана, тантала обладают твердостью, которой позавидует любой молот Тора.


Титан – это наиболее растиражированный в средствах массовой информации и кинематографе природный металл, который принято ассоциировать с суперпрочностью. Его удельная прочность почти вдвое выше, чем аналогичная характеристика легированных сталей. Он обладает самым высоким отношением прочности на разрыв к плотности из всех металлов. По этому показателю он обошел вольфрам, вот только по шкале твердости Мооса титан ему уступает. Тем не менее, титановые сплавы прочны и легки.


Сферы применения: титан и его сплавы часто используются в аэрокосмической промышленности. Из него делают элементы обшивки космических кораблей, топливные баки, детали реактивных двигателей. Активно используют его и в морском судостроении, строительстве трубопроводов для агрессивных сред и в качестве конструкционного материала.


Вольфрам с его самой высокой прочностью на растяжение среди всех встречающихся в природе металлов часто комбинируют со сталью и другими металлами для создания еще более прочных сплавов. К недостаткам вольфрама можно отнести его хрупкость и способность к разрушению при ударе.


Сферы применения: вольфрам применяют в металлургии для производства легированных сталей и различных сплавов, в электротехнической индустрии для изготовления элементов осветительных приборов, в машино- и авиастроении, в космической отрасли и химпроме. Сплав вольфрама и углерода (карбид вольфрама) используют для производства инструментов с режущими краями, таких как ножи и дисковые пилы, а также износостойких рабочих элементов горношахтного оборудования и прокатных валков.


Тантал обладает сразу тремя достоинствами – прочностью, плотностью и устойчивостью к коррозии. Он состоит в группе тугоплавких металлов, как и выше описанный вольфрам.


Сферы применения: тантал используется в производстве электроники и сверхмощных конденсаторов для персональных компьютеров, смартфонов, камер и для электронных устройств в автомобилях.


Инновационные сплавы



Существует ряд сплавов, которые появились совсем недавно, но уже успели завоевать признание благодаря своим «сверхкачествам» и активно используются в аэрокосмической сфере и медицине.


Алюминид титана – сплав титана и алюминия, который выдерживает высокие температуры и обладает антикоррозийными свойствами, но при этом он довольно хрупкий и недостаточно пластичный. Тем не менее, он нашел свое применение в производстве специальных защитных покрытий.


Сплав титана с золотом – еще один уникальный материал, который был разработан несколько лет назад группой ученых из университетов США. Основная задача, которая стояла перед учеными, создать материал крепче титана, который можно было бы применять в медицине для производства протезов, совместимых с биотканью. Дело в том, что титановые протезы, несмотря на свою прочность, изнашиваются относительно быстро, их приходится менять каждые 10 лет. А вот сплав титана с золотом оказался вчетверо более прочным, чем те сплавы, что сейчас используются в производстве протезов.


Титан (элемент) — это… Что такое Титан (элемент)?

У этого термина существуют и другие значения, см. Титан.

Внешний вид простого вещества

Металл серебристого оттенка
Свойства атома
Имя, символ, номер

Тита́н / Titanium (Ti), 22

Атомная масса
(молярная масса)

47,88 а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d2 4s2

Радиус атома

147 пм

Химические свойства
Ковалентный радиус

132 пм

Радиус иона

(+4e)68 (+2e)94 пм

Электроотрицательность

1,54 (шкала Полинга)

Электродный потенциал

−1,63

Степени окисления

2, 3, 4

Энергия ионизации
(первый электрон)

657,8(6,82) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

4,54 г/см³

Температура плавления

1933±20 K

Температура кипения

3560 K

Теплота плавления

18,8 кДж/моль

Теплота испарения

422,6 кДж/моль

Молярная теплоёмкость

25,1[1] Дж/(K·моль)

Молярный объём

10,6 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

гексагональная
плотноупакованная (α-Ti)

Параметры решётки

a=2,951 с=4,697 (α-Ti) Å

Отношение c/a

1,587

Температура Дебая

380 K

Прочие характеристики
Теплопроводность

(300 K) 21,9 Вт/(м·К)

Тита́н (лат. Titanium; обозначается символом Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C[1]. Температура плавления 1660±20 °C[2].

История

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.

Однако согласно другой версии, публиковавшейся[источник не указан 312 дней] в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании — королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе, в морской воде 0,001 мг/л[3]. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Месторождения

Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана[4].

Запасы и добыча

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т[5]. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более, чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %[6].

Крупнейший в мире производитель титана — российская компания «ВСМПО-АВИСМА»[7].

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан — легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой (a=2,951 Å; с=4,679 Å[8]; z=2; пространственная группа C6mmc), β-Ti с кубической объёмноцентрированной упаковкой (a=3,269 Å; z=2; пространственная группа Im3m), температура перехода α↔β 883 °C, ΔH перехода 3,8 кДж/моль. Точка плавления 1660±20 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³[1], атомная плотность 5,71·1022 ат/см³[источник не указан 1191 день]. Пластичен, сваривается в инертной атмосфере. Удельное сопротивление 0,42 мкОм·м при 20 °C

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C. Титановая стружка пожароопасна.

Химические свойства

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен[9].

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4).

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2−.

При нагревании на воздухе до 1200 °C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанаты:

При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях — бесцветная жидкость, сильно дымящая на воздухе, что объясняется гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

Восстановлением TiCl4водородом, алюминием, кремнием, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твёрдые вещества, обладающие сильными восстановительными свойствами. Ti взаимодействует с Br2 и I2.

С азотом N2 выше 400 °C титан образует нитрид TiNx(x=0,58-1,00). При взаимодействии титана с углеродом образуется карбид титана TiCx (x=0,49-1,00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (x=1,3 — 2). При нагревании эти гидриды разлагаются с выделением H2. Титан образует сплавы со многими металлами.

Применение

В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 7 декабря 2012.

Часы из титанового сплава

В чистом виде и в виде сплавов

Титановый памятник Гагарину на Ленинском проспекте в Москве

  • Металл применяется в: химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, украшениях для пирсинга, медицинской промышленности (протезы, остеопротезы), стоматологических и эндодонтических инструментах, зубных имплантатах, спортивных товарах, ювелирных изделиях (Александр Хомов), мобильных телефонах, лёгких сплавах и т. д. Является важнейшим конструкционным материалом в авиа-, ракето-, кораблестроении.
  • Титановое литье выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литье по выплавляемым моделям. Из-за технологических трудностей, в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве[10].
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов.
  • Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.

В виде соединений

  • Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.
  • Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.
  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.
  • Карбид титана, диборид титана, карбонитрид титана — важные компоненты сверхтвёрдых материалов для обработки металлов.
  • Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, т.к. имеет цвет, похожий на золото.
  • Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов —- сегнетоэлектрики.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие. Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6).

Анализ рынков потребления

В 2005 компания Titanium Corporation опубликовала следующую оценку потребления титана в мире:

  • 60 % — краска;
  • 20 % — пластик;
  • 13 % — бумага;
  • 7 % — машиностроение.

Цены

В этом разделе не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

15-25 $ за килограмм, в зависимости от чистоты.

Чистота и марка чернового титана (титановой губки) обычно определяется по её твёрдости, которая зависит от содержания примесей. Наиболее распространены марки ТГ100 и ТГ110.

Цена ферротитана (минимум 70 % титана) на 22.12.2010 $6,82 за килограмм. На 01.01.2010 цена была на уровне $5,00 за килограмм.

В России цены на титан на начало 2012 года составляли 1200-1500 руб/кг.

Физиологическое действие

Примечания

Ссылки

  Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

118 элементов. Глава 22: от сверхзвукового перехватчика до нанотрубки

Элемент: титан (Titanium)

Химический символ: Ti

Порядковый номер: 22

Год открытия: 1791

Стандартная атомная масса: 47.867

Температура плавления: 1941К

Температура кипения: 3560К

Плотность при стандартных условиях: 4.506 г/cм3

Число стабильных изотопов: 5

Кристаллическая решётка: плотноупакованная гексагональная кубическая

Скорость звука в титане: 5090 м/с

 

История элемента номер 22 начинается с 1791 года и корнуэлльского cвященника Уильяма Грегора, который был отправлен в деревушку (настолько маленькую, что она была hamlet, а не village) Крид в менакинской долине Корнуолла. Просвещенный ректор (нет, не университета – нужно помнить, что и ректор, и декан могут называть лицо духовное, в нашем случае Грегор был приходским священником) с юности интересовался химией и начал детальное описание корнуэлльской минералогической картины, изучая состав минералов вверенной ему территории.

Уильям Грегор


Грегор обнаружил, что в минерале, названном им менаканит (который сейчас называется иначе) присутствует две «земли» – оксид железа, который притягивался магнитом и еще одна земля, некоего неизвестного элемента. Священник опубликовал открытие в журнале Chemische Annalen für die Freunde der Naturlehre, Arzneygelährtheit, Haushaltungskunst und Manufacturen  и доложился на заседании Королевского геологического общества Корнуолла. Неизвестный элемент предлагалось назвать менакином.

Примерно в то же время австриец Франц Йозеф Мюллер фон Райхенштайн, о котором мы поговорим чуть подробнее, когда будем рассказывать об открытии теллура, выделил подобную «землю», но так и не смог ее идентифицировать.

Австрийская марка, посвященная Райхенштайну. Правда, изображенный на ней человек – точно не первооткрыватель теллура: портрет срисован с фотографии неизвестного, однако Райхенштайн умер в 1825 году, еще до появления даггеротипа


Четырьмя годами позже отец современной аналитической химии и одновременно на тот момент первооткрыватель урана, циркония (оба – в 1789 году) и позже – первооткрыватель церия (1803) Мартин Герман Клапрот, изучал минерал рутил, найденный близ одной венгерской деревеньки. Клапрот обнаружил в нем новый элемент и назвал его титаном, в честь титанов из греческой мифологии.

Мартин Клапрот


Прошло еще два года – и Клапрот, узнав об открытии Грегора, затребовал себе образец менаканита. Тщательно изучив корнуолльский минерал, немец понял, что рутил и менаканит – это одно и то же. Соответственно, менакин и титан – это один и тот же химический элемент.

Титан и в третий раз открыли, когда уже в 1805 году француз Луи Воклен, изучая другой минерал, анатаз (октаэдрит), понял, что анатаз и рутил – это оксиды одного и того же металла. Которого пока что никто не видел. Дело в том, что в своем оксиде TiOтитан настолько крепко связан с кислородом, что оторвать его было очень и очень сложно.

Анатаз


Первым, как выглядит металлический титан, увидел знаменитый химик Йенс Якоб Берцелиус. В 1825 году он действительно сумел кое-как восстановить титан до металла, который оказался легким (более, чем в полтора раза легче железа), хотя и в полтора раза тяжелее алюминия.

Мы помним, что алюминий достаточно долго не находил своего применения и считался дороже золота, пока не удалось придумать сравнительно дешевого получения этого металла. С титаном оказалось все еще хуже. Ведь его достаточно много в земной коре (он десятый по распространенности – 0,63% по массе, и это очень много), но применения ему никак не находилось.

Посудите сами: относительно чистый элемент удалось получить только через сто лет (!) после Берцелиуса. В 1925 году голландский химик Антон Эдуард ван Аркель и голландский физик Ян Хендрик де Бур запатентовали свой йодидный метод. Суть метода оказалась простой: «грязный» металл с небольшим количеством йода помещали в герметичную камеру и нагревали до 400-600 градусов Цельсия.

Образовывался йодид, который при такой температуре испарялся и поднимался выше, в другую зону, нагретую уже больше тысячи градусов (1300-1700, в зависимости от металла). Обычно температура эта достигается нагревом проволоки, через которую пропускают электрический ток. При такой высокой температуре йодид распадается, йод опускается снова в относительно холодную камеру и возвращается в реакцию, а металл кристаллизуется на проволоке.

Еще полтора десятка лет спустя, люксембуржец Уильям (Гийом) Кролл открыл дешевый способ получения титана из руды, сначала переводя титан из оксида (рутил) или титаната железа (ильменит, FeTiO3) в форму хлорида, а потом восстанавливая его методом магнийтермии. Процесс Кролла дал дорогу титану в промышленность. И очень вовремя.

Ильменит


Дело в том, что в 1940 годах только начиналась эпоха реактивной авиации. И металл, который в полтора раза легче стали,  прочнее и ее, и алюминия (пусть и тяжелее его), при этом одновременно выдерживающий температуру до 1600 градусов был очень и очень кстати. Кто не помнит знаменитый самолет-разведчик SR-71 Blackbird и его соперник, перехватчик МиГ-25, самые быстрые самолеты в мире (а МиГ-25 еще и самый высотный, забирающийся практически в космос – до 37500 метров) были бы невозможны без титана. Вся современная гражданская авиация все больше переходит на композитные материалы, однако двигатели тоже требуют титан.

МиГ-25ПУ


Широко используется нитрид титана. Во-первых, он очень твёрдый (9 по шкале Мооса – это очень сильно, у алмаза, как вы помните, 10), что делает его эквивалентом сапфира или карборунда. А во-вторых, его золотой цвет позволяет делать красивые антикоррозионные и увеличивающие твердость покрытия различных предметов. Для сверел и мельничных жерновов имеет значение твердость, для часов и ножей – еще и цвет (впрочем, тут радужно-фиолетовый оксинитрид титана еще интереснее). Кстати, храм Христа Спасителя в Москве – это тоже титан. Его купола покрыты именно нитридом титана, а не сусальным золотом.

Применяется титан и в нанотехнологиях. Здесь сам металл редко используется. Можно только упомянуть эксперименты по лазерной абляции титана в жидкости, которые проводили в Институте общей физики РАН под руководством Георгия Шафеева. Тогда поверхность металла оказывалась наноструктурированной, утыканной «грибочками» размерами, сопоставимыми с длиной волны видимого света – и в результате титан становился фиолетовым безо всякой краски.

Можно говорить и о применении нанокристаллического карбида титана. Например, композит TiC-ZrC – это очень перспективный материал для ультравысокотемпературных деталей, таких как режущие инструменты, части реактивных двигателей̆, носового обтекателя и передних кромок спускаемых аппаратов космических кораблей.

Но, безусловно, самое широкое применение находят наночастицы диоксида титана. «Обычные» наночастицы используют, например, в создании солнечных батарей нового типа, которые «работают» в ближнем ультрафиолетовом диапазоне. Перспективно они могут быть дешевле кремниевых, однако проблема состоит в повышении их энергетического выхода.

Не так давно стало известно, почему наночастицы диоксида титана могут наносить вред клеткам. Оказывается, они взаимодействуют с лизосомами, которые отвечают за переваривание макромолекул в клетке и запускают сигнальные пути апоптоза – программируемой клеточной смерти.  Это открывает дорогу для использования наночастиц в борьбе с раковыми опухолями (кстати, соединения титана стали первыми не-платиновыми соединениями в противораковой терапии).

Нанослои диоксида титана также используются в катализе. Анатазная форма TiOотлично катализирует фотоэлектрические реакции. Методом молекулярного наслаивания можно создавать на поверхности равномерные слои вещества заданной толщины с точностью до монослоя.

Но, конечно, самая удивительная наноспособность диоксида титана (кстати, тоже в форме атаназа) – это не очень давно открытые атаназные нанотрубки. Прошло всего 11 лет с их получения, но сейчас  это –  одна из самых изучаемых форм диоксида титана. Дело в том, что нанотрубки оказались способны к построению регулярных структур с очень большой площадью поверхности, и в такой форме их сейчас пытаются применять в очень широком диапазоне. Они оказались прекрасным электродным материалом, из них делают датчики водорода, кислорода, оксидов углерода, катализаторы восстановления токсичных оксидов азота и серы. Нанотрубки диоксида титана используют для создания самоочищающихся поверхностей, в биомедицине и так далее.

Нанотрубки диоксида титана


Более того, сейчас исследователи создают и гибридные материалы – комбинацию из углеродных нанотрубок и нанотрубок диоксида титана.  Еще один интересный тип «гибридных» нанотрубок – это нанотрубки из диоксида титана и… диоксида титана. Как мы уже говорили, диоксид титана существует в разных формах, в основном – рутил и анатаз. Легче всего получить нанотрубки из анатаза, но совсем недавно австралийские и британские нанотехнологи научились при помощи лазерного луча создавать структуры из нанотрубок с ядром из рутила и оболочкой из анатаза. Зачем такие сложности? Дело в том, что рутил и анатаз обладают разным показателем преломления. И такая техника может иметь огромное количество вариантов применения – от новых волноводов до появления вообще отдельной области: титановой нанофотоники. Так что, судя по всему, сейчас титан – уже в своей наноипостаси – переживает свое второе рождение.

Титан. Характеристики физико-механических свойств титана — «Тиком-М»

Основные сведения о титане

Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия титана

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана

В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Характеристики физико-механических свойств титана (ВТ1-00)

Плотность r , кг/м3 4,5 × 10–3
Температура плавления Тпл, ° С 1668± 4
Коэффициент линейного расширения a  ×  10–6, град–1 8,9
Теплопроводность l , Вт/(м × град) 16,76
Предел прочности при растяжении s в, МПа 300–450
Условный предел текучести s 0,2, МПа 250–380
Удельная прочность (s в/r × g)× 10–3, км 7–10
Относительное удлинение d , % 25–30
Относительное сужение Y , % 50–60
Модуль нормальной упругости Е´ 10–3, МПа 110,25
Модуль сдвига G´ 10–3, МПа 41
Коэффициент Пуассона m , 0,32
Твердость НВ 103
Ударная вязкость KCU, Дж/см2 120

Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.

Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.

Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок: 
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.

Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.

Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).

При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.

Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.

Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.

Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.

Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.

При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).

Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.

Таблица 17.1

Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)

Марка Ti, не менее Не более

Твердость НВ,

10/1500/30, не более

Fe Si Ni C Cl N O
ТГ-90 99,74 0,05 0,01 0,04 0,02 0,08 0,02 0,04 90
ТГ-100 99,72 0,06 0,01 0,04 0,03 0,08 0,02 0,04 100
ТГ-110 99,67 0,09 0,02 0,04 0,03 0,08 0,02 0,05 110
ТГ-120 99,64 0,11 0,02 0,04 0,03 0,08 0,02 0,06 120
ТГ-130 99,56 0,13 0,03 0,04 0,03 0,10 0,03 0,08 130
ТГ-150 99,45 0,2 0,03 0,04 0,03 0,12 0,03 0,10 150
ТГ-Тв 99,75 1,9 0,10 0,15 0,10

Таблица 17.2

Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807–91)

Обозначения
марок
Ti Al V Mo Sn Zr Mn Cr Si Fe O H N C
ВТ1-00 Основа 0,08 0,15 0,10 0,008 0,04 0,05
ВТ1-0 То же 0,10 0,25 0,20 0,010 0,04 0,07
ВТ1-2 То же 0,15 1,5 0,30 0,010 0,15 0,10
ОТ4-0 То же 0,4–1,4 0,30 0,5–1,3 0,12 0,30 0,15 0,012 0,05 0,10
ОТ4-1 То же 1,5–2,5 0,30 0,7–2,0 0,12 0,30 0,15 0,012 0,05 0,10
ОТ4 То же 3,5–5,0 0,30 0,8–2,0 0,12 0,30 0,15 0,012 0,05 0,10
ВТ5 То же 4,5–6,2 1,2 0,8 0,30 0,12 0,30 0,20 0,015 0,05 0,10
ВТ5-1 То же 4,3–6,0 1,0 2,0 –3,0 0,30 0,12 0,30 0,15 0,015 0,05 0,10
ВТ6 То же 5,3–6,8 3,5–5,3 0,30 0,10 0,60 0,20 0,015 0,05 0,10
ВТ6с То же 5,3–6,5 3,5–4,5 0,30 0,15 0,25 0,15 0,015 0,04 0,10
ВТ3-1 То же 5,5–7,0 2,0–3,0 0,50 0,8–2,0 0,15–0,40 0,2–0,7 0,15 0,015 0,05 0,10
ВТ8 То же 5,8–7,0 2,8–3,8 0,50 0,20–0,40 0,30 0,15 0,015 0,05 0,10
ВТ9 То же 5,8–7,0 2,8–3,8 1,0–2,0 0,20–0,35 0,25 0,15 0,015 0,05 0,10
ВТ14 То же 3,5–6,3 0,9–1,9 2,5–3,8 0,30 0,15 0,25 0,15 0,015 0,05 0,10
ВТ20 То же 5,5–7,0 0,8–2,5 0,5–2,0 1,5–2,5 0,15 0,25 0,15 0,015 0,05 0,10
ВТ22 То же 4,4–5,7 4,0–5,5 4,0–5,5 0,30 0,5–1,5 0,15 0,5–1,5 0,18 0,015 0,05 0,10
ПТ-7М То же 1,8–2,5 2,0–3,0 0,12 0,25 0,15 0,006 0,04 0,10
ПТ-3В То же 3,5–5,0 1,2–2,5 0,30 0,12 0,25 0,15 0,006 0,04 0,10
АТ3 То же 2,0–3,5 0,2–0,5 0,20–0,40 0,2–0,5 0,15 0,008 0,05 0,10

Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.

фактов о титане | Живая наука

Есть ли какой-нибудь элемент, напоминающий о силе, как титан? Названный в честь титанов, греческих богов мифов, 22-й элемент Периодической таблицы появляется в авиалайнерах и палках для лакросса, пирсинге, медицинском оборудовании и даже солнцезащитном креме.

Титан устойчив к коррозии, отличается особой прочностью и легкостью. По данным Лос-Аламосской национальной лаборатории, он прочен, как сталь, но его вес составляет всего 45 процентов.И он вдвое прочнее алюминия, но только на 60 процентов тяжелее.

Только факты

  • Атомный номер (количество протонов в ядре): 22
  • Атомный символ (в Периодической таблице элементов): Ti
  • Атомный вес (средняя масса атома): 47,867
  • Плотность : 4,5 грамма на кубический сантиметр
  • Фаза при комнатной температуре: твердое вещество
  • Точка плавления: 3034,4 градуса по Фаренгейту (1668 градусов по Цельсию)
  • Точка кипения: 5948.6 F (3287 C)
  • Количество изотопов: 18; пять из них стабильны
  • Наиболее распространенные изотопы: Титан-46, Титан-47, Титан-48, Титан-49 и Титан-50

(Изображение предоставлено Грегом Робсоном / Creative Commons, Андрей Маринкас Shutterstock)

Элемент супергероя

Для элемента, обладающего сверхспособностями, титан имеет подходящую историю происхождения: он выкован в недрах сверхновых звезд или коллапсирующих звезд. Исследование конкретной умирающей звезды, Supernova 1987A, в 2012 году показало, что одна сверхновая может создать по массе радиоактивный изотоп титана-44, равный 100 земным шарам.

Титан является девятым по распространенности металлом в земной коре, согласно Chemicool, но он не был открыт до 1791 года. Английский геолог-любитель преподобный Уильям Грегор обнаружил черный металлический песок в русле ручья, проанализировал его и открыл быть смесью магнетита, обычной формы оксида железа и нового металла. Грегор назвал его манакканитом в честь прихода, в котором он обнаружил песок.

Четыре года спустя немецкий ученый по имени Мартин Генрих Клапрот изучал руду из Венгрии, когда он обнаружил, что она содержит никогда ранее не описанный химический элемент.Он назвал его титаном, а позже подтвердил, что манакканит Грегора тоже содержал титан.

Первым, кто перегонял титан в чистую форму, был М.А. Хантер, сотрудник General Electric, по данным Королевского химического общества (RSC). Однако только в 1930-х годах Уильям Дж. Кролл изобрел процесс, который сделал возможным извлечение титана в промышленных масштабах. Так называемый процесс Кролла сначала обрабатывает руду из оксида титана хлором с образованием хлорида титана.Затем магний или натрий смешиваются с хлоридом титана в газообразном аргоне (пропуск кислорода в процесс действительно был бы довольно взрывоопасным, учитывая, что титан очень реактивен по отношению к кислороду, согласно RSC). При температуре 2192 F (1200 C) магний или натрий восстанавливают хлорид титана до чистого титана. По данным RSC, этот процесс примерно в 10 000 раз менее эффективен, чем процесс, используемый для производства железа, что помогает объяснить, почему титан является более дорогим металлом.

Титан — переходный металл, что означает, что он может образовывать связи, используя электроны более чем с одной из своих оболочек или уровней энергии. Он разделяет эту особенность с другими переходными металлами, включая золото, медь и ртуть.

Кто знал?

  • По данным RSC, почти каждая магматическая порода — горная порода, образовавшаяся в результате затвердевания расплавленной породы — содержит титан.
  • По данным компании, Boeing 737 Dreamliner на 15 процентов изготовлен из титана.
  • Титан сейчас вращается вокруг планеты: по данным НАСА, у Международной космической станции (МКС) есть ряд деталей из титана, включая трубы.Rosetta Project, исследовательское и архивное предприятие, целью которого является сохранение человеческих языков и мышления, также вывезло кусок чистого титана за пределы МКС, чтобы увидеть, как он противостоит радиации и суровым условиям космоса.
  • Земля — ​​не единственное место, где можно найти титан. В 2011 году на спутниковой карте поверхности Луны были обнаружены скопления богатых титаном горных пород. Эти породы часто содержат до 10 процентов титана по сравнению с 1 процентом или около того, которые обычно наблюдаются в земных породах.
  • Титан можно использовать в качестве сырья для 3D-печати. В 2013 году исследователи из Австралийской организации научных и промышленных исследований Содружества Наций напечатали на 3D-принтере пару легких титановых подков для скаковых лошадей. Туфли были стильного ярко-розового цвета.

Диоксид титана

Диоксид титана (TiO 2 ), также называемый оксидом титана (IV) или диоксидом титана, представляет собой встречающийся в природе оксид титана. Белый пигмент, диоксид титана, используется в красках (как титановый белила или пигментный белый 6) и в солнцезащитных кремах из-за его способности преломлять свет и поглощать ультрафиолетовые лучи.По данным Геологической службы США, 95 процентов добываемого титана превращается в пигменты из диоксида титана, а оставшиеся 5 процентов идут на производство химикатов, металлов, карбидов и покрытий.

Диоксид титана также широко используется в медицине, косметике и зубной пасте и все чаще используется в качестве пищевой добавки (как E171) для отбеливания продуктов или придания им более непрозрачного вида. Некоторые из наиболее распространенных пищевых продуктов с добавлением E171 включают глазурь, жевательную резинку, зефир и добавки.

Нет ограничений на использование диоксида титана в пищевых продуктах. Однако новое исследование на мышах, опубликованное в журнале Gut, показывает, что частицы диоксида титана могут сильно повредить кишечник людей с определенными воспалительными заболеваниями кишечника.

Исследователи из Цюрихского университета в Швейцарии обнаружили, что, когда клетки кишечника поглощают частицы диоксида титана, слизистая оболочка кишечника мышей, у которых был колит, воспаляется и повреждается, говорится в пресс-релизе исследования.

Воспалительные заболевания кишечника, такие как болезнь Крона и язвенный колит, в течение многих лет увеличивались в западных странах. Эти состояния характеризуются крайней аутоиммунной реакцией на кишечную флору. Несколько факторов играют роль в развитии болезни, включая генетические факторы и факторы окружающей среды, такие как образ жизни и питание. Швейцарские исследователи обнаружили, что наночастицы диоксида титана, обычно содержащиеся в зубной пасте и многих пищевых продуктах, могут еще больше усугубить эту воспалительную реакцию.

Кроме того, более высокие концентрации частиц диоксида титана могут быть обнаружены в крови пациентов с язвенным колитом. Это означает, что эти частицы могут абсорбироваться из пищи при определенных заболеваниях, объясняют исследователи в пресс-релизе.

Хотя результаты еще не были подтверждены на людях, исследователи предполагают, что пациентам с колитом следует избегать приема внутрь частиц диоксида титана.

Титан — легкий и прочный металл, часто используемый в машинах, инструментах, спортивном снаряжении и ювелирных изделиях.(Изображение предоставлено Кристианом Лагереком Shutterstock)

Текущее исследование

Диоксид титана имел головокружительный набор функций в мире технологий, от приложений солнечных батарей до биосовместимых датчиков, сказал Джей Нараян, ученый-материаловед из Университета Северной Каролины.

В 2012 году Нараян и его коллеги сообщили о способе «настройки» диоксида титана, адаптируя его к конкретным приложениям. Этот материал имеет две кристаллические структуры, называемые «рутил» и «анатаз», каждая из которых имеет свои собственные свойства и функции.Обычно диоксид титана любит находиться в фазе анатаза при температуре ниже 932 F (500 C) и превращается в фазу рутила при более высоких температурах.

Выращивая кристалл за кристаллом диоксида титана и выстраивая их на шаблоне из триоксида титана, Нараян и его коллеги смогли установить фазу материала как рутил или анатаз при комнатной температуре, как они сообщили в июне 2012 года в журнал Applied Physics Letters. Сделав еще больший скачок, исследователи смогли интегрировать этот диоксид титана в компьютерные чипы.

«Оксид титана также является очень хорошим сенсорным материалом, поэтому, если он интегрирован с компьютерным чипом, он действует как интеллектуальный датчик», — сказал Нараян Live Science. Поскольку датчик является частью микросхемы, устройство может реагировать быстрее и эффективнее, чем если бы датчик был отдельным и должен был быть жестко подключен к вычислительной части устройства.

Вывод продукта на рынок потребует снижения производственных затрат, сказал Нараян, но у «настраиваемого» диоксида титана есть и другие перспективы.Обрабатывая материал мощными лазерными импульсами, исследователи могут создавать небольшие дефекты, называемые кислородными вакансиями, где в материале отсутствуют молекулы кислорода. Затем этот материал можно использовать для расщепления воды (h3O) путем похищения кислорода и оставления водорода, который затем можно использовать для производства водородного топлива.

«Это дешевый и чистый источник энергии», — сказал Нараян. Новые производственные и инженерные методы расширяют возможности использования титана. Управление военно-морских исследований объявило в 2012 году, что новый метод сварки титана будет использован для производства полноразмерного корпуса корабля; По мнению ВМФ, эта конструкция является прорывом, поскольку титан, как правило, слишком дорог и сложен в производстве для судостроения.Новый метод, называемый сваркой трением с перемешиванием, использует вращающийся металлический штифт для частичного плавления краев двух кусков титана вместе.

В медицине титановые имплантаты используются для замены или стабилизации сломанной кости. Крошечные титановые имплантаты используются даже для улучшения слуха у людей с некоторыми типами глухоты. Титановый стержень в форме винта просверливается в черепе за ухом и прикрепляется к внешнему блоку обработки звука. Внешний блок улавливает звуки и передает вибрацию через титановый имплант во внутреннее ухо, обходя любые проблемы в среднем ухе.

В 2010 году исследователи объявили о разработке «Tifoam» — пенополиуретана, пропитанного порошком титана. Согласно исследованию 2013 года, опубликованному в журнале Acta Biomaterialia, пористая структура имитирует человеческую кость и позволяет клеткам человеческой кости проникать и сливаться с имплантатом по мере заживления человека.

Дополнительный отчет от Трейси Педерсен, автора Live Science.

Следуйте за Стефани Паппас на Twitter Google+ .Следуйте за нами @livescience , Facebook и Google+ .

Дополнительные ресурсы

Element Titanium | Центр обработки титана

О титане

Элемент титан — это металлическое соединение, стойкое и богатое природой. Его прочность и долговечность делают его применение весьма разнообразным. Он имеет атомный номер 22 в периодической таблице.Титан — девятый по содержанию элемент на Земле. Он почти всегда присутствует в горных породах и отложениях. Обычно он содержится в таких минералах, как ильменит, рутил, сфен, титанаты и многие железные руды.

Свойства титана

Титан — твердый, блестящий и прочный металл. Это твердое вещество в своем естественном состоянии. Он прочен, как сталь, но менее плотен, как сталь. Титан выдерживает экстремальные температуры, устойчив к коррозии и хорошо соединяется с костью. Эти желаемые свойства делают титан идеальным для использования в различных областях, включая аэрокосмическую, оборонную и медицинскую.Титан плавится при температуре 2030 градусов по Фаренгейту.

Применение титана

Титан обладает прочностью, устойчивостью к коррозии и экстремальным температурам, а также большим естественным изобилием, что делает его идеальным для множества применений. Его часто используют в виде сплава с другими металлами, такими как железо и алюминий. Титан используется во всем: от самолетов и ноутбуков до солнцезащитных кремов и красок.

Ниже приведен список использования титана:

  • самолет
  • космический корабль
  • ракет
  • огнестрельного оружия
  • клюшек для гольфа
  • ноутбуков
  • велосипеды
  • костыли
  • конденсаторы электростанции
  • труб
  • опреснительные установки
  • корпусов судов
  • подводных лодок
  • Замена суставов (например, замена тазобедренного и коленного суставов)
  • зубных имплантатов
  • инструменты медицинские
  • Строительное проектирование
  • краски художников
  • пластмассы
  • эмали
  • бумага
  • солнечных обсерваторий
  • солнцезащитных кремов

История титана

Самое раннее известное существование титана относится к 1791 году, когда он был обнаружен преподобным Уильямом Грегором или Корнуоллом.Грегор нашел титан, сплавленный с железом, немного черного песка. Он проанализировал его и позже сообщил об этом Королевскому геологическому обществу Корнуолла.

Несколько лет спустя, в 1795 году, немецкий ученый по имени Мартин Генрих Клапрот обнаружил и проанализировал красную руду в Венгрии. Эта красная руда состояла из оксида титана. Клапрот понял, что его открытие, как и открытие Грегора, содержит один и тот же неизвестный элемент. Затем он придумал название титан, которое он назвал в честь титанов, сыновей богини Земли в греческой мифологии.

На протяжении 1800-х годов добывались и производились небольшие количества титана. Военные во всем мире начали использовать титан в оборонных целях и в огнестрельном оружии.

Чистый металлический титан, каким мы его знаем сегодня, был впервые произведен в 1910 году М.А. Хантером, который, работая в General Electric, плавил тетрахлорид титана и металлический натрий.

В 1938 году металлург Уильям Кролл разработал процесс массового извлечения титана из руды. Именно этот процесс сделал титан популярным.Процесс Кролла до сих пор используется для производства большого количества титана.

Титан — популярный металлический состав в обрабатывающей промышленности. Его прочность, низкая плотность, долговечность и блестящий вид делают его идеальным для изготовления трубопроводов, трубок, стержней, проводов и защитных покрытий. В Titanium Processing мы предлагаем титановые детали различных видов и размеров для любых нужд вашего проекта. Наши опытные сотрудники могут рассказать вам больше об этом удивительном металле и о том, как он может улучшить ваш проект.Свяжитесь с нами сегодня.

Титан (Ti) — химические свойства, воздействие на здоровье и окружающую среду

Титан

Химический элемент, Ti, атомный номер 22 и атомная масса 47,90. Его химическое поведение имеет много общего с кремнеземом и цирконием как элементом, принадлежащим к первой переходной группе. Его химический состав в водном растворе, особенно в более низких степенях окисления, имеет некоторое сходство с химическим составом хрома и ванадия. Титан — это светильник из переходного металла бело-серебристо-металлического цвета.Он прочный, блестящий, устойчивый к коррозии. Чистый титан не растворяется в воде, но растворяется в концентрированных кислотах. Этот металл образует пассивное, но защитное оксидное покрытие (ведущее к коррозионной стойкости) при воздействии повышенных температур на воздухе, но при комнатной температуре он сопротивляется потускнению.

Основная степень окисления — 4+, хотя состояния 3+ и 2+ также известны, но менее стабильны. Этот элемент горит на воздухе при нагревании до диоксида TiO 2 и в сочетании с галогенами.Он восстанавливает водяной пар с образованием диоксида и водорода и аналогично реагирует с горячими концентрированными кислотами, хотя образует трихлорид с хлороводородной кислотой. Металл поглощает водород с образованием TiH 2 и образует нитрид TiN и карбид TiC. Другими известными соединениями являются сера TiS 2 , а также низшие оксиды Ti 2 O 3 и TiO, а также сера Ti 2 S 3 и TiS. Соли известны в трех степенях окисления.

Области применения

Диоксид титана широко используется в качестве белого пигмента в наружных картинах, поскольку он химически инертен, обладает большой покрывающей способностью, непрозрачностью для повреждения УФ-светом и способностью к автоочистке. Диоксид также однажды использовался в качестве отбеливающего и успокаивающего агента в фарфоровых эмалях, придавая им последний штрих большой яркости, твердости и кислотостойкости. Типичная помада содержит 10% титана.

Титановые сплавы характеризуются очень высокой прочностью на разрыв даже при высоких температурах, малым весом, высокой коррозионной стойкостью и способностью выдерживать экстремальные температуры.Благодаря этим свойствам они в основном используются в самолетах, трубах для электростанций, бронировании, военно-морских кораблях, космических кораблях и ракетах. Титан прочен, как сталь, но на 45% легче.

В медицине титан используется для изготовления эндопротезов бедра и колена, кардиостимуляторов, костных пластин и винтов, черепных пластин при переломах черепа. Он также использовался для прикрепления ложных тезисов.

Титанаты щелочноземельных металлов обладают некоторыми замечательными свойствами. Уровень диэлектрической проницаемости варьируется от 13 для MgTiO 3 до различных миллиардов для твердых растворов SrTiO3 в BaTiO 3 .Титанат бария также имеет диэлектрическую постоянную 10.000, близкую к 120 ° C, что является его точкой Кюри; он имеет низкий диэлектрический гистерезис. Керамические преобразователи, содержащие титанат бария, выгодно отличаются от соли Рошеля с точки зрения термической стабильности и с кварцем с точки зрения силы воздействия и способности формировать керамику в различных формах. Компаунд использовался как генератор ультразвуковых колебаний и как детектор звука.

Титан в окружающей среде

Хотя в природе он не обнаружен несвязанным с другими элементами, титан является девятым по распространенности элементом в земной коре (0.63% по массе) и присутствует в большинстве магматических пород и в образовавшихся на них отложениях. Важными минералами титана являются рутил, брукит, анатаз, илменит и титанит. Основная добываемая руда, ильменит, встречается в виде обширных залежей песка в Западной Австралии, Норвегии, Канаде и Украине. Крупные месторождения рутила в Северной Америке и Южной Африке также вносят значительный вклад в мировые поставки титана. Мировое производство металла составляет около 90 000 тонн в год, диоксида титана — 4.3 миллиона тонн в год.

Диоксид титана TiO 2 обычно находится в черной или коричневатой форме, известной как рутил. В природе реже встречаются анатасит и бруквит. И чистый рутил, и чистый анатасит белые. Черный основной оксид FeTiO 3 находится в естественной форме в виде природного минерала, называемого ильменитом; это основной коммерческий источник титана.

Воздействие титана на здоровье

Биологическая роль титана неизвестна.В организме человека обнаруживается количество титана, и, по оценкам, мы принимаем около 0,8 мг / день, но большая часть проходит через нас, не адсорбируясь. Это не ядовитый металл, и человеческий организм может переносить титан в больших дозах.

Элементарный титан и диоксид титана обладают низкой токсичностью. У лабораторных животных (крыс), подвергшихся воздействию двуокиси титана при вдыхании, в легких образовывались небольшие локализованные участки темных отложений пыли. Чрезмерное воздействие на людей может привести к незначительным изменениям в легких.

Последствия чрезмерного воздействия титанового порошка: Вдыхание пыли может вызвать ощущение стеснения и боли в груди, кашель и затрудненное дыхание. Попадание на кожу или в глаза может вызвать раздражение. Пути попадания: Вдыхание, контакт с кожей, попадание в глаза.

Канцерогенность: Международное агентство по изучению рака (IARC) включило диоксид титана в группу 3 (агент не классифицируется по его канцерогенности для человека).

Воздействие титана на окружающую среду

Низкая токсичность.Металлический титан в виде металлического порошка представляет значительную опасность возгорания, а при нагревании на воздухе — опасность взрыва.

О воздействии на окружающую среду не сообщалось.

А теперь посмотрите нашу страницу «Титан в воде»

Вернуться к периодической таблице элементов

Титан

Химический элемент титан относится к переходным металлам. Он был открыт в 1791 году преподобным Уильямом Грегором.

Зона данных

Классификация: Титан — переходный металл
Цвет: серебристо-белый
Атомный вес: 47.87
Состояние: цельный
Температура плавления: 1668 o C, 1941 K
Температура кипения: 3287 o C, 3560 K
Электронов: 22
Протоны: 22
Нейтроны в наиболее распространенном изотопе: 26
Электронные оболочки: 2,8,10,2
Электронная конфигурация: [Ар] 3d 2 4s 2
Плотность при 20 o C: 4.50 г / см 3

Показать больше, в том числе: тепла, энергии, окисления,
реакций, соединений, радиусов, проводимости

Атомный объем: 10,64 см 3 / моль
Состав: hcp: шестигранник закрытый pkd
Твердость: 6.0 mohs
Удельная теплоемкость 0,52 Дж г -1 К -1
Теплота плавления 14.15 кДж моль -1
Теплота распыления 471 кДж моль -1
Теплота испарения 425 кДж моль -1
1 st энергия ионизации 658 кДж моль -1
2 nd энергия ионизации 1310,3 кДж моль -1
3 rd энергия ионизации 2652.5 кДж моль -1
Сродство к электрону 7,6 кДж моль -1
Минимальная степень окисления–1
Мин. общее окисление нет. 0
Максимальное число окисления 4
Макс. общее окисление нет. 4
Электроотрицательность (шкала Полинга) 1,54
Объем поляризуемости 14.6 Å 3
Реакция с воздухом легкая, w / ht ⇒ TiO 2
Реакция с 15 M HNO 3 пассивированный
Реакция с 6 M HCl нет
Реакция с 6 М NaOH нет
Оксид (ы) TiO, Ti 2 O 3 , TiO 2 (диоксид титана) и др.
Гидрид (ы) TiH 2
Хлорид (ы) TiCl 2 , TiCl 3 , TiCl 4
Атомный радиус 140 вечера
Ионный радиус (1+ ион) 128 вечера
Ионный радиус (2+ ионов) 100 вечера
Ионный радиус (3+ ионов) 81 вечера
Ионный радиус (1-ионный)
Ионный радиус (2-ионный)
Ионный радиус (3-ионный)
Теплопроводность 21.9 Вт м -1 К -1
Электропроводность 2,6 x 10 6 См -1
Температура замерзания / плавления: 1668 o C, 1941 K

Музей Гуггенхайма, Бильбао, покрытый титановыми панелями.

Ильменит, минерал, в котором Уильям Грегор открыл титан.

Открытие титана

Доктор Дуг Стюарт

Об открытии титана было объявлено в 1791 году геологом-любителем преподобным Уильямом Грегором из Корнуолла, Англия. (1), (2)

Грегор нашел черный магнитный песок, похожий на порох, в ручье в округе Маннакан в Корнуолле, Англия. (Мы теперь называем этот песчаный ильменит; это смесь, состоящая в основном из оксидов железа и титана.)

Грегор проанализировал песок и обнаружил, что это в основном магнетит (Fe 3 O 4 ) и довольно нечистый оксид нового металла, который он описал как «красновато-коричневый кальций».

Эта окалина стала желтой при растворении в серной кислоте и пурпурной при восстановлении железом, оловом или цинком.Грегор пришел к выводу, что он имел дело с новым металлом, который он назвал манакканитом в честь прихода Маннакана.

Обнаружив новый металл, Грегор вернулся к своим пастырским обязанностям.

Немногое больше происходит в нашей истории до 1795 года, когда известный немецкий химик Мартин Клапрот испытал волнение от открытия нового металлического элемента. Клапрот назвал новый металл титаном в честь титанов, сыновей богини Земли в греческой мифологии.

Клапрот обнаружил титан в минерале рутиле из Бойника, Венгрия.Как и калькс Грегора, рутил был красного цвета. В 1797 году Клапрот прочитал отчет Грегора от 1791 года и понял, что красный оксид, в котором он нашел титан, и красный оксид, в котором Грегор нашел манакканит, на самом деле одно и то же; титан и макканит были одним и тем же элементом, и Грегор был настоящим первооткрывателем этого элемента.

Грегор, возможно, превзошел Клапрота в новом металле, но ученые предпочли «титан» Клапрота «манакканиту» Грегора.

Получить образец чистого титана оказалось намного сложнее, чем его обнаружить.

Многие ученые пытались, но прошло 119 лет с момента его открытия, пока в 1910 году металлургом Мэтью Хантером в Скенектади, штат Нью-Йорк, металлургом Мэтью Хантером не был выделен титан с чистотой 99,9%, который нагрел хлорид титана (IV) с натрием до красного тепла в цилиндре под давлением. (2)

В 1936 году процесс Кролла (нагрев хлорида титана (IV) с магнием) сделал возможным промышленное производство титана. К 1948 году мировое производство достигло всего 3 тонн в год.

К 1956 году, однако, ученые и инженеры поняли, что свойства титана очень желательны, и мировое производство выросло до 25 000 тонн в год. (3)

Прогноз мирового производства металлического титана с использованием процесса Kroll на 2011 год составлял 223 000 метрических тонн. (4)

Кузнец делает нож из титана и демонстрирует свойства металла.

Мелкодисперсный титан легко горит.

Компьютерное изображение атомов титана (синий), связанных с углеродной нанотрубкой в ​​водородном (красный) топливном элементе.Подобные молекулы могут повысить эффективность топливных элементов для использования в автомобилях. Изображение: T. Yildirim / NIST

Внешний вид и характеристики

Вредные воздействия:

Металлический титан считается нетоксичным. В виде металлической стружки или порошка он представляет значительную опасность пожара. Хлориды титана вызывают коррозию.

Характеристики:

Чистый титан — легкий, серебристо-белый, твердый, блестящий металл. Он обладает превосходной прочностью и устойчивостью к коррозии, а также имеет высокое соотношение прочности и веса.

Скорость коррозии титана настолько мала, что после 4000 лет в морской воде коррозия могла бы проникнуть в металл только на толщину тонкого листа бумаги. (3)

При высоких температурах металл горит на воздухе и, что необычно, титан горит еще и в чистом азоте.

Титан пластичен и податлив при нагревании.

Нерастворим в воде, но растворим в концентрированных кислотах.

Использование титана

Металлический титан используется в качестве легирующего агента с металлами, включая алюминий, железо, молибден и марганец.Сплавы титана в основном используются в аэрокосмической отрасли, самолетах и ​​двигателях, где необходимы прочные, легкие, термостойкие материалы.

Благодаря своей устойчивости к морской воде (см. Выше) титан используется для изготовления корпусов кораблей, гребных валов и других конструкций, подверженных воздействию моря.

Титан также используется в имплантатах для замены суставов, таких как шаровидный тазобедренный сустав.

Около 95% производства титана приходится на долю диоксида титана (диоксида титана).Этот ярко-белый пигмент с высоким показателем преломления и сильным поглощением ультрафиолетового излучения используется в белых красках, пищевых красителях, зубных пастах, пластмассах и солнцезащитных кремах.

Титан используется в нескольких повседневных изделиях, таких как сверла, велосипеды, клюшки для гольфа, часы и портативные компьютеры.

Численность и изотопы

Полнота земной коры: 0,56% по массе, 0,25% по молям

Солнечная система изобилия: 4 части на миллион по весу, 100 частей на миллиард по молям

Стоимость, чистая: 661 доллар за 100 г

Стоимость, оптом: $ за 100 г

Источник: Титан — девятый по содержанию металл в земной коре.Титан не встречается в природе, но содержится в таких минералах, как рутил (оксид титана), ильменит (оксид железа, титана) и сфен (титанит или силикат титана кальция).

В промышленных масштабах металл выделяют с использованием процесса Кролла, при котором оксид титана сначала получают из минерала ильменита. Оксид TiO 2 затем превращается в хлорид (TiCl 4 ) посредством карбохлорирования. Его конденсируют и очищают фракционной перегонкой, а затем восстанавливают расплавленным магнием в атмосфере аргона.

Изотопы: Титан имеет 18 изотопов, период полураспада которых известен, с массовыми числами от 39 до 57. Встречающийся в природе титан представляет собой смесь его пяти стабильных изотопов, и они находятся в указанных процентах: 46 Ti (8,2%), 47 Ti (7,4%), 48 Ti (73,7%), 49 Ti (5,4%) и 50 Ti (5,2%). Наиболее естественно распространенный из этих изотопов 48 Ti 73,7%.

Список литературы
  1. Уильям Грегор, Beobachtungen und Versuche über den Menakanite, einen in Cornwall gefundenen magnetischen Sand., в Chemische Annalen Лоренца Крелла, 1791, стр. 40.
  2. Мэри Эльвира Уикс, Открытие элементов. XI. Некоторые элементы, выделенные с помощью калия и натрия: цирконий, титан, церий и торий. J. Chem. Образов., 1932, с. 1231.
  3. Том Маргерисон, Будущее титана., New Scientist, 12 июня 1958 г., стр. 156.
  4. Исследования и разработки в области титана.
Цитируйте эту страницу

Для интерактивной ссылки скопируйте и вставьте одно из следующего:

 Титан 
 

или

  Факты о титановых элементах 
 

Чтобы процитировать эту страницу в академическом документе, используйте следующую ссылку в соответствии с MLA:

 «Титан». Chemicool Periodic Table. Chemicool.com. 18 октября 2012 г. Интернет.
. 

Титан (Ti) | АМЕРИКАНСКИЕ ЭЛЕМЕНТЫ ®


РАЗДЕЛ 1.ИДЕНТИФИКАЦИЯ

Наименование продукта: Металлический титан

Номер продукта: Все применимые коды продуктов American Elements, например ТИ-М-02, ТИ-М-03, ТИ-М-04, ТИ-М-05

CAS #: 7440-32-6

Соответствующие установленные области применения вещества: Научные исследования и разработки

Информация о поставщике:
American Elements
1093 Broxton Ave. Suite 2000
Los Angeles, CA

Тел .: +1 310-208-0551
Факс: +1 310-208-0351

Телефон экстренной связи:
Внутренний, Северный Америка +1 800-424-9300
Международный +1 703-527-3887


РАЗДЕЛ 2.ИДЕНТИФИКАЦИЯ ОПАСНОСТЕЙ

Классификация вещества или смеси
Классификация в соответствии с Регламентом (ЕС) № 1272/2008
Вещество не классифицируется как опасное для здоровья или окружающей среды в соответствии с Регламентом CLP.
Классификация в соответствии с Директивой 67/548 / EEC или Директивой 1999/45 / EC
Неприменимо
Информация, касающаяся особых опасностей для человека и окружающей среды:
Информация отсутствует.
Опасности, не классифицированные иным образом
Информация отсутствует.
Элементы маркировки
Маркировка в соответствии с Регламентом (ЕС) № 1272/2008
Неприменимо
Пиктограммы опасности
Неприменимо
Сигнальное слово
Неприменимо
Формулировки опасности
Неприменимо
Классификация WHMIS
Не контролируется
Система классификации
Рейтинги HMIS (шкала 0-4)
(Система идентификации опасных материалов)
ЗДОРОВЬЕ
ПОЖАР
РЕАКТИВНОСТЬ
1
1
1
Здоровье (острые эффекты) = 1
Воспламеняемость = 1
Физическая опасность = 1
Другие опасности
Результаты оценки PBT и vPvB
PBT:
Не применимо.
vPvB:
Не применимо.


РАЗДЕЛ 3. СОСТАВ / ИНФОРМАЦИЯ ОБ ИНГРЕДИЕНТАХ

Химические характеристики: Вещества
Номер CAS Описание:
7440-32-6 Титан
Идентификационный номер (а):
Номер ЕС:
231-142-3


РАЗДЕЛ 4. ПЕРВАЯ ПОМОЩЬ

Описание мер первой помощи
При вдыхании
Обеспечить свежий воздух. При необходимости сделайте искусственное дыхание. Держите пациента в тепле.
Немедленно обратитесь за медицинской помощью.
При попадании на кожу
Немедленно промыть водой с мылом и тщательно сполоснуть.
Немедленно обратитесь за медицинской помощью.
При попадании в глаза
Промыть открытый глаз под проточной водой в течение нескольких минут. Тогда обратитесь к врачу.
После проглатывания
Обратитесь за медицинской помощью.
Информация для врача
Наиболее важные симптомы и воздействия, как острые, так и замедленные
Отсутствует какая-либо соответствующая информация.
Указание на необходимость немедленной медицинской помощи и специального лечения.
Отсутствует какая-либо соответствующая информация.


РАЗДЕЛ 5. МЕРЫ ПОЖАРОТУШЕНИЯ

Средства пожаротушения
Надлежащие средства тушения
Специальный порошок для металлических пожаров. Не используйте воду.
Средства пожаротушения, непригодные из соображений безопасности
Вода
Особые опасности, исходящие от вещества или смеси
При пожаре могут образоваться следующие вещества:
Дым оксида металла
Рекомендации для пожарных
Защитное снаряжение:
Самостоятельно носить содержал респиратор.
Надеть полностью защитный непромокаемый костюм.


РАЗДЕЛ 6. МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ

Меры личной безопасности, защитное снаряжение и порядок действий в чрезвычайной ситуации
Надевайте защитное снаряжение. Не подпускайте незащищенных людей.
Обеспечьте соответствующую вентиляцию.
Меры по защите окружающей среды:
Не допускайте попадания материала в окружающую среду без соответствующих правительственных разрешений.
Не допускать попадания продукта в канализацию или водоемы.
Не допускать проникновения в землю / почву.
Методы и материал для локализации и очистки:
Подобрать механически.
Предотвращение вторичных опасностей:
Никаких специальных мер не требуется.
Ссылка на другие разделы
См. Раздел 7 для получения информации о безопасном обращении.
См. Раздел 8 для получения информации о средствах индивидуальной защиты.
Информацию об утилизации см. В Разделе 13.


РАЗДЕЛ 7. ОБРАЩЕНИЕ И ХРАНЕНИЕ

Обращение
Меры предосторожности для безопасного обращения
Держать контейнер плотно закрытым.
Хранить в сухом прохладном месте в плотно закрытой таре.
Сведения о защите от взрывов и пожаров:
Информация отсутствует.
Условия безопасного хранения с учетом несовместимости
Хранение
Требования, предъявляемые к складским помещениям и таре:
Особых требований нет.
Информация о хранении в одном общем хранилище:
Хранить вдали от окислителей.
Хранить вдали от галогенов.
Хранить вдали от галоидоуглеродов.
Хранить вдали от минеральных кислот.
Дополнительная информация об условиях хранения:
Хранить емкость плотно закрытой.
Хранить в прохладных, сухих условиях в хорошо закрытых емкостях.
Особые конечные области применения
Отсутствует какая-либо соответствующая информация.


РАЗДЕЛ 8. КОНТРОЛЬ ВОЗДЕЙСТВИЯ / ЛИЧНАЯ ЗАЩИТА

Дополнительная информация о конструкции технических систем:
Правильно работающий вытяжной шкаф для химических веществ, предназначенный для опасных химикатов и имеющий среднюю скорость движения не менее 100 футов в минуту.
Контрольные параметры
Компоненты с предельными значениями, требующие контроля на рабочем месте:
Продукт не содержит каких-либо значимых количеств материалов с критическими значениями
, которые необходимо контролировать на рабочем месте.
Дополнительная информация:
Нет данных
Контроль воздействия
Средства индивидуальной защиты
Общие защитные и гигиенические меры
Следует соблюдать обычные меры предосторожности при обращении с химическими веществами.
Хранить вдали от продуктов питания, напитков и кормов.
Немедленно снимите всю грязную и загрязненную одежду.
Мыть руки перед перерывами и по окончании работы.
Поддерживайте эргономически соответствующую рабочую среду.
Дыхательное оборудование:
При высоких концентрациях используйте подходящий респиратор.
Защита рук:
Непроницаемые перчатки
Проверяйте защитные перчатки перед каждым использованием на предмет их надлежащего состояния.
Выбор подходящих перчаток зависит не только от материала, но и от качества. Качество будет варьироваться от производителя к производителю.
Время проницаемости материала перчаток (в минутах)
Не определено
Защита глаз:
Защитные очки
Защита тела:
Защитная рабочая одежда


РАЗДЕЛ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Информация об основных физических и химических свойствах
Общая информация
Внешний вид:
Форма: Твердое вещество в различных формах
Цвет: Темно-серый
Запах: Без запаха
Порог запаха: Не определено.
Значение pH: Не применимо.
Изменение состояния
Точка плавления / интервал плавления: 1668 ° C (3034 ° F)
Точка кипения / интервал кипения: 3277 ° C (5931 ° F)
Температура сублимации / начало: Не определено
Воспламеняемость (твердое, газообразное)
Не определено.
Температура возгорания: Не определено.
Температура разложения: Не определено.
Самовоспламенение: Не определено.
Взрывоопасность: Не определено.
Пределы взрываемости:
Нижний: Не определено
Верхнее: Не определено
Давление пара: Не применимо.
Плотность при 20 ° C (68 ° F): 4,506 г / см³ (37,603 фунта / галлон)
Относительная плотность
Не определено.
Плотность пара
Не применимо.
Скорость испарения
Не применимо.
Растворимость в / Смешиваемость с водой: Нерастворим.
Коэффициент распределения (н-октанол / вода): Не определено.
Вязкость:
динамическая: Не применимо.
кинематика: Не применимо.
Другая информация
Отсутствует какая-либо соответствующая информация.


РАЗДЕЛ 10. СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ

Реакционная способность
Информация отсутствует.
Химическая стабильность
Стабилен при соблюдении рекомендуемых условий хранения.
Термическое разложение / условия, которых следует избегать:
Разложение не происходит при использовании и хранении в соответствии со спецификациями.
Возможность опасных реакций
Об опасных реакциях не известно
Условия, которых следует избегать
Отсутствует какая-либо соответствующая информация.
Несовместимые материалы:
Окислители
Галогены
Галоидоуглероды
Минеральные кислоты
Опасные продукты разложения:
Пары оксидов металлов


РАЗДЕЛ 11.ТОКСИКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ

Информация о токсикологическом воздействии
Острая токсичность:
Эффекты неизвестны.
Значения LD / LC50, относящиеся к классификации:
Нет данных
Раздражение или разъедание кожи:
Может вызывать раздражение
Раздражение или разъедание глаз:
Может вызывать раздражение
Сенсибилизация:
Сенсибилизирующие эффекты неизвестны.
Мутагенность зародышевой клетки:
Эффекты неизвестны.
Канцерогенность:
Нет данных о классификации канцерогенных свойств этого материала от EPA, IARC, NTP, OSHA или ACGIH.
Реестр токсических эффектов химических веществ (RTECS) содержит данные о онкогенных, канцерогенных и / или опухолевых заболеваниях для этого вещества.
Репродуктивная токсичность:
Реестр токсических эффектов химических веществ (RTECS) содержит репродуктивные данные для этого вещества.
Специфическая системная токсичность на органы-мишени — многократное воздействие:
Эффекты неизвестны.
Специфическая системная токсичность, поражающая отдельные органы-мишени — однократное воздействие:
Эффекты неизвестны.
Опасность при вдыхании:
Воздействие неизвестно.
От подострой до хронической токсичности:
Эффекты неизвестны.
Дополнительная токсикологическая информация:
Насколько нам известно, острая и хроническая токсичность этого вещества полностью не изучена.


РАЗДЕЛ 12. ЭКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ

Токсичность
Токсичность для водной среды:
Отсутствует какая-либо соответствующая информация.
Стойкость и разлагаемость
Отсутствует какая-либо соответствующая информация.
Способность к биоаккумуляции
Отсутствует какая-либо соответствующая информация.
Подвижность в почве
Отсутствует какая-либо соответствующая информация.
Дополнительная экологическая информация:
Общие примечания:
Не допускайте попадания материала в окружающую среду без соответствующих правительственных разрешений.
Избегать попадания в окружающую среду.
Результаты оценки PBT и vPvB
PBT:
Не применимо.
vPvB:
Не применимо.
Другие побочные эффекты
Отсутствует какая-либо соответствующая информация.


РАЗДЕЛ 13. УТИЛИЗАЦИЯ

Методы обработки отходов
Рекомендация
Проконсультируйтесь с государственными, местными или национальными правилами, чтобы обеспечить надлежащую утилизацию.
Неочищенная тара:
Рекомендация:
Утилизация должна производиться в соответствии с официальными предписаниями.


РАЗДЕЛ 14. ТРАНСПОРТНАЯ ИНФОРМАЦИЯ

Номер ООН
DOT, ADN, IMDG, IATA
Неприменимо
Собственное транспортное наименование ООН
DOT, ADN, IMDG, IATA
Неприменимо
Класс (ы) опасности при транспортировке
DOT, ADR, ADN, IMDG, Класс IATA

Неприменимо
Группа упаковки
DOT, IMDG, IATA
Неприменимо
Опасность для окружающей среды: Неприменимо.
Особые меры предосторожности для пользователя
Не применимо.
Транспортировка наливом в соответствии с Приложением II MARPOL73 / 78 и Кодексом IBC
Не применимо.
Транспорт / Дополнительная информация: DOT
Морские загрязнители (DOT): №


РАЗДЕЛ 15. НОРМАТИВНАЯ ИНФОРМАЦИЯ

Нормативы / законодательные акты по безопасности, охране здоровья и окружающей среды, относящиеся к веществу или смеси
Национальные предписания
Все компоненты этого продукта перечислены в Реестре химических веществ в соответствии с Законом о контроле за токсичными веществами Агентства по охране окружающей среды США.
Все компоненты этого продукта занесены в Канадский список веществ, предназначенных для домашнего использования (DSL).
SARA Раздел 313 (списки конкретных токсичных химикатов)
Вещество не указано.
Предложение 65 штата Калифорния
Предложение 65 — Химические вещества, вызывающие рак
Вещество не указано.
Предложение 65 — Токсичность для развития
Вещество не указано.
Предложение 65 — Токсичность для развития, женщины
Вещество не указано.
Предложение 65 — Токсичность для развития, мужчины
Вещество не указано.
Информация об ограничении использования:
Для использования только технически квалифицированными специалистами.
Другие постановления, ограничения и запретительные постановления
Вещество, вызывающее особую озабоченность (SVHC) в соответствии с Регламентом REACH (EC) № 1907/2006.
Вещества нет в списке.
Необходимо соблюдать условия ограничений согласно Статье 67 и Приложению XVII Регламента (ЕС) № 1907/2006 (REACH) для производства, размещения на рынке и использования.
Вещества нет в списке.
Приложение XIV Правил REACH (требуется разрешение на использование)
Вещество не указано.
REACH — Предварительно зарегистрированные вещества
Вещество внесено в список.
Оценка химической безопасности:
Оценка химической безопасности не проводилась.


16. ПРОЧАЯ ИНФОРМАЦИЯ

Паспорт безопасности в соответствии с Регламентом (ЕС) № 1907/2006 (REACH). Вышеприведенная информация считается правильной, но не претендует на исчерпывающий характер и должна использоваться только в качестве руководства.Информация в этом документе основана на текущем уровне наших знаний и применима к продукту с учетом соответствующих мер безопасности. Это не является гарантией свойств продукта. American Elements не несет ответственности за любой ущерб, возникший в результате обращения или контакта с вышеуказанным продуктом. Дополнительные условия продажи см. На обратной стороне счета-фактуры или упаковочного листа. АВТОРСКИЕ ПРАВА 1997-2016 AMERICAN ELEMENTS. ЛИЦЕНЗИОННЫМ ДАННЫМ РАЗРЕШЕНО ИЗГОТОВЛЕНИЕ НЕОГРАНИЧЕННЫХ КОПИИ БУМАГИ ТОЛЬКО ДЛЯ ВНУТРЕННЕГО ИСПОЛЬЗОВАНИЯ

Элемент Titanium — Атом титана

Титан — химический элемент
с символом Ti и атомным номером
22. Иногда называют «металлом космической эры», [2]
он имеет низкую плотность и прочный,
блестящие, устойчивые к коррозии (в том числе
морская вода, царская водка и хлор) переход
металл серебристого цвета.

Титан был обнаружен в Корнуолле,
Англия, Уильям Грегор в 1791 году и
названный Мартином Генрихом Клапротом для
Титаны греческой мифологии.

Элемент встречается в нескольких
месторождения полезных ископаемых, в основном рутил и
ильменит, которые широко распространены
в земной коре и литосфере,
и он есть почти во всех живых существах,
скалы, водоемы и почвы. [3] Металл
добывается из основного минерала
руды, полученные методом Кролла [4]
или процесс Хантера. Самый распространенный
соединение, диоксид титана, является популярным
фотокатализатор и используется при производстве
белых пигментов. [5] Другие соединения включают титан.
тетрахлорид (TiCl 4 ), компонент
дымовых завес и катализаторов; и титан
трихлорид (TiCl 3 ), который
используется как катализатор в производстве
полипропилена. [3]

Титан можно легировать железом, алюминием,
ванадий, молибден, среди других элементов,
производить прочные легкие сплавы для
аэрокосмическая промышленность (реактивные двигатели, ракеты и космические аппараты),
военный, промышленный процесс (химикаты
и нефтехимия, опреснительные установки,
целлюлоза и бумага), автомобилестроение, агропищевая промышленность,
медицинские протезы, ортопедические имплантаты,
стоматологические и эндодонтические инструменты и файлы,
зубные имплантаты, спортивные товары, украшения,
мобильные телефоны и другие приложения. [3]

Два наиболее полезных свойства
металлическая форма отличается коррозионной стойкостью и
самое высокое отношение прочности к весу
любой металл. [6] В нелегированном состоянии,
титан такой же прочный, как и некоторые стали,
но на 45% легче. [7]
Есть две аллотропные формы [8] и
пять встречающихся в природе изотопов этого
элемент, 46 Ti через 50 Ti,
причем 48 Ti является наиболее распространенным
(73.8%). [9] Титановые
свойства химически и физически
похож на цирконий, потому что оба
у них одинаковое количество валентных электронов
и находятся в одной группе в периодической
Таблица.

Характеристики

Физическое
недвижимость

Металлический элемент, признан титан
за высокое соотношение прочности и веса. [8] Это прочный металл с
низкая плотность, довольно пластичная (особенно
в бескислородной среде), [3] блестящий,
и металлического белого цвета. [10]
Относительно высокая температура плавления (более
чем 1650 ° C или 3000 ° F)
делает его полезным в качестве тугоплавкого металла.Он парамагнитен и имеет довольно низкую
электрическая и теплопроводность. [3]

Титан технических (чистота 99,2%)
имеют предел прочности на разрыв около
63000 фунтов на квадратный дюйм (434 МПа), что равно
обычные низкосортные стальные сплавы, но
На 45% легче. [7]
Титан на 60% плотнее алюминия,
но более чем в два раза сильнее [7]
как наиболее часто используемый алюминий 6061-T6
сплав. Некоторые титановые сплавы (например,
Beta C) достигают предела прочности более
200000 фунтов на квадратный дюйм (1400 МПа). [11] Однако титан
теряет прочность при нагревании выше 430 ° C
(806 ° F). [12]

Это довольно сложно (хотя и не так сложно)
как некоторые марки термообработанной стали),
немагнитный и плохой проводник тепла
и электричество. Обработка требует мер предосторожности,
так как материал станет мягким и желчным, если
острые инструменты и правильные методы охлаждения
не используются.Как те, что сделаны из стали,
титановые конструкции имеют предел выносливости
что гарантирует долговечность в некоторых приложениях. [10] Специальные титановые сплавы
жесткость также обычно не так хороша
как другие материалы, такие как алюминиевые сплавы
и углеродное волокно, поэтому его меньше используют для
конструкции, требующие повышенной жесткости.

Металл представляет собой диморфный аллотроп,
гексагональная альфа-форма превращается в объемно-центрированную
кубическая (решетчатая) β-форма при 882 ° C
(1620 ° F). [12]
Удельная теплоемкость альфа-формы увеличивается
резко как он нагревается до этого перехода
температура но потом падает и остается
довольно постоянна для формы β независимо от
температуры. [12]
Подобно цирконию и гафнию, дополнительная
существует омега-фаза, которая термодинамически
стабильна при высоких давлениях, но метастабильна
при атмосферном давлении. Эта фаза обычно
гексагональный ( идеальный ) или тригональный ( искаженный )
и может рассматриваться как результат мягкого
продольный акустический фонон β
фаза, вызывающая коллапс плоскостей (111)
атомов. [13]

Список литературы

  1. Andersson, N. et al. (2003). «Спектры излучения TiH и TiD около 938 нм». J. Chem.
    Phys.
    118 : 10543. DOI: 10.1063 / 1.1539848. http://bernath.uwaterloo.ca/media/257.pdf.
  2. Уильям Л. Мастертон; Сесиль Н. Херли (2008). Химия: принципы и реакции (6-е изд.). Cengage
    Обучение. п. 18. ISBN 0495126713. http://books.google.com/?id=teubNK-b2bsC&pg=PT44&lpg=PT44&dq=titanium+%22space-age+metal%22&q=titanium%20%22space-age%20metal%22.
  3. «Титан». Британская энциклопедия . 2006. http://www.britannica.com/eb/article-

    43/titanium. Проверено 29 декабря 2006.

  4. Лиде,
    Д.Красный. (2005), CRC Справочник по
    Химия и физика
    (86-е изд.),
    Бока-Ратон (Флорида): CRC Press, ISBN 0-8493-0486-5
  5. Кребс,
    Роберт Э. (2006). История и
    Использование химических элементов нашей Земли:
    Справочное руководство (2-е издание)
    .Вестпорт, Коннектикут: Гринвуд
    Нажмите. ISBN 0313334382.
  6. Мэтью Дж. Доначи-младший (1988). ТИТАН: технический
    Руководство
    . Металл Парк, Огайо: ASM International.
    п. 11. ISBN 0871703092.
  7. Барксдейл
    1968, стр.738
  8. «Титан». Колумбийская энциклопедия
    (6-е изд.). Нью-Йорк: Колумбийский университет
    Нажмите. 2000–2006 гг. ISBN 0-7876-5015-3.
    http://www.answers.com/Titanium.
  9. Барбалас,
    Кеннет Л. (2006). «Периодическая таблица элементов: Ti — титан».http://environmentalchemistry.com/yogi/periodic/Ti-pg2.html#Nuclides. Проверено 26 декабря 2006.
  10. Stwertka,
    Альберт (1998). «Титан». Гид
    к Элементам
    (Пересмотренное изд.). Оксфордский университет
    Нажмите. С. 81–82. ISBN 0-19-508083-1.
  11. Мэтью Дж. Доначи-младший.(1988). Титан: Технический
    Руководство
    . Металл Парк, Огайо: ASM International.
    Приложение J, Таблица J.2. ISBN 0871703092.
  12. Барксдейл
    1968, стр. 734
  13. Sikka, S.K .; Вохра, Ю.К., Чидамбарам, Р. (1982).
    «Омега-фаза в материалах». Прогресс в
    Материаловедение
    27 :
    245–310. DOI: 10.1016 / 0079-6425 (82)

    -0.

Химические и физические свойства титана

Титан — прочный металл, используемый в человеческих имплантатах, самолетах и ​​многих других изделиях. Вот факты об этом полезном элементе:

Основные факты

Изотопы

Известно 26 изотопов титана от Ti-38 до Ti-63.Титан имеет пять стабильных изотопов с атомными массами 46-50. Самый распространенный изотоп — это Ti-48, составляющий 73,8% всего природного титана.

Недвижимость

Титан имеет температуру плавления 1660 +/- 10 ° C, точку кипения 3287 ° C, удельный вес 4,54, валентность 2, 3 или 4. Чистый титан — это блестящий белый металл с низкой плотностью и высокой прочностью. и высокая коррозионная стойкость. Он устойчив к разбавленным серной и соляной кислотам, влажному газообразному хлору, большинству органических кислот и растворам хлоридов.Титан пластичен только в том случае, если он не содержит кислорода. Титан горит на воздухе и является единственным элементом, который горит в азоте.

Титан диморфен, гексагональная форма a медленно меняется на кубическую форму b около 880 ° C. Металл соединяется с кислородом при температуре красного каления и с хлором при 550 ° C. Титан прочен, как сталь, но на 45% легче. Металл на 60% тяжелее алюминия, но в два раза прочнее.

Металлический титан считается физиологически инертным.Чистый диоксид титана достаточно прозрачный, с чрезвычайно высоким показателем преломления и оптической дисперсией выше, чем у алмаза. Природный титан становится очень радиоактивным при бомбардировке дейтронами.

использует

Титан важен для легирования алюминия, молибдена, железа, марганца и других металлов. Титановые сплавы используются в ситуациях, когда требуется легкая прочность и способность выдерживать экстремальные температуры (например, в аэрокосмической отрасли).Титан можно использовать в опреснительных установках. Металл часто используется для деталей, которые должны подвергаться воздействию морской воды. Титановый анод, покрытый платиной, может использоваться для обеспечения катодной защиты от коррозии от морской воды.

Поскольку металлический титан инертен в организме, он может применяться в хирургии. Диоксид титана используется для изготовления искусственных драгоценных камней, хотя получаемый камень относительно мягкий. Астеризм звездчатых сапфиров и рубинов является результатом присутствия TiO 2 .Диоксид титана используется в красках для дома и художников. Краска стойкая и обеспечивает хорошее покрытие. Это отличный отражатель инфракрасного излучения. Краска также используется в солнечных обсерваториях.

Пигменты оксида титана составляют наибольшее использование элемента. Оксид титана используется в некоторых косметических средствах для рассеивания света. Тетрахлорид титана используется для иридирования стекла. Поскольку соединение сильно дымится на воздухе, оно также используется для создания дымовых завес.

Источники

Титан — 9-й элемент земной коры по распространенности.Он почти всегда находится в магматических породах. Он встречается в рутиле, ильмените, сфене и многих железных рудах и титанатах. Титан содержится в угольной золе, растениях и в организме человека. Титан содержится на солнце и в метеоритах. Камни с миссии Аполлона 17 на Луну содержали до 12,1% TiO 2 . Скалы из более ранних миссий показали более низкий процент диоксида титана. Полосы оксида титана видны в спектрах звезд M-типа. В 1946 году Кролл показал, что титан можно производить в промышленных масштабах, восстанавливая тетрахлорид титана магнием.

Физические данные

Общая информация

  • Титан был обнаружен в черном песке, известном как ильменит. Ильменит представляет собой смесь оксидов железа и оксидов титана.
  • Уильям Грегор был пастором прихода Маннакан, когда он обнаружил титан. Он назвал свой новый металл «манакканит».
  • Немецкий химик Мартин Клапрот заново открыл новый металл Грегора и назвал его титаном в честь Титанов, греческих мифологических существ Земли. Название «титан» было предпочтительнее и в конечном итоге было принято другими химиками, но признал Грегора как первого первооткрывателя.
  • Чистый металлический титан не был выделен Мэтью Хантером до 1910 года — через 119 лет после его открытия.
  • Примерно 95% всего титана используется в производстве диоксида титана TiO 2 . Диоксид титана — чрезвычайно яркий белый пигмент, используемый в красках, пластмассах, зубной пасте и бумаге.
  • Титан используется в медицинских процедурах, потому что он не токсичен и не реагирует на организм.

Список литературы

  • Лос-Аламосская национальная лаборатория (2001)
  • Crescent Chemical Company (2001)
  • Справочник Ланге по химии (1952)
  • CRC Handbook of Chemistry & Physics (18-е изд.)
  • База данных ENSDF Международного агентства по атомной энергии (октябрь 2010 г.)

.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *