Обозначение на конденсаторе 104
Основные сведения о характеристиках конденсаторов, являющихся составными частями практически всех электронных схем, принято размещать на их корпусах. В зависимости от типоразмера элемента, производителя, времени производства данные, наносимые на электронный прибор, постоянно изменяются не только по составу, но и по внешнему виду.
С уменьшением размера корпуса состав буквенно-цифровых обозначений изменялся, кодировался, заменялся цветовой маркировкой. Разнообразие внутренних стандартов, используемых производителями радиоэлектронных элементов, требует определенных знаний для правильного интерпретирования информации нанесенной на электронный прибор.
Зачем нужна маркировка?
Цель маркировки электронных компонентов – возможность их точной идентификации. Маркировка конденсаторов включает в себя:
- данные о ёмкости конденсатора – главной характеристике элемента;
- сведения о номинальном напряжении, при котором прибор сохраняет свою работоспособность;
- данные о температурном коэффициенте емкости, характеризующем процесс изменения емкости конденсатора в зависимости от изменения температуры окружающей среды;
- процент допустимого отклонения емкости от номинального значения, указанного на корпусе прибора;
- дату выпуска.
Для конденсаторов, при подключении которых требуется соблюдать полярность, в обязательном порядке указывается информация, позволяющая правильно ориентировать элемент в электронной схеме.
Система маркировки конденсаторов, выпускавшихся на предприятиях, входивших в состав СССР, имела принципиальные отличия от системы маркировки, применяемой на тот момент иностранными компаниями.
Маркировка отечественных конденсаторов
Для всех постсоветских предприятий характерна достаточно полная маркировка радиоэлементов, допускающая незначительные отличия в обозначениях.
Ёмкость
Первым и самым важным параметром конденсатора является емкость. В связи с этим значение данной характеристики располагается на первом месте и кодируется буквенно-цифровым обозначением. Так как единицей измерения емкости является фарада, то в буквенном обозначении присутствует либо символ кириллического алфавита «Ф», либо символ латинского алфавита «F».
Так как фарад – большая величина, а используемые в промышленности элементы имеют намного меньшие номиналы, то и единицы измерения имеют разнообразные уменьшительные префиксы (мили-, микро-, нано- и пико). Для их обозначения используют также буквы греческого алфавита.
- 1 миллифарад равен 10 -3 фарад и обозначается 1мФ или 1mF.
- 1 микрофарад равен 10 -6 фарад и обозначается 1мкФ или 1F.
- 1 нанофарад равен 10 -9 фарад и обозначается 1нФ или 1nF.
- 1 пикофарад равен 10 -12 фарад и обозначается 1пФ или 1pF.
Если значение емкости выражено дробным числом, то буква, обозначающая размерность единиц измерения, ставится на месте запятой. Так, обозначение 4n7 следует читать как 4,7 нанофарад или 4700 пикофарад, а надпись вида n47 соответствует емкости в 0,47 нанофарад или же 470 пикофарад.
В случае, когда на конденсаторе не обозначен номинал, то целое значение говорит о том, что емкость указана в пикофарадах, например, 1000, а значение, выраженное десятичной дробью, указывает на номинал в микрофарадах, например 0,01.
Ёмкость конденсатора, указанная на корпусе, редко соответствует фактическому параметру и отклоняется от номинального значения в пределах некоторого диапазона. Точное значение емкости, к которой стремятся при изготовлении конденсаторов, зависит от материалов, используемых для их производства. Разброс параметров может лежать в пределах от тысячных долей до десятков процентов.
Величина допустимого отклонения ёмкости указывается на корпусе конденсатора после номинального значения путем проставления буквы латинского или русского алфавита. К примеру, латинская буква J (русская буква И в старом обозначении) обозначает диапазон отклонения 5% в ту или иную стороны, а буква М (русская В) – 20%.
Такой параметр, как температурный коэффициент емкости, входит в состав маркировки достаточно редко и наносится в основном на малогабаритные элементы, применяемые в электрических схемах времязадающих цепей. Для идентификации используется либо буквенно-цифровая, либо цветовая система обозначений.
Встречается и комбинированная буквенно-цветовая маркировка. Варианты её настолько разнообразны, что для безошибочного определения значения данного параметра для каждого конкретного типа конденсатора требуется обращение к ГОСТам или справочникам по соответствующим радиокомпонентам.
Номинальное напряжение
Напряжение, при котором конденсатор будет работать в течение установленного срока службы с сохранением своих характеристик, называется номинальным напряжением. Для конденсаторов, имеющих достаточные размеры, данный параметр наносится непосредственно на корпус элемента, где цифры указывают на номинальное значение напряжения, а буквы обозначают в каких единицах измерения оно выражено.
Например, обозначение 160В или 160V показывает, что номинальное напряжение равно 160 вольт. Более высокие напряжения указываются в киловольтах – kV. На малогабаритных конденсаторах величину номинального напряжения кодируют одной из букв латинского алфавита. К примеру, буква I соответствует номинальному напряжению в 1 вольт, а буква Q – 160 вольт.
Дата выпуска
Согласно “ГОСТ 30668-2000 Изделия электронной техники. Маркировка”, указываются буквы и цифры, обозначающие год и месяц выпуска.
“4.2.4 При обозначении года и месяца сначала указывают год изготовления (две последние цифры года), затем месяц – двумя цифрами. Если месяц обозначен одной цифрой, то перед ней ставят нуль. Например: 9509 (1995 год, сентябрь).
4.2.5 Для изделий, габаритные размеры которых не позволяют обозначать год и месяц изготовления в соответствии с 4.2.4, следует использовать коды, приведенные в таблицах 1 и 2. Коды маркировки, приведенные в таблице 1, повторяются каждые 20 лет.”
Дата, когда было осуществлено то или иное производство, может отображаться не только в виде цифр, но и в виде букв. Каждый год имеет соотношение с буквой из латинского алфавита. Месяца с января по сентябрь обозначаются цифрами от одного до девяти. Октябрь месяц имеет соотношение с цифрой ноль. Ноябрю соответствует буква латинского типа N, а декабрю – D.
Год | Код |
---|---|
1990 | A |
1991 | B |
1992 | C |
1993 | D |
1994 | E |
1995 | F |
1996 | H |
1997 | I |
1998 | K |
1999 | L |
2000 | M |
2001 | N |
2002 | P |
2003 | R |
2004 | S |
2005 | T |
2006 | U |
2007 | V |
2008 | W |
2009 | X |
2010 | A |
2011 | B |
2012 | C |
2013 | D |
2014 | E |
2015 | F |
2016 | H |
2017 | I |
2018 | K |
2019 | L |
Расположение маркировки на корпусе
Маркировка отыгрывает важную роль на любой продукции. Зачастую она наносится на первую строку на корпусе и имеет значение емкости. Та же строка предполагает размещение на ней так называемого значения допуска. Если же на этой строке не помещаются оба нанесения, то это может сделать на следующей.
По аналогичной системе осуществляется нанесение конденсатов пленочного типа. Расположение элементов должно располагаться по определенному регламенту, который произведен ГОСТ или ТУ на элемент индивидуального типа.
Цветовая маркировка отечественных радиоэлементов
При производстве линий с так называемыми автоматическими видами монтажа появилось и цветное нанесение, а также его непосредственное значение во всей системе.
На сегодняшний день больше всего используют нанесение с помощью четырех цветов. В данном случае прибегли к применению четырех полос. Итак, первая полоска вместе со второй представляют собой значение емкости в так называемых пикофарадах. Третья полоса означает отклонение, которое можно позволить. А четвертая полоса в свою очередь означает напряжение номинального типа.
Приводим для вас пример как обозначается тот или иной элемент – емкость – 23*106 пикофарад (24 F), допустимое отклонение от номинала – ±5%, номинальное напряжение – 57 В.
Маркировка конденсаторов импортного производства
На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.
Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.
Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.
Цветовая маркировка импортных конденсаторов
Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.
Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну.
Маркировка smd компонентов
Так называемые компоненты SMD применяются для монтажа на поверхности и при этом имеют крайне маленькие размеры. Соответственно, по этой причине на них нанесена разметка, которая имеет минимальные размеры. Вследствие этого есть система сокращения как цифр, так и букв. Буква имеет обозначение емкости определенного объекта в единицах пикофарады. Что же касается цифры, то она обозначает так называемый множитель в десятой степени.
Весьма распространенные электролитические конденсаторы могут иметь на своем непосредственном корпусе значения основного типа параметра. Это значение имеет дробь в виде десятичного типа.
Заключение
Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.
Очень часто от начинающих радиолюбителей и от людей, далеких от радиоэлектроники, но по тем или иным причинам столкнувшихся с ремонтом электронных приборов, можно услышать такие вопросы: «Конденсатор 104 – что это значит? Как понять значение маркировки конденсаторов?» В этой статье мы попробуем популярно разобрать этот вопрос.
Подобная маркировка конденсаторов (104) может быть только у керамических изделий. Это связано с тем, что они, в отличие от электролитических, имеют довольно малые габаритные размеры, и, соответственно, на их корпусе просто нет места для полной и подробной записи всей необходимой информации, такой как емкость изделия, тип и прочее.
Керамический конденсатор (104) является естественной частью любой радиоэлектронной схемы. Эти изделия используют везде, где необходимо работать с сигналами, которые меняют свою полярность. Керамические конденсаторы имеют отличные частотные характеристики, малые токи утечки, незначительные потери, небольшие размеры и низкую стоимость. В тех схемах, где требуются описанные выше характеристики, керамические конденсаторы просто незаменимы, однако до недавнего времени проблемы, связанные с технологическим процессом их производства, отвели этим приборам нишу устройств с малой емкостью. Еще совсем недавно керамические конденсаторы с емкостью 10 мкФ воспринимались как экзотика, стоимость таких изделий была неоправданно высока. Развитие современных технологий позволило на сегодняшний день нескольким фирмам достичь емкости 100 мкФ в керамических конденсаторах и заявить о скором достижении еще больших значений. К тому же цены на все группы этих изделий постоянно снижаются.
Теперь перейдем к маркировке керамических конденсаторов. Она бывает двух типов: из трех и четырех знаков. У нас маркировка «104», конденсатор с такой формой записи имеет отношение к трехзнаковой кодировке. Расшифровка данного типа довольно простая: первые два знака означают величину емкости в пикофарадах, а последний – количество нулей. Давайте разберем, что же означает конденсатор «104». Получается, что первые две цифры (10) означают емкость, а последняя (4) – количество нулей. Значит, маркировка 104 подразумевает 100000 пФ (100 нФ, или 0,1 мкФ). Как видите, все очень просто. Такой формой записи можно закодировать минимальное значение 1,0 пФ, она будет иметь следующий вид: 010. Если необходимо записать величину емкости менее одного пикофарада, используют латинскую литеру R. Такая запись будет иметь следующий вид: 0R5, что означает 0.5 пФ. Если значение емкости меньше 1,0 пФ, тогда последней цифрой ставится 9, это не значит, что надо дописывать 9 нулей. Вот пример такой записи – 109 (1,0 пФ), 159 (1,5 пФ) и 689 (6,8 пФ).
Теперь рассмотрим четырехзнаковую маркировку керамических конденсаторов. В таком виде записи первые три цифры означают емкость в пикофарадах, а четвертая – количество нулей.
Вот мы и разобрали, что означает конденсатор «104». Теперь, если вам понадобятся керамические конденсаторы, вы с легкостью сможете разобраться, какое значение емкости записано на том или ином элементе. И вам не придется обращаться за помощью к специалистам.
В аппаратуре часто встречаются конденсаторы с кодовой маркировкой в виде цифр — 102, 103, 501, 772 и т.д. Как же распознать эти значения? Давайте подробнее рассмотрим кодировку в этой статье.
Первые две цифры кода указывают на значение ёмкости в пикофарадах (пф), последняя — количество нулей.
Вот например:
Если на конденсаторе написано «105» (нижняя строчка таблицы) значит у него ёмкость 1,0 мкф (микрофарада) или 1000нф (нанофарад) или 100 000пф (пикофарад).
Если на конденсаторе написано «104» (см. таблицу) значит у него ёмкость 0,1 мкф (микрофарада) или 100нф (нанофарад).
Если на конденсаторе написано «103» (см. таблицу) значит у него ёмкость 0,01 мкф (микрофарада) или 10нф (нанофарад) или 10 000пф (пикофарад).
Если на конденсаторе написано «102» (см. таблицу) значит у него ёмкость 0,001 мкф (микрофарада) или 1нф (нанофарада) или 1000пф (пикофарад).
Если на конденсаторе написано «101» (см. таблицу) значит у него ёмкость 0,0001 мкф (микрофарада) или 0,1нф (нанофарада) или 100пф (пикофарад).
Если конденсатор имеет ёмкость менее 10 пФ, то последняя цифра может быть «9».
Например, код «109» — ёмкость 1,0 пф или 0,001 нф (нанофарад) — смотрите верхняя строчка таблицы.
При ёмкостях меньше 1 пф первая цифра «0». Буква «R» используется в качестве запятой.
Например, код «010» равен 1,0 пф, а код «0R1» — 0,1 пФ.
Маркировка и основные характеристики конденсатора 104
Одним из важнейших элементов электронной схемы и практически любой теле,- радиоаппаратуры является ёмкостной двухполюсник под названием конденсатор. Из всего разнообразия, которое выдаёт потребителям рынок электронных деталей, можно выделить конденсатор 104. Это пассивный компонент электроцепи, который часто используется в частотных фильтрах, колебательных контурах и других узлах.
Керамический конденсатор
Устройство керамических конденсаторов
Изначально этот элемент представлял собой две пластины, между которыми сохранялся воздушный промежуток. Впоследствии этот промежуток стали заполнять различными диэлектриками.
Конструкция керамической детали
Важно! Изменяя размер пластин (площадь обкладок) и экспериментируя с составом и структурой диэлектрика, варьировали главное свойство двухполюсника – ёмкость (C). Конденсаторы иногда зовут просто емкостью.
На схемах подобный элемент обозначают двумя параллельными вертикальными отрезками с расстоянием между ними. Это визуально напоминает две пластины и воздушный промежуток.
Изображение емкости на схемах
Керамические конденсаторы относятся к классу элементов с твёрдым диэлектриком неорганического происхождения. Это в данном случае керамика. Структура конденсатора 104к представляет собой следующее строение:
- керамический диск, выступающий в качестве диэлектрика;
- два слоя серебра, которые нанесены на диск методом напыления с двух сторон;
- выводы для подключения.
У керамических дисковых двухполюсников устойчивая линейная зависимость C от температуры. Схема их включения не зависит от полярности прикладываемого напряжения, поэтому они называются неполярными.
Внимание! Конденсатор является накопителем (аккумулятором) энергии, которую он собирает, заряжаясь, и может отдать её в нужный момент, разрядившись на нагрузку. Ёмкостной двухполюсник не пропускает постоянный ток, но не препятствует прохождению переменного.
Элементы с одним диэлектрическим промежутком называют однослойными. Небольшой размер дисковых керамических ёмкостей, согласно их электрическим характеристикам, не позволяет накопить на обкладках заряд, воздействие которого можно проверить, коснувшись рукой двух его выводов одновременно. Однако детали, обладающие большой ёмкостью (несколько тысяч микрофарад), могут, разрядившись через тело человека, нанести ему удар током.
Керамические дисковые элементы
Многослойные конденсаторы
Если у металлопленочных элементов для увеличения величины С применяют не один слой плёнок диэлектрика и обкладок, то у керамических для этого также заменяют один слой несколькими.
К сведению. Применение подобных элементов для цепей с изменяющейся полярностью питания давало хорошие результаты по частотным характеристикам, позволяло иметь малые потери, низкий ток утечек, небольшие габариты, но и маленькую ёмкость.
Японская фирма Murata разработала технологию, которая поставила на конвейер конденсаторы с C = 100 мкФ и выше. Современным представителем керамических элементов с большой емкостью выступают многослойные модели. Формула их ёмкости (в фарадах):
C = E0*(E*S0*N)/D,
где:
- E0 – постоянная диэлектрическая проницаемость (ПДП) вакуума;
- E – ПДП керамики;
- S0 – рабочая площадь обкладки (электрода), мм2;
- N – количество диэлектрических слоёв;
- D – толщина диэлектрического слоя, мм.
Формула говорит о том, что, если уменьшить слой керамики, увеличить число электродов (слоёв) и их площадь, то можно добиться значительного увеличения ёмкости элемента.
Важно! Нельзя бесконечно истончать слой диэлектрика без риска получить низкий порог пробоя. Этот критичный баланс между высоким рабочим напряжением и большой ёмкостной характеристикой ограничивает производство идеальных элементов подобной конструкции.
Та же корпорация Murata, увеличивая количество слоёв с одного до сотни (за десятилетие), добилась уменьшения толщины керамики с 10 мкм лишь до 1,8 мкм. Технически увеличить количество диэлектрических слоев допустимо, только истончая единичный слой. Для того чтобы правильно подбирать нужный ёмкостной элемент, разработана маркировка керамических конденсаторов (КК).
Маркировка КК
Любая расшифровка емкостных двухполюсников выполняется двумя или тремя знаками. На элементы маленького размера наносят обозначения по стандартам EIA. Первые две цифры – это всегда обозначение емкости. Если после двух цифр стоит буква n, это нанофарады. Конденсатор с 10n на корпусе имеет номинал 10 нанофарад.
В трёхзначной кодировке третья цифра обозначает множитель нуля. Так, например, 104 на корпусе элемента – это 10 пикофарад и множитель 104.
В итоге получается:
10*104пФ = 100000 пФ = 100 нФ = 0,1 мкФ.
Исходя из этого, код 010 будет означить 0,1 пФ. Часто используют латинскую R, чтобы обозначить значение С, которое меньше 1 пФ, например, 0R7 = 0,7 пФ.
Внимание! Когда после первых двух знаков стоят цифры 9 или 8, то это значит, что величину С необходимо умножить на 0,1 и 0,01, соответственно, а не умножать на 10 со степенью 9 или 8. К примеру, 109 = 10*0,1 = 1,0 пФ; 138 = 13*0,01 = 0,13 пФ.
Буквы, стоящие сразу за тремя цифрами, обозначают процент погрешности значения С. У конденсатора 104j, j означает ± 5%.
Для керамических конденсаторов маркировка в таблице
Варианты кодировок номинальных напряжений конденсатора
Значение напряжения, которое является для элемента номинальным (Uном), может наноситься на корпус детали отдельным кодом. К примеру, для 104j конденсатора номинал 16 В будет отмечен сочетанием 1С.
Отмечены следующие соотношения между кодом и величиной Uном:
- 1С = 16 В;
- 1E = 25 В;
- 1H = 50 В;
- 2A = 100 В;
- 2D = 200 В;
- 2E = 250 В;
- 2F = 315 В;
- 2G = 400 В;
- 2J = 630 В.
Если на элементе присутствует маркер 2E, значит, к нему можно приложить номинальное напряжение 250 В.
Емкостные величины
Конденсатор 104 емкость которого считают как 10*104, будет обладать величиной С, равной 100000 пф или 0,1 мкФ. Чтобы ответить на вопрос, конденсатор 100n это сколько пикофарад, нужно знать кратность и дробность математических приставок. Для этого можно заглянуть в таблицу или воспользоваться онлайн-переводчиком величин.
Таблица кратных и дробных приставок
Умение расшифровывать кодировку керамических конденсаторов позволяет подобрать аналогичную деталь, заменить неисправную или применить нужную при сборке схемы. Обозначения на корпусе типа 104, 100n, 108j и другие буквенно-цифровые метки уже никого не смогут ввести в заблуждение.
Видео
Конденсатор 104: что это значит?
Очень часто от начинающих радиолюбителей и от людей, далеких от радиоэлектроники, но по тем или иным причинам столкнувшихся с ремонтом электронных приборов, можно услышать такие вопросы: «Конденсатор 104 – что это значит? Как понять значение маркировки конденсаторов?» В этой статье мы попробуем популярно разобрать этот вопрос.
Подобная маркировка конденсаторов (104) может быть только у керамических изделий. Это связано с тем, что они, в отличие от электролитических, имеют довольно малые габаритные размеры, и, соответственно, на их корпусе просто нет места для полной и подробной записи всей необходимой информации, такой как емкость изделия, тип и прочее.
Керамический конденсатор (104) является естественной частью любой радиоэлектронной схемы. Эти изделия используют везде, где необходимо работать с сигналами, которые меняют свою полярность. Керамические конденсаторы имеют отличные частотные характеристики, малые токи утечки, незначительные потери, небольшие размеры и низкую стоимость. В тех схемах, где требуются описанные выше характеристики, керамические конденсаторы просто незаменимы, однако до недавнего времени проблемы, связанные с технологическим процессом их производства, отвели этим приборам нишу устройств с малой емкостью. Еще совсем недавно керамические конденсаторы с емкостью 10 мкФ воспринимались как экзотика, стоимость таких изделий была неоправданно высока. Развитие современных технологий позволило на сегодняшний день нескольким фирмам достичь емкости 100 мкФ в керамических конденсаторах и заявить о скором достижении еще больших значений. К тому же цены на все группы этих изделий постоянно снижаются.
Теперь перейдем к маркировке керамических конденсаторов. Она бывает двух типов: из трех и четырех знаков. У нас маркировка «104», конденсатор с такой формой записи имеет отношение к трехзнаковой кодировке. Расшифровка данного типа довольно простая: первые два знака означают величину емкости в пикофарадах, а последний — количество нулей. Давайте разберем, что же означает конденсатор «104». Получается, что первые две цифры (10) означают емкость, а последняя (4) – количество нулей. Значит, маркировка 104 подразумевает 100000 пФ (100 нФ, или 0,1 мкФ). Как видите, все очень просто. Такой формой записи можно закодировать минимальное значение 1,0 пФ, она будет иметь следующий вид: 010. Если необходимо записать величину емкости менее одного пикофарада, используют латинскую литеру R. Такая запись будет иметь следующий вид: 0R5, что означает 0.5 пФ. Если значение емкости меньше 1,0 пФ, тогда последней цифрой ставится 9, это не значит, что надо дописывать 9 нулей. Вот пример такой записи – 109 (1,0 пФ), 159 (1,5 пФ) и 689 (6,8 пФ).
Теперь рассмотрим четырехзнаковую маркировку керамических конденсаторов. В таком виде записи первые три цифры означают емкость в пикофарадах, а четвертая — количество нулей.
Вот мы и разобрали, что означает конденсатор «104». Теперь, если вам понадобятся керамические конденсаторы, вы с легкостью сможете разобраться, какое значение емкости записано на том или ином элементе. И вам не придется обращаться за помощью к специалистам.
расшифровка букв, цифр, смешанных значений
Маркировка конденсаторов при выборе какого-либо элемента в схеме имеет большое значение. Она разнообразная и сложная по сравнению с резисторами. Специалист, который работает непосредственно с конденсаторами должен обязательно знать, как расшифровывается та или иная маркировка.
Таблица маркировки конденсаторов
Код | Пикофарады, (пф, pf) | Нанофарады, (нф, nf) | Микрофарады, (мкф, µf) |
109 | 1.0 | 0.001 | 0.000001 |
159 | 1.5 | 0.0015 | 0.000001 |
229 | 2.2 | 0.0022 | 0.000001 |
339 | 3.3 | 0.0033 | 0.000001 |
479 | 4.7 | 0.0047 | 0.000001 |
689 | 6.8 | 0.0068 | 0.000001 |
100* | 10 | 0.01 | 0.00001 |
150 | 15 | 0.015 | 0.000015 |
220 | 22 | 0.022 | 0.000022 |
330 | 33 | 0.033 | 0.000033 |
470 | 47 | 0.047 | 0.000047 |
680 | 68 | 0.068 | 0.000068 |
101 | 100 | 0.1 | 0.0001 |
151 | 150 | 0.15 | 0.00015 |
221 | 220 | 0.22 | 0.00022 |
331 | 330 | 0.33 | 0.00033 |
471 | 470 | 0.47 | 0.00047 |
681 | 680 | 0.68 | 0.00068 |
102 | 1000 | 1.0 | 0.001 |
152 | 1500 | 1.5 | 0.0015 |
222 | 2200 | 2.2 | 0.0022 |
332 | 3300 | 3.3 | 0.0033 |
472 | 4700 | 4.7 | 0.0047 |
682 | 6800 | 6.8 | 0.0068 |
103 | 10000 | 10 | 0. 01 |
153 | 15000 | 15 | 0.015 |
223 | 22000 | 22 | 0.022 |
333 | 33000 | 33 | 0.033 |
473 | 47000 | 47 | 0.047 |
683 | 68000 | 68 | 0.008 |
104 | 100000 | 100 | 0.1 |
154 | 150000 | 150 | 0.15 |
224 | 220000 | 220 | 0.22 |
334 | 330000 | 330 | 0.33 |
474 | 470000 | 470 | 0.47 |
684 | 680000 | 680 | 0.68 |
105 | 1000000 | 1000 | 1.0 |
Маркировка твердотельных конденсаторов
По международному стандарту — начинают читать с единиц измерения. Фарады применяются для измерения ёмкости. Маркировку наносят на корпус самого устройства.
Иногда наносят маркеры, которые указывают на допустимые отклонения от нормы емкости самого конденсатора (указывается в процентах).
Порой, вместо них используется буква, которая обозначает то или иное значение самого допуска. Затем опреедляем номинальное напряжение. В том случае, если же корпус устройства имеет большие размеры, данный параметр обозначается цифрой, за которой далее следуют буквы. Максимально допустимое значение параметра указывается с помощью цифр. Если на корпусе нет никакой информации о допустимом значении напряжения, то использовать его можно только в цепях с низким напряжением. Если же устройство, согласно его параметрам, должно использоваться в цепях, где есть переменный ток, то применяться оно, соответсвенно, должно именно так и не иначе.
Устройство, которое работает с постоянным током, нельзя использовать в цепях с переменным.
Далее, определием полярность устройства: положительную и же отрицательную. Этот шаг очень важен. Если полюса будут определены неверно, велик риск возникновения короткого замыкания или даже взрыва самого устройства. Независимо от полярности, конденсатор можно будет подключить в том случае, если не указана какая-либо информация о плюсе и же минусе клемм.
Значение полярности могут наносить в виде специальных углублений, которые имеют форму кольца, или же в виде одноцветной полосы. В конденсаторах из алюминия, которые по своему внешнему виду похожи на банку из-под консервов, подобные обозначения говорят об отрицательной полярности. А, например, в танталовых конденсаторах, которые имеют небольшие габариты, все наоборот — полярность при данных обозначениях будет являться положительной. Цветовую маркировку не стоит учитывать лишь в том случае, если на самом конденсаторе будут указаны плюс и минус.
Маркировка конденсаторов: расшифровка
Значения первых двух цифр на корпусе, которые указывают на ёмкость устройства. Если конденсатор небольшого размера — маркировка осуществляется согласно стандарту EIA.
Цифры: обозначение
Когда в обозначении указаны только одна буква и две цифры, то цифры соответствуют параметру ёмкости конденсатора. По-своему нужно расшифровывать остальные маркировки, опираясь на ту или иную инструкцию. Множитель нуля — это третья по счету цифра. Расшифровку проводят в зависимости от того, какая цифра находится в конце. К первым двум цифрам необходимо добавить определённое количество нолей, если цифра входит в диапазон от ноля до шести. Если последней цифрой является число восемь, то в таком случае необходимо на 0,01 умножить две первые цифры. Когда значение ёмкости конденсатора станет известным, нужен будет определить то, в таких единицах измерения указана данная величина. Устройства из керамики, а также плёночные варианты являются мелкими. В них данный параметр измеряется в пикофарадах. Микрофарады используются для больших конденсаторов.
Буквы: их обозначение
Далее необходимо провести расшифровку букв, которые есть в маркировке. Если в первых двух символах есть буква, то в таком случае расшифровать ее можно несколькими методами. Если есть буква R, то она играет роль запятой, которая используется в дроби. Если есть буквы u, n, p — то оно тоже выполняют роль запятой в той же самой дроби.
Керамические конденсаторы: маркировка
Данные виды устройств имеют два контакта, а также круглую форму. На корпусе будут указаны как основные показатели, так и допуск отклонений от номы параметра ёмкости. Для этого используют специальную букву, которая находится после обозначения ёмкости в цифрах.
Если есть буква В, то отклонение в таком случае будет равняться +0,1 пФ, если буква С — то + 0,25 пФ и так далее. Только при значении параметра ёмкости менее 10пФ используются данные значения. Если параметр ёмкости больше указанного выше, то буквы — это процент допустимых отклонений.
Смешанная маркировка из цифр и букв
Маркировка может быть указана в виде буквы, затем цифры, а после снова буквы. Первый символ — это самая маленькая допустимая температура. Второй символ обозначает, наоборот, самую большую допустимую температуру. Третий символ — это ёмкость устройства, которая может изменяться в переделах ранее указанных значений температур.
Остальные маркировки
Значение напряжения можно узнать с помощью маркировки, которая находится на корпусе устройства. Символы говорят о допустимом максимальном значении параметра для того или иного конденсатора. Иногда маркировку упрощают. Например, используется только первая цифра. Напряжение меньше десяти вольт будет обозначаться, например, нулём, а этот же параметр, который будет иметь напряжение в пределах от десяти до девяноста девяти вольт — единицей и так далее. Другую маркировку имеют устройства, которые были выпущены намного раньше. Тогда нужно обратиться к справочнику во избежание совершения ошибок. У нас вы можете также узнать, как проверить конденсатор мультиметром на плате.
Маркировка конденсаторов — radiohlam.
ru
1. Маркировка тремя цифрами.
В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).
код | пикофарады, пФ, pF | нанофарады, нФ, nF | микрофарады, мкФ, μF |
109 | 1.0 пФ | ||
159 | 1.5 пФ | ||
229 | 2.2 пФ | ||
339 | 3.3 пФ | ||
479 | 4.7 пФ | ||
689 | 6.8 пФ | ||
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0. 047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0. 01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
2. Маркировка четырьмя цифрами.
Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:
1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.
3. Буквенно-цифровая маркировка.
При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:
15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ
Очень часто бывает трудно отличить русскую букву «п» от английской «n».
Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:
0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ
4. Планарные керамические конденсаторы.
Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:
N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ
S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ
маркировка | значение | маркировка | значение | маркировка | значение | маркировка | значение |
A | 1. 0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4. 3 | Z | 9.1 | t | 8.0 |
5. Планарные электролитические конденсаторы.
Электролитические SMD конденсаторы маркируются двумя способами:
1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.
2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:
, по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В
буква | e | G | J | A | C | D | E | V | H (T для танталовых) | K | 2A |
напряжение (Вольт) | 2,5 | 4 | 6,3 (иногда 63) | 10 | 16 | 20 | 25 | 35 | 50 | 80 | 100 |
Как работают конденсаторы, параметры конденсаторов
Маркировка конденсаторов
- Подробности
- Категория: Начинающим
Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов:
- Кодовая маркировка 3 цифрами;
- Кодовая маркировка 4 цифрами;
- Буквенно цифровая маркировка;
- Специальная маркировка для планарных конденсаторов.
Кодовая маркировка конденсаторов 3 цифрами
К примеру конденсатор с обозначением 153 означает что его емкость составляет 15000 пФ.
Код | Пикофарады, пФ, pF | Нанофарады, нФ, nF | Микрофарады, мкФ, μF |
109 | 1.0 пФ | 0.0010нф | |
159 | 1.5 пФ | 0.0015нф | |
229 | 2.2 пФ | 0.0022нф | |
339 | 3.3 пФ | 0.0033нф | |
479 | 4.7 пФ | 0.0048нф | |
689 | 6.8 пФ | 0.0068нФ | |
100 | 10 пФ | 0.01 нФ | |
150 | 15 пФ | 0.015 нФ | |
220 | 22 пФ | 0.022 нФ | |
330 | 33 пФ | 0.033 нФ | |
470 | 47 пФ | 0.047 нФ | |
680 | 68 пФ | 0.068 нФ | |
101 | 100 пФ | 0.1 нФ | |
151 | 150 пФ | 0.15 нФ | |
221 | 220 пФ | 0.22 нФ | |
331 | 330 пФ | 0.33 нФ | |
471 | 470 пФ | 0.47 нФ | |
681 | 680 пФ | 0.68 нФ | |
102 | 1000 пФ | 1 нФ | |
152 | 1500 пФ | 1.5 нФ | |
222 | 2200 пФ | 2.2 нФ | |
332 | 3300 пФ | 3.3 нФ | |
472 | 4700 пФ | 4.7 нФ | |
682 | 6800 пФ | 6.8 нФ | |
103 | 10000 пФ | 10 нФ | 0.01 мкФ |
153 | 15000 пФ | 15 нФ | 0.015 мкФ |
223 | 22000 пФ | 22 нФ | 0.022 мкФ |
333 | 33000 пФ | 33 нФ | 0.033 мкФ |
473 | 47000 пФ | 47 нФ | 0.047 мкФ |
683 | 68000 пФ | 68 нФ | 0.068 мкФ |
104 | 100000 пФ | 100 нФ | 0.1 мкФ |
154 | 150000 пФ | 150 нФ | 0.15 мкФ |
224 | 220000 пФ | 220 нФ | 0.22 мкФ |
334 | 330000 пФ | 330 нФ | 0.33 мкФ |
474 | 470000 пФ | 470 нФ | 0.47 мкФ |
684 | 680000 пФ | 680 нФ | 0.68 мкФ |
105 | 1000000 пФ | 1000 нФ | 1 мкФ |
Кодовая маркировка конденсаторов 4 цифрами
При маркировки конденсаторов этим способом важно запомнить что полученное значение будет измеряться в пикоФарадах. К примеру маркировка конденсатора 1002 будет расшифровываться следующим образом: 1002 = 100*102 пФ = 10000 пФ = 10.0 нФ. Последняя цифра это показатель степени по основанию 10. А первые три это число которое необходимо умножить на 10 возведенную в определенную степень.
Буквенно-цифровая маркировка
В данном случае вместо запятой ставится соответсвующая единица измерения (пФ, нФ, мкФ).
Пример: 10п или 10p = 10 пФ, 4n7 или 4н7 = 4,7 нФ, μ22 = 0.22 мкФ.
Вожно запомнить что буква «п» очень похожа на «n» и не нужно их путать. Что довольно часто делают начинающие радиолюбители.
Иногда вместо мкФ используют букву R.
Например: 6R8 = 6,8 мкФ
Маркировка планарных керамических конденсаторов
Такие конденсаторы маркируются двумя буквами, первая это производитель конденсатора, а вторая это значение в пикофарадах в соответствии с таблицей, приведенной ниже.
Маркировка | Значение | Маркировка | Значение | Маркировка | Значение | Маркировка | Значение |
A | 1.0 | J | 2.2 | S | 4.7 | a | 2.5 |
B | 1.1 | K | 2.4 | T | 5.1 | b | 3.5 |
C | 1.2 | L | 2.7 | U | 5.6 | d | 4.0 |
D | 1.3 | M | 3.0 | V | 6.2 | e | 4.5 |
E | 1.5 | N | 3.3 | W | 6.8 | f | 5.0 |
F | 1.6 | P | 3.6 | X | 7.5 | m | 6.0 |
G | 1.8 | Q | 3.9 | Y | 8.2 | n | 7.0 |
H | 2.0 | R | 4.3 | Z | 9.1 | t | 8.0 |
Маркировка планарных электролитических конденсаторов
Существую два основных способов маркировки таких конденсаторов:
- Буквенно-цифровой. Пример: 10 3.3V что соответсвует 10мкФ и 3.3 Вольтам.
- В соответствии с кодом. Пример : G101 где G — это напряжение по таблице, а 101 это10*101 что соответсвует 100пФ.
Буква | e | G | J | A | C | D | E | V | H (T для танталовых) |
Напряжение | 2,5 В | 4 В | 6,3 В | 10 В | 16 В | 20 В | 25 В | 35 В | 50 В |
- < Назад
- Вперёд >
Добавить комментарий
Кодовая и цветовая маркировка конденсаторов
Допуски
В соответствии с требованиями Публикаций 62 и 115-2 IEC для конденсаторов установлены следующие допуски и их кодировка:
Таблица 1
Допуск [%] | Буквенное обозначение | Цвет |
±0,1* | В(Ж) | |
±0,25* | С(У) | оранжевый |
±0,5* | D(Д) | желтый |
±1,0* | F(P) | коричневый |
±2,0 | G(Л) | красный |
±5,0 | J(И) | зеленый |
±10 | К(С) | белый |
±20 | М(В) | черный |
±30 | N(Ф) | |
-10…+30 | Q(0) | |
-10…+50 | Т(Э] | |
-10…+100 | Y(Ю) | |
-20…+50 | S(Б) | фиолетовый |
-20,..+80 | Z(A) | серый |
*-Для конденсаторов емкостью < 10 пФ допуск указан в пикофарадах.
Перерасчет допуска из % (δ) в фарады (Δ):
Δ=(δхС/100%)[Ф]
Пример:
Реальное значение конденсатора с маркировкой 221J (0.22 нФ ±5%) лежит в диапазоне: С=0.22 нФ ± Δ = (0.22 ±0.01) нФ, где Δ= (0.22 х 10-9 [Ф] х 5) х 0.01 = 0.01 нФ, или, соответственно, от 0.21 до 0.23 нФ.
Температурный коэффициент емкости (ТКЕ)
Маркировка конденсаторов с ненормируемым ТКЕ
Таблица 2
Группа ТКЕ | Допуск при -6О…+85°С[%] | Буквенный код | Цвет* |
Н10 | ±10 | В | оранжевый+черный |
Н20 | ±20 | Z | оранжевый+красный |
Н30 | ±30 | D | оранжевый+зеленый |
Н50 | ±50 | X | оранжевый+голубой |
Н70 | ±70 | Е | оранжевый+фиолетовый |
Н90 | ±90 | F | оранжевый+белый |
* Современная цветовая кодировка, Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Маркировка конденсаторов с линейной зависимостью от температуры
Таблица 3
Обозначение ГОСТ | Обозначение международное | ТКЕ [ppm/°C]* | Буквенный код | Цвет** |
П100 | P100 | 100 (+130…-49) | A | красный+фиолетовый |
П33 | 33 | N | серый | |
МПО | NPO | 0(+30..-75) | С | черный |
М33 | N030 | -33(+30…-80] | Н | коричневый |
М75 | N080 | -75(+30…-80) | L | красный |
M150 | N150 | -150(+30…-105) | Р | оранжевый |
М220 | N220 | -220(+30…-120) | R | желтый |
М330 | N330 | -330(+60…-180) | S | зеленый |
М470 | N470 | -470(+60…-210) | Т | голубой |
М750 | N750 | -750(+120…-330) | U | фиолетовый |
М1500 | N1500 | -500(-250…-670) | V | оранжевый+оранжевый |
М2200 | N2200 | -2200 | К | желтый+оранжевый |
* В скобках приведен реальный разброс для импортных конденсаторов в диапазоне температур -55…+85°С.
** Современная цветовая кодировка в соответствии с EIA. Цветные полоски или точки. Второй цвет может быть представлен цветом корпуса.
Маркировка конденсаторов с нелинейной зависимостью от температуры
Таблица 4
Группа ТКЕ* | Допуск[%] | Температура**[°C] | Буквенный код *** | Цвет*** |
Y5F | ±7,5 | -30…+85 | ||
Y5P | ±10 | -30…+85 | серебряный | |
Y5R | -30…+85 | R | серый | |
Y5S | ±22 | -30…+85 | S | коричневый |
Y5U | +22…-56 | -30…+85 | A | |
Y5V(2F) | +22…-82 | -30…+85 | ||
X5F | ±7,5 | -55…+85 | ||
Х5Р | ±10 | -55…+85 | ||
X5S | ±22 | -55…+85 | ||
X5U | +22…-56 | -55…+85 | синий | |
X5V | +22…-82 | -55..+86 | ||
X7R(2R) | ±15 | -55…+125 | ||
Z5F | ±7,5 | -10…+85 | В | |
Z5P | ±10 | -10…+85 | С | |
Z5S | ±22 | -10…+85 | ||
Z5U(2E) | +22…-56 | -10…+85 | E | |
Z5V | +22…-82 | -10…+85 | F | зеленый |
SL0(GP) | +150…-1500 | -55…+150 | Nil | белый |
* Обозначение приведено в соответствии со стандартом EIA, в скобках — IEC.
** В зависимости от технологий, которыми обладает фирма, диапазон может быть другим. Например: фирма «Philips» для группы Y5P нормирует -55…+125 °С.
*** В соответствии с EIA. Некоторые фирмы, например «Panasonic», пользуются другой кодировкой.
Рис. 1
Таблица 5
Метки полосы, кольца, точки | 1 | 2 | 3 | 4 | 5 | 6 |
3 метки* | 1-я цифра | 2-я цифра | Множитель | — | — | — |
4 метки | 1-я цифра | 2-я цифра | Множитель | Допуск | — | — |
4 метки | 1-я цифра | 2-я цифра | Множитель | Напряжение | — | — |
4 метки | 1 и 2-я цифры | Множитель | Допуск | Напряжение | — | — |
5 меток | 1-я цифра | 2-я цифра | Множитель | Допуск | Напряжение | — |
5 меток» | 1-я цифра | 2-я цифра | Множитель | Допуск | ТКЕ | — |
6 меток | 1-я цифра | 2-я цифра | 3-я цифра | Множитель | Допуск | ТКЕ |
* Допуск 20%; возможно сочетание двух колец и точки, указывающей на множитель.
** Цвет корпуса указывает на значение рабочего напряжения.
Рис. 2
Таблица 6
Цвет | 1-я цифра мкФ | 2-я цифра мкФ | Множи- тель | Напряже- ние |
Черный | 0 | 1 | 10 | |
Коричневый | 1 | 1 | 10 | |
Красный | 2 | 2 | 100 | |
Оранжевый | 3 | 3 | ||
Желтый | 4 | 4 | 6,3 | |
Зеленый | 5 | 5 | 16 | |
Голубой | 6 | 6 | 20 | |
Фиолетовый | 7 | 7 | ||
Серый | 8 | 8 | 0,01 | 25 |
Белый | 9 | 9 | 0,1 | 3 |
Розовый | 35 |
Рис. 3
Таблица 7
Цвет | 1-я цифра пФ | 2-я цифра пФ | 3-я цифра пФ | Множитель | Допуск | ТКЕ |
Серебряный | 0,01 | 10% | Y5P | |||
Золотой | 0,1 | 5% | ||||
Черный | 0 | 0 | 1 | 20%* | NPO | |
Коричневый | 1 | 1 | 1 | 10 | 1%** | Y56/N33 |
Красный | 2 | 2 | 2 | 100 | 2% | N75 |
Оранжевый | 3 | 3 | 3 | 103 | N150 | |
Желтый | 4 | 4 | 4 | 104 | N220 | |
Зеленый | 5 | 5 | 5 | 105 | N330 | |
Голубой | 6 | 6 | 6 | 106 | N470 | |
Фиолетовый | 7 | 7 | 7 | 107 | N750 | |
Серый | 8 | 8 | 8 | 108 | 30% | Y5R |
Белый | 9 | 9 | 9 | +80/-20% | SL |
* Для емкостей меньше 10 пФ допуск ±2,0 пФ.
** Для емкостей меньше 10 пФ допуск±0,1 пФ.
Рис. 4
Таблица 8
Цвет | 1-я и 2-я цифра пФ | Множитель | Допуск | Напряжение |
Черный | 10 | 1 | 20% | 4 |
Коричневый | 12 | 10 | 1% | 6,3 |
Красный | 15 | 100 | 2% | 10 |
Оранжевый | 18 | 103 | 0,25 пФ | 16 |
Желтый | 22 | 104 | 0,5 пФ | 40 |
Зеленый | 27 | 105 | 5% | 20/25 |
Голубой | 33 | 106 | 1% | 30/32 |
Фиолетовый | 39 | 107 | -2О…+5О% | |
Серый | 47 | 0,01 | -20…+80% | 3,2 |
Белый | 56 | 0,1 | 10% | 63 |
Серебряный | 68 | 2,5 | ||
Золотой | 82 | 5% | 1,6 |
Для маркировки пленочных конденсаторов используют 5 цветных полос или точек. Первые три кодируют значение номинальной емкости, четвертая — допуск, пятая — номинальное рабочее напряжение.
Рис. 5
Таблица 9
Номинальная емкость [мкФ] | Допуск | Напряжение | |||
0,01 | ±10% | 250 | |||
0,015 | |||||
0,02 | |||||
0,03 | |||||
0,04 | |||||
0,06 | |||||
0,10 | |||||
0,15 | |||||
0,22 | |||||
0,33 | ±20 | 400 | |||
0,47 | |||||
0,68 | |||||
1,0 | |||||
1,5 | |||||
2,2 | |||||
3,3 | |||||
4,7 | |||||
6,8 | |||||
1 полоса | 2 полоса | 3 полоса | 4 полоса | 5 полоса |
Кодовая маркировка конденсаторов
В соответствии со стандартами IEC на практике применяется четыре способа кодировки номинальной емкости.
А. Маркировка 3 цифрами
Первые две цифры указывают на значение емкости в пигофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пф.
Таблица 10
Код | Емкость [пФ] | Емкость [нФ] | Емкость [мкФ] |
109 | 1,0 | 0,001 | 0,000001 |
159 | 1,5 | 0,0015 | 0,000001 |
229 | 2,2 | 0,0022 | 0,000001 |
339 | 3,3 | 0,0033 | 0,000001 |
479 | 4,7 | 0,0047 | 0,000001 |
689 | 6,8 | 0,0068 | 0,000001 |
100* | 10 | 0,01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0,022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0,047 | 0,000047 |
680 | 68 | 0,068 | 0,000068 |
101 | 100 | 0,1 | 0,0001 |
151 | 150 | 0,15 | 0,00015 |
221 | 220 | 0,22 | 0,00022 |
331 | 330 | 0,33 | 0,00033 |
471 | 470 | 0,47 | 0,00047 |
681 | 680 | 0,68 | 0,00068 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1,5 | 0,0015 |
222 | 2200 | 2,2 | 0,0022 |
332 | 3300 | 3,3 | 0,0033 |
472 | 4700 | 4,7 | 0,0047 |
682 | 6800 | 6,8 | 0,0068 |
103 | 10000 | 10 | 0,01 |
153 | 15000 | 15 | 0,015 |
223 | 22000 | 22 | 0,022 |
333 | 33000 | 33 | 0,033 |
473 | 47000 | 47 | 0,047 |
683 | 68000 | 68 | 0,068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0,15 |
224 | 220000 | 220 | 0,22 |
334 | 330000 | 330 | 0,33 |
474 | 470000 | 470 | 0,47 |
684 | 680000 | 680 | 0,68 |
105 | 1000000 | 1000 | 1,0 |
* Иногда последний ноль не указывают.
В. Маркировка 4 цифрами
Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах.
Таблица 11
Код | Емкость[пФ] | Емкость[нФ] | Емкость[мкФ] |
1622 | 16200 | 16,2 | 0,0162 |
4753 | 475000 | 475 | 0,475 |
Рис. 6
С. Маркировка емкости в микрофарадах
Вместо десятичной точки может ставиться буква R.
Таблица 12
Код | Емкость [мкФ] |
R1 | 0,1 |
R47 | 0,47 |
1 | 1,0 |
4R7 | 4,7 |
10 | 10 |
100 | 100 |
Рис. 7
D. Смешанная буквенно-цифровая маркировка емкости, допуска, ТКЕ, рабочего напряжения
В отличие от первых трех параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.
Таблица 13
Код | Емкость |
p10 | 0,1 пФ |
Ip5 | 1,5 пФ |
332p | 332 пФ |
1НО или 1nО | 1,0 нФ |
15Н или 15n | 15 нФ |
33h3 или 33n2 | 33,2 нФ |
590H или 590n | 590 нФ |
m15 | 0,15мкФ |
1m5 | 1,5 мкФ |
33m2 | 33,2 мкФ |
330m | 330 мкФ |
1mO | 1 мФ или 1000 мкФ |
10m | 10 мФ |
Рис. 8
Кодовая маркировка кондесаторов электролетических для поверхностного монтажа
Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами, как «Panasonic», «Hitachi» и др. Различают три основных способа кодирования
А. Маркировка 2 или 3 символами
Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.
Рис. 9
Таблица 14
Код | Емкость [мкФ] | Напряжение [В] |
А6 | 1,0 | 16/35 |
А7 | 10 | 4 |
АА7 | 10 | 10 |
АЕ7 | 15 | 10 |
AJ6 | 2,2 | 10 |
AJ7 | 22 | 10 |
AN6 | 3,3 | 10 |
AN7 | 33 | 10 |
AS6 | 4,7 | 10 |
AW6 | 6,8 | 10 |
СА7 | 10 | 16 |
СЕ6 | 1,5 | 16 |
СЕ7 | 15 | 16 |
CJ6 | 2,2 | 16 |
CN6 | 3,3 | 16 |
CS6 | 4,7 | 16 |
CW6 | 6,8 | 16 |
DA6 | 1,0 | 20 |
DA7 | 10 | 20 |
DE6 | 1,5 | 20 |
DJ6 | 2,2 | 20 |
DN6 | 3,3 | 20 |
DS6 | 4,7 | 20 |
DW6 | 6,8 | 20 |
Е6 | 1,5 | 10/25 |
ЕА6 | 1,0 | 25 |
ЕЕ6 | 1,5 | 25 |
EJ6 | 2,2 | 25 |
EN6 | 3,3 | 25 |
ES6 | 4,7 | 25 |
EW5 | 0,68 | 25 |
GA7 | 10 | 4 |
GE7 | 15 | 4 |
GJ7 | 22 | 4 |
GN7 | 33 | 4 |
GS6 | 4,7 | 4 |
GS7 | 47 | 4 |
GW6 | 6,8 | 4 |
GW7 | 68 | 4 |
J6 | 2,2 | 6,3/7/20 |
JA7 | 10 | 6,3/7 |
JE7 | 15 | 6,3/7 |
JJ7 | 22 | 6,3/7 |
JN6 | 3,3 | 6,3/7 |
JN7 | 33 | 6,3/7 |
JS6 | 4,7 | 6,3/7 |
JS7 | 47 | 6,3/7 |
JW6 | 6,8 | 6,3/7 |
N5 | 0,33 | 35 |
N6 | 3,3 | 4/16 |
S5 | 0,47 | 25/35 |
VA6 | 1,0 | 35 |
VE6 | 1,5 | 35 |
VJ6 | 2,2 | 35 |
VN6 | 3,3 | 35 |
VS5 | 0,47 | 35 |
VW5 | 0,68 | 35 |
W5 | 0,68 | 20/35 |
Рис. 10
В. Маркировка 4 символами
Код содержит четыре знака (буквы и цифры), обозначающие емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — номинальную емкость в пикофарадах (пФ), а последняя цифра — количество нулей. Возможны 2 варианта кодировки емкости: а) первые две цифры указывают номинал в пикофарадах, третья — количество нулей; б) емкость указывают в микрофарадах, знак m выполняет функцию десятичной запятой. Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.
Рис. 11
С. Маркировка в две строки
Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может указываться непосредственно в микрофарадах (мкФ) или в пикофарадах (пф) с указанием количества нулей (см. способ В). Например, первая строка — 15, вторая строка — 35V — означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.
Рис. 12
Маркировка конденсаторов пленочных для поверхностного монтажа фирмы «HITACHI»
Рис. 13
Назначение выводов керамического конденсатора
, описание, параметры и техническое описание
Контакт Конфигурация
Керамические конденсаторы не имеют полярности. То есть их можно соединять в любом направлении. Они совместимы с макетными платами и могут быть легко использованы на перфокартах. Обозначение керамического конденсатора представляет собой две простые линии, как показано выше, поскольку они не имеют полярности.
Примечание: Есть много типов конденсаторов; однако керамические конденсаторы являются наиболее широко используемыми, и этот документ применим только к ним.
Керамический конденсатор Характеристики
- Тип конденсатора — керамический
- Имеет широкий диапазон значений емкости от 10 пФ до 3,3 мкФ
- Имеет широкий диапазон значений напряжения от 16 В до 450 В.
- Выдерживает максимальную температуру 105 ° C
Другие типы конденсаторов
Керамический конденсатор, коробчатый конденсатор, переменный конденсатор, майларовые конденсаторы.
Идентификация керамических конденсаторов
Значение керамической емкости на конденсаторе не указывается. Всегда будет трехзначное число, за которым следует переменная; давайте узнаем, как определить значение с помощью этих чисел. Рассмотрим следующий конденсатор.
Как вы можете заметить, эти три цифры делятся на две цифры, а третья — множитель. В этом случае 68 — это цифра, а 3 — множитель.0 равно 0.
Номинальное напряжение конденсатора можно найти, используя строку под этим кодом. Если линия есть, то значение напряжения составляет 50/100 В, если линии нет, то это 500 В.
Наиболее часто используемые значения конденсаторов вместе с их преобразованием в Пико Фарад, Нано Фарад и микрофарады приведены ниже.
Код | Пикофарад (пФ) | Нанофарад (нФ) | Микрофарад (мкФ) |
100 | 10 | 0.01 | 0,00001 |
150 | 15 | 0,015 | 0,000015 |
220 | 22 | 0.022 | 0,000022 |
330 | 33 | 0,033 | 0,000033 |
470 | 47 | 0.047 | 0,000047 |
331 | 330 | 0,33 | 0,00033 |
821 | 820 | 0.82 | 0,00082 |
102 | 1000 | 1,0 | 0,001 |
152 | 1500 | 1.5 | 0,0015 |
202 | 2000 | 2,0 | 0,002 |
502 | 5000 | 5.0 | 0,005 |
103 | 10000 | 10 | 0,01 |
683 | 68000 | 68 | 0.068 |
104 | 100000 | 100 | 0,1 |
154 | 150000 | 150 | 0.15 |
334 | 330000 | 330 | 0,33 |
684 | 680000 | 680 | 0.68 |
105 | 1000000 | 1000 | 1,0 |
335 | 3300000 | 3300 | 3.3 |
Выбор параметров конденсатора
Вы когда-нибудь задумывались о типах керамических конденсаторов , доступных на рынке, и о том, как выбрать один для вашего проекта? Керамические конденсаторы можно классифицировать по двум основным параметрам. Один из них — их емкость (К-Фарад) , а другой — его номинальное напряжение (В-В) .
Конденсатор — это пассивный компонент, который может накапливать заряд (Q).Этот заряд (Q) будет произведением значения емкости (C) и приложенного к нему напряжения (V). Значение емкости и напряжения конденсатора будет указано на его этикетке.
Следовательно, количество заряда конденсатора можно найти, используя значение напряжения (В) и емкости (C) конденсатора.
C = Q × V
Конденсатор последовательно и параллельно
В большинстве схем значение емкости не обязательно должно быть точно таким же, как указано в схеме.Более высокое значение емкости обычно не влияет на работу схемы. Однако значение напряжения должно быть таким же или выше указанного значения, чтобы предотвратить риск, упомянутый выше в мерах предосторожности. В этом случае, если у вас нет точного значения, вы можете использовать конденсаторы, включенные последовательно или параллельно, для достижения желаемого значения.
Когда два конденсатора соединены последовательно , тогда значение емкости (C) складывается обратно пропорционально, а номинальное напряжение (В) складывается последовательно, как показано на рисунке ниже.
Когда два конденсатора подключены параллельно , тогда значение емкости (C) складывается напрямую, а номинальное напряжение (V) остается таким же, как показано на рисунке ниже.
Приложения
- Фильтрующие контуры, такие как фильтр высоких / низких частот и т. (- 12) метод).5 = 1000000 пФ = 1 мкФ
Как и обычное сопротивление, единицей сопротивления конденсаторов является «Ом».
Классификация керамических конденсаторов:
Керамические чип-конденсаторы
можно разделить на два типа: высокочастотные керамические и низкочастотные керамические.
MLCC (класс 1) — миниатюризация, высокая частота, сверхмалые потери, низкое ESR, высокая стабильность, выдерживание высокого напряжения, высокая изоляция, высокая надежность, неполярность, низкая емкость, низкая стоимость, высокая термостойкость, в основном используется в высокочастотные цепи.
MLCC (Категория 2) — миниатюризация, высокий удельный объем, среднее и высокое давление, отсутствие полярности, высокая надежность, устойчивость к высоким температурам, низкое СОЭ, низкая стоимость. Он в основном используется для конденсаторов, таких как изоляция, связь, байпас и фильтрация в цепях средней и низкой частоты.
Дискриминантный метод выдерживаемого напряжения керамического конденсатора и полиэфирного конденсатора:
1J означает 6.3X10 = 63V
2F означает 3,15X100 = 315V
3A обозначает 1.0X1000 = 1000 В
1K означает 8.0X10 = 80V
Максимальное число — 4. Например, 4Z означает 90 000 В.
Существует также два распространенных способа маркировки выдерживаемого напряжения керамического конденсатора: один — это напечатать значение выдерживаемого напряжения непосредственно на керамическом конденсаторе, другой — использовать комбинацию цифры и буквы. Цифры обозначают показатель степени 10, буквы обозначают значения, а единицы измерения — В (вольты).
Также арабская буква A / B / C / D / E / F / G / H / J / K / Z
Соответствующее выдерживаемое напряжение составляет 1,0 / 1,25 / 1,6 / 2,0 / 2,5 / 3,15 / 4,0 / 5,0 / 6,3 / 8,0 / 9,0.
Если вы хотите узнать больше о керамическом конденсаторе, нажмите на него или войдите в магазин! Керамические конденсаторы ждут вас!
КОНДЕНСАТОР: 6 ступеней
Для некоторых проектов требуются промежуточные значения емкости, отличные от стандартных. Не волнуйтесь !!!
Вы можете легко задать любое необходимое значение емкости.
Последовательное или параллельное подключение емкости помогает создать любое требуемое значение емкости.
При параллельном подключении все значения емкости складываются, тогда как при последовательном соединении общее значение емкости уменьшается.
Параллельные конденсаторы —
При параллельном подключении конденсаторов эффективная емкость определяется как -> C = (C1 + C2 + C3 + ……)
Например —
We есть три конденсатора номиналом — 10 мкФ, 100 мкФ и 20 мкФ.
Итак, если мы соединим их параллельно, мы получим эффективную емкость как —
C = 10 + 100 + 20
C = 130 мкФ
Это показывает, что значение емкости увеличилось.
Примечание. Здесь, поскольку все конденсаторы включены параллельно, номинальное напряжение остается одинаковым для всех. Все конденсаторы, подключаемые параллельно, должны иметь одинаковое номинальное напряжение. Если это не так, то преобладает конденсатор с наименьшим номинальным напряжением, и этот номинал является максимальным номиналом конденсаторов, подключенных параллельно.
Таким образом, вы можете получить любое необходимое большое значение емкости.
Емкость в серии —
Когда конденсаторы подключены последовательно, эффективная емкость определяется как -> C = 1 / [(1 / C1) + (1 / C2) + (1 / C3) +. ….]
Например —
У нас есть три конденсатора номиналов — 100 мкФ, 50 мкФ и 20 мкФ.
Итак, если мы соединим их последовательно, мы получим эффективную емкость как —
C = 1 / [(1/100) + (1/50) + (1/20)]
C = 1 / [(0 .01) + (0,02) + (0,05)]
C = 1 / [0,08]
C = 12,5 мкФ
Это показывает, что значение емкости уменьшилось.
Примечание. Здесь, поскольку все конденсаторы включены последовательно, номинальное напряжение суммируется. Все подключаемые последовательно конденсаторы могут иметь любое номинальное напряжение. Общая сумма номинальных напряжений каждого конденсатора обозначает максимальное номинальное напряжение конденсаторов в серии
Таким образом, вы можете получить любое требуемое малое значение емкости.
Калькулятор значения / кода конденсатора
Этот калькулятор значения конденсатора вычисляет значение емкости керамического конденсатора после ввода кода конденсатора в поле ввода ниже.
Калькулятор кода конденсатора
Этот калькулятор кодов конденсатора вычисляет код керамического конденсатора после ввода значения емкости конденсатора в поле ввода ниже.
Как работает калькулятор номинала конденсатора / кода?
Поскольку керамические конденсаторы имеют меньшую площадь поверхности из-за их крошечного размера, их значение не записывается в конденсаторе, вместо этого на них записывается закодированный код.Используя этот калькулятор стоимости конденсатора, мы можем рассчитать значение этого конденсатора или наоборот. Для электролитических конденсаторов на них просто написаны значения емкости.
Кодировка керамических конденсаторов
Кодировка керамических конденсаторов состоит из 1–3 цифр.
Если код конденсатора состоит только из 1 или 2 цифр, это просто значение их емкости в пикофарадах (пФ). Например, если керамический конденсатор имеет код «5», а другой — «47», их соответствующие значения емкости составляют 5 пФ и 47 пФ.
Для трехзначного кода конденсатора первые две цифры представляют собой значение емкости в пФ, а третья цифра — коэффициент умножения первых двух цифр для расчета окончательного значения емкости конденсатора.
3 -е число находится в диапазоне от 0 до 6. Оно не может превышать 6.
Если 3 rd цифра 0, это означает коэффициент множителя 1.
Если 3 число равно 1, это означает, что коэффициент умножения равен 10.
Если 3 rd цифра 2, это означает множитель 100.
Если 3 rd цифра 3, это означает множитель 1000.
Если 3 rd цифра 4, это означает множитель 10000.
Если 3 rd цифра 5, это означает множитель 100000.
Если 3 rd цифра 6, это означает множитель 1000000.
Чтобы понять, как работает умножитель, рассмотрим пример конденсатора с кодом «104».
Поскольку первые две цифры равны 10, а цифра 3 rd равна 4, то коэффициент умножения равен 10000, общее значение емкости в пФ будет следующим:
10 * 10000 = 100000 пФ
Аналогичным образом, если код конденсатора равен 152, цифра 3 rd равна 2, поэтому коэффициент умножения равен 100. Значение емкости будет рассчитано следующим образом:
15 * 100 = 1500 пФ
Вот как калькулятор / кода конденсатора вычисляет значение керамического конденсатора из кода конденсатора, или наоборот.
Как читать значение кода конденсатора
Очень простой метод считывания значения конденсатора
Нажмите здесь, чтобы увидеть цветовой код резистора и код резистора SMD
• На керамических дисковых конденсаторах напечатан двух- или трехзначный код.
• Первые два числа описывают емкость конденсатора, а третье число — количество нулей в умножителе.
• Когда первые два числа умножаются на множитель, результирующее значение является значением конденсатора в пикофарадах .
• Если есть только два числа, это означает, что множителя нет. Затем вы просто считываете значение первых двух чисел в пикофарадах .
• Если на каком-либо конденсаторе напечатано 10 — тогда его значение будет 10 PF
• Когда на каком-либо конденсаторе напечатано 104 — он имеет множитель 4 (третье число кода). 10 умножается на 10 × 10 4 = 10000. Тогда его значение 10 × 10000 = 100000ПФ
Вот таблица наиболее часто используемых кодов керамических конденсаторов и их преобразование единиц в Micro, Nano и Picofarad
Последнее число является степенью 10 и умножается на первые два числа.
Если конденсатор имеет код 682 — сначала проверьте последнее «нет», здесь последнее «нет» — 2. Теперь множитель 10 2
Например —
- 204 = 20 × 10 4 = 200000 ПФ
- 472 = 47 × 10 2 = 4700 ПФ
- 502 = 50 × 10 2 = 5000 ПФ
- 330 = 33 × 10 0 = 33 ПФ [10 0 = 1]
ЕДИНИЦ —
- 1000 нанофарад (нФ) = 1 микрофарад (мкФ)
- 1 пикофарад = 10 -12 фарад.
- Нано = 10 -9
- Микро = 10 -6
- 1 нанофарад = 10 -9 фарад
- 1 Микрофарад (мкФ) = 10 -6 Фарад
1 нФ = 1000 пФ
1 пФ = 0,001 нФПример:
преобразовать 15 нФ в пФ:
15 нФ = 15 × 1000 пФ = 15000 пФКоды полиэфирной пленки и металлизированного пленочного конденсатора
Если конденсатор имеет маркировку 2A474J , емкость декодируется, как описано выше, два первых знака представляют собой номинальное напряжение и могут быть декодированы из приведенной ниже таблицы. 2A — это номинальное напряжение 100 В постоянного тока в соответствии со стандартом EIA (Electronic Industries Alliance).
Вторая буква будет температурным коэффициентом, если он присутствует.
Некоторые конденсаторы имеют маркировку только 0,1 или 0,01 , в большинстве случаев значения указаны в мкФ.
Некоторые конденсаторы малой емкости могут быть помечены буквой R. Если код 3R9, то R является индикатором значений менее 10 пФ и не имеет ничего общего с сопротивлением.3R9 будет 3,9 пФ.
105J = 10 × 105 = 1000000pf = 1000nf = 1.0 мкФ
j = +/- 5% Допуск
104 = 10 × 104 = 100000pf = 100nf = 0,1 мкФ
j = ± 5% допуск
2A = номинальное напряжение 100 В постоянного тока
Также читается
Об авторе
Админ
Привет, меня зовут Аман Бхарти, я интересуюсь изготовлением и изучением электроники, принципиальной схемы, проектированием и компоновкой печатных плат и т. Д.Мне нравится делиться знаниями и всеми идеями с людьми, которые я получаю из «Моего эксперимента» и из разных источников. Я стараюсь максимально подробно описать детали схемы с результатами испытаний. Если вы хотите что-то предложить или прокомментировать, оставьте свой комментарий в поле для комментариев на соответствующей странице.
Типы конденсаторов: работа и их применение
В любой электронной или электрической цепи конденсатор играет ключевую роль. Таким образом, каждый день может производиться от тысяч до миллионов конденсаторов различных типов.У каждого типа конденсатора есть свои преимущества, недостатки, функции и области применения. Таким образом, очень важно знать о каждом типе конденсатора при выборе для любого приложения. Эти конденсаторы варьируются от маленьких до больших, включая различные характеристики в зависимости от типа, что делает их уникальными. Маленькие и слабые конденсаторы можно найти в радиосхемах, тогда как большие конденсаторы используются в сглаживающих цепях. Конструкция небольших конденсаторов может быть выполнена с использованием керамических материалов, запечатанных эпоксидной смолой, в то время как конденсаторы промышленного назначения спроектированы с металлической фольгой с использованием тонких листов майлара, иначе пропитанной парафином бумаги.
Типы конденсаторов и их использование
Конденсатор является одним из наиболее часто используемых компонентов в проектировании электронных схем. Он играет важную роль во многих встроенных приложениях. Он доступен с разными рейтингами. Он состоит из двух металлических пластин , разделенных непроводящим веществом, или диэлектриком . Часто это хранилища аналоговых сигналов и цифровых данных.
Сравнение между различными типами конденсаторов обычно проводится в отношении диэлектрика, используемого между пластинами.Некоторые конденсаторы выглядят как трубки, небольшие конденсаторы часто изготавливаются из керамических материалов, а затем погружаются в эпоксидную смолу для их герметизации. Итак, вот несколько наиболее распространенных типов доступных конденсаторов. Посмотрим на них.
Диэлектрический конденсатор
Как правило, эти типы конденсаторов относятся к переменному типу, для настройки которого требуется постоянное изменение емкости передатчиков, приемников и транзисторных радиоприемников. Различные типы диэлектриков доступны в многопластинчатом исполнении и с воздушным зазором.Эти конденсаторы имеют набор фиксированных и подвижных пластин для перемещения между фиксированными пластинами.
Положение подвижной пластины по сравнению с неподвижными пластинами определяет приблизительное значение емкости. Как правило, емкость максимальна, когда два набора пластин полностью соединены. Настроечный конденсатор с высокой емкостью включает в себя довольно большие промежутки, в противном случае воздушные зазоры между двумя пластинами с пробивным напряжением, достигающим тысячи вольт.
Слюдяной конденсатор
Конденсатор, в котором в качестве диэлектрического материала используется слюда, известен как слюдяной конденсатор.Эти конденсаторы доступны в двух типах: зажимные и серебряные. Зажимной тип сейчас считается устаревшим из-за его более низких характеристик, но вместо него используется серебряный тип.
Эти конденсаторы изготавливаются путем размещения листов слюды с металлическим покрытием на обеих сторонах. После этого эта конструкция покрывается эпоксидной смолой для защиты от окружающей среды. Как правило, эти конденсаторы используются всякий раз, когда требуются стабильные конденсаторы с относительно небольшими номиналами.
Минералы слюды чрезвычайно постоянны химически, механически и электрически из-за ее точной кристаллической структуры, которая включает типичные слои.Таким образом, возможно изготовление тонких листов толщиной от 0,025 до 0,125 мм.
Наиболее часто используемые слюда — флогопит и мусковит. В этом мусковит обладает хорошими электрическими свойствами, а второй — жаростойкостью. Слюда исследуется в Индии, Южной Америке и Центральной Африке. Большая разница в составе сырья приводит к высокой стоимости экспертизы и категоризации. Слюда не реагирует на кислоты, воду и масляные растворители.
Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о слюдяном конденсатореПоляризованный конденсатор
Конденсатор с определенной полярностью, такой как положительная и отрицательная, называется поляризованным конденсатором. Всякий раз, когда эти конденсаторы используются в схемах, мы должны проверять, что они соединены с идеальной полярностью. Эти конденсаторы делятся на два типа: электролитические и суперконденсаторы.
Пленочные конденсаторы
Пленочные конденсаторы
являются наиболее часто готовыми из множества типов конденсаторов, состоящих из, как правило, обширной группы конденсаторов, отличающихся своими диэлектрическими свойствами.Они доступны практически любого номинала и напряжения до 1500 вольт. Они бывают с любым допуском от 10% до 0,01%. Пленочные конденсаторы также бывают разных форм и стилей корпуса.
Существует два типа пленочных конденсаторов: с радиальными выводами и с осевыми выводами. Электроды пленочных конденсаторов могут быть из металлизированного алюминия или цинка, нанесенного на одну или обе стороны пластиковой пленки, в результате чего получаются металлизированные пленочные конденсаторы, называемые пленочными конденсаторами. Пленочный конденсатор показан на рисунке ниже: Пленочные конденсаторы
Пленочные конденсаторы
иногда называют пластиковыми конденсаторами, поскольку в качестве диэлектриков они используют полистирол, поликарбонат или тефлон.Этим типам пленок требуется гораздо более толстая диэлектрическая пленка, чтобы уменьшить опасность разрывов или проколов пленки, и поэтому они больше подходят для более низких значений емкости и больших размеров корпуса.
Пленочные конденсаторы физически больше и дороже, они не поляризованы, поэтому их можно использовать в приложениях с переменным напряжением, и они имеют гораздо более стабильные электрические параметры. В зависимости от емкости и коэффициента рассеяния, они могут применяться в приложениях класса 1 со стабильной частотой, заменяя керамические конденсаторы класса 1.
Керамические конденсаторы
Керамические конденсаторы используются в высокочастотных цепях, таких как аудио для RF. Они также являются лучшим выбором для компенсации высоких частот в аудиосхемах. Эти конденсаторы также называют дисковыми конденсаторами. Керамические конденсаторы изготавливаются путем покрытия двух сторон небольшого фарфорового или керамического диска серебром, а затем складываются вместе, образуя конденсатор. В керамических конденсаторах можно добиться как низкой, так и высокой емкости, изменяя толщину используемого керамического диска.Керамический конденсатор показан на рисунке ниже:
Керамические конденсаторы
Имеются значения от нескольких пикофарад до 1 микрофарада. Диапазон напряжения составляет от нескольких вольт до многих тысяч вольт. Керамика недорогая в производстве и бывает нескольких типов диэлектрика. Переносимость керамики невысока, но для той роли, которую она играет в жизни, они прекрасно работают.
Электролитические конденсаторы
Это наиболее часто используемые конденсаторы с большой допустимой емкостью.Электролитические конденсаторы доступны с рабочим напряжением примерно до 500 В, хотя самые высокие значения емкости недоступны при высоком напряжении, а устройства с более высокой температурой доступны, но редко. Обычно существует два типа электролитических конденсаторов: танталовые и алюминиевые.
Танталовые конденсаторы обычно лучше выставляются, имеют более высокую стоимость и готовы только к более ограниченным параметрам. Диэлектрические свойства оксида тантала намного превосходят свойства оксида алюминия, что обеспечивает более легкий ток утечки и лучшую емкость емкости, что делает их пригодными для создания препятствий, развязки и фильтрации.
Толщина пленки оксида алюминия и повышенное напряжение пробоя дают конденсаторам исключительно высокие значения емкости для их размера. В конденсаторе фольговые пластины анодированы постоянным током, таким образом устанавливая край материала пластины и подтверждая полярность его стороны.
Танталовые и алюминиевые конденсаторы показаны на рисунке ниже:
Электролитические конденсаторы
Электролитические конденсаторы делятся на два типа
- Алюминиевые электролитические конденсаторы
- Танталовые электролитические конденсаторы
- Ниобиевые электролитические конденсаторы
Перейдите по этой ссылке узнать больше об электролитических конденсаторах
Суперконденсаторы
Конденсаторы, которые имеют электрохимическую емкость с высокими значениями емкости по сравнению с другими конденсаторами, известны как суперконденсаторы.Их можно разделить на группы, состоящие из электролитических конденсаторов, а также аккумуляторных батарей, известных как ультраконденсаторы.
Использование этих конденсаторов дает несколько преимуществ, например, следующие:
- Значение емкости этого конденсатора высокое.
- Заряд может сохраняться, а также доставляться очень быстро.
- Эти конденсаторы могут выдерживать дополнительный заряд с циклами разрядки.
- Применения суперконденсаторов включают следующее.
- Эти конденсаторы используются в автобусах, автомобилях, поездах, кранах и лифтах.
- Они используются в рекуперативном торможении и для резервного копирования памяти.
- Эти конденсаторы доступны в различных типах, таких как двухслойные, псевдо и гибридные.
Неполяризованный конденсатор
Конденсаторы не имеют полярности, как положительную, иначе отрицательную. Электроды неполяризованных конденсаторов можно произвольно вставлять в цепь для обратной связи, связи, развязки, колебаний и компенсации.Эти конденсаторы имеют небольшую емкость, поэтому используются в чистых цепях переменного тока, а также используются в высокочастотной фильтрации. Выбор этих конденсаторов может быть сделан очень удобно с аналогичными моделями и техническими характеристиками. Типы неполяризованных конденсаторов:
Керамические конденсаторы
Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о керамических конденсаторах
Серебряные слюдяные конденсаторы
Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о слюдяных конденсаторах
Полиэфирные конденсаторы
Полиэфирные или майларовые конденсаторы дешев, точен и имеет небольшую утечку.Эти конденсаторы работают в диапазоне от 0,001 до 50 мкФ. Эти конденсаторы применимы там, где стабильность и точность не так важны.
Конденсаторы из полистирола
Эти конденсаторы чрезвычайно точны, имеют меньшую утечку. Они используются в фильтрах, а также там, где важны точность и стабильность. Они довольно дороги и работают в диапазоне от 10 пФ до 1 мФ.
Конденсаторы из поликарбоната
Эти конденсаторы дорогие и доступны в очень хорошем качестве, с высокой точностью и очень низкой утечкой.К сожалению, они были сняты с производства, и сейчас их трудно найти. Они хорошо работают в суровых и высокотемпературных условиях в диапазоне от 100 пФ до 20 мФ.
Полипропиленовые конденсаторы
Эти конденсаторы дорогие, и диапазон их рабочих характеристик может находиться в диапазоне от 100 пФ до 50 мФ. Они очень постоянны, точны во времени и имеют очень небольшую утечку.
Тефлоновые конденсаторы
Эти конденсаторы являются наиболее стабильными, точными и почти не имеют утечки.Они считаются лучшими конденсаторами. В широком диапазоне частотных вариаций образ поведения совершенно одинаков. Они работают в диапазоне от 100 пФ до 1 мФ.
Стеклянные конденсаторы
Эти конденсаторы очень прочные, стабильные и работают в диапазоне от 10 пФ до 1000 пФ. Но это тоже очень дорогие компоненты.
Полимерный конденсатор
Полимерный конденсатор — это электролитический конденсатор (e-cap), в котором вместо геля или жидких электролитов используется твердый электролит из проводящего полимера, такого как электролит.
Высыхания электролита легко избежать с помощью твердого электролита. Такая сушка — одна из особенностей, которые сокращают срок службы обычных электролитических конденсаторов. Эти конденсаторы подразделяются на разные типы, такие как полимерный танталовый e-cap, полимерный алюминиевый e-cap, гибридный полимерный Al-e-cap и полимерный ниобий.
В большинстве случаев в этих конденсаторах используется альтернатива электролитическим конденсаторам, только если не повышается максимальное номинальное напряжение.Максимальное номинальное напряжение твердотельных полимерных конденсаторов меньше по сравнению с самым высоким напряжением конденсаторов классического электролитического типа, например, до 35 вольт, хотя некоторые конденсаторы полимерного типа рассчитаны на самые высокие рабочие напряжения, такие как 100 вольт постоянного тока.
Эти конденсаторы обладают другими и лучшими качествами по сравнению с более длительным сроком службы, высокой рабочей температурой, хорошей стабильностью, более низким ESR (эквивалентным последовательным сопротивлением) и гораздо более безопасным режимом отказа.
Конденсаторы с выводами и для поверхностного монтажа
Доступны конденсаторы, такие как конденсаторы с выводами и конденсаторы для поверхностного монтажа.Доступны почти все типы конденсаторов, такие как свинцовые версии, такие как керамические, электролитические, суперконденсаторы, серебряная слюда, пластиковая пленка, стекло и т. Д. Возможности поверхностного монтажа или поверхностного монтажа ограничены, но они должны выдерживать температуры, которые используются в процессе пайки. .
Когда у конденсатора нет выводов, а также в результате использования метода пайки, то конденсаторы SMD подвергаются полному повышению температуры самого припоя. В результате не все разновидности доступны в качестве конденсаторов SMD.
К основным типам конденсаторов для поверхностного монтажа относятся керамические, танталовые и электролитические. Все они были разработаны, чтобы выдерживать очень высокие температуры пайки.
Конденсаторы специального назначения
Конденсаторы специального назначения используются в системах переменного тока, таких как ИБП и CVT до 660 В переменного тока. Выбор подходящих конденсаторов в основном играет важную роль в ожидаемом сроке службы конденсаторов. Следовательно, совершенно необходимо использовать конденсатор надлежащей емкости через номинальное напряжение-ток, чтобы соответствовать точному применению.Эти конденсаторы отличаются прочностью, долговечностью, ударопрочностью, точностью размеров и чрезвычайно высокой прочностью.
Типы конденсаторов в цепях переменного тока
Когда конденсаторы используются в цепях переменного тока, тогда конденсаторы действуют иначе, чем резисторы, поскольку резисторы позволяют электронам проходить через них, что прямо пропорционально падению напряжения, тогда как сопротивление конденсаторов изменяется в пределах напряжение через подачу или потребление тока, потому что они заряжаются, иначе разряжаются до нового уровня напряжения.
Конденсаторы превращаются в заряженные по направлению к значению приложенного напряжения, которое действует как запоминающее устройство для поддержания заряда до тех пор, пока напряжение питания не будет присутствовать во всем соединении постоянного тока. Зарядный ток будет подаваться в конденсатор, чтобы противодействовать любым изменениям напряжения.
Например, рассмотрим схему, которая разработана с конденсатором, а также с источником питания переменного тока. Таким образом, между напряжением и током существует разность фаз в 90 градусов, при этом ток достигает своего пика в 90 градусов до того, как напряжение достигает своего пика.
Источник питания переменного тока генерирует колебательное напряжение. Когда емкость высока, тогда должен течь огромный источник питания, чтобы создать определенное напряжение на пластинах, и ток будет выше.
Чем выше частота напряжения, тем короче время, доступное для регулировки напряжения, поэтому ток будет большим при увеличении частоты и емкости.Конденсаторы переменной емкости
Конденсаторы переменной емкости — это конденсаторы, емкость которых может намеренно и многократно изменяться механически.Этот тип конденсатора используется для установки частоты резонанса в LC-цепях, например, для настройки радио для согласования импеданса в устройствах антенного тюнера. Конденсаторы переменной емкости
Применения конденсаторов
Конденсаторы
находят применение как в электротехнике, так и в электронике. Они используются в фильтрах, системах накопления энергии, пускателях двигателей и устройствах обработки сигналов.
Как узнать стоимость конденсаторов?
Конденсаторы — важные компоненты электронной схемы, без которых схема не может быть завершена.Использование конденсаторов включает в себя сглаживание пульсаций переменного тока в источнике питания, соединение и развязку сигналов в качестве буферов и т. Д. В схемах используются различные типы конденсаторов, такие как электролитический конденсатор, дисковый конденсатор, танталовый конденсатор и т. Д. Электролитические конденсаторы имеют номинал, напечатанный на корпусе, чтобы его контакты можно было легко идентифицировать.
Обычно большой штифт положительный. Черная полоса возле отрицательного вывода указывает на полярность. Но в дисковых конденсаторах на корпусе напечатан только номер, поэтому очень сложно определить его значение в PF, KPF, uF, n и т. Д.Для некоторых конденсаторов значение печатается в мкФ, а для других используется код EIA. 104. Давайте посмотрим, как идентифицировать конденсатор и рассчитать его значение.
Число на конденсаторе представляет значение емкости в пикофарадах. Например, 8 = 8PF
Если третье число равно нулю, то значение находится в P, например. 100 = 100PF
Для трехзначного числа третье число представляет количество нулей после второй цифры, например, 104 = 10 — 0000 PF
Если значение получено в PF, его легко преобразовать в KPF или мкФ
PF / 1000 = KPF или n, PF / 10, 00000 = мкФ.Для значения емкости 104 или 100000 в пФ это будет 100 кпФ или н или 0,1 мкФ.
Формула преобразования
nx 1000 = PF PF / 1000 = n PF / 1000000 = мкФ мкФ x 1000000 = PF мкФ x 1000000/1000 = nn = 1 / 1000000000F мкФ = 1/1000000 F
Буква ниже значение емкости определяет значение допуска.
473 = 473 K
Для 4-значного числа, если 4 -я цифра является нулем, тогда значение емкости выражается в пФ.
Например, 1500 = 1500PF
Если число представляет собой десятичное число с плавающей запятой, значение емкости выражается в мкФ.
Например, 0,1 = 0,1 мкФ
Если под цифрами указан алфавит, он представляет собой десятичную дробь и значение в KPF или n
Например. 2K2 = 2,2 KPF
Если значения указаны с косой чертой, первая цифра представляет значение в UF, вторая — допуск, а третья — максимальное номинальное напряжение
Например. 0,1 / 5/800 = 0,01 мкФ / 5% / 800 Вольт.
Некоторые общие дисковые конденсаторы:
Без конденсатора проектирование схемы будет неполным, поскольку он играет активную роль в функционировании схемы.Конденсатор имеет две электродные пластины внутри, разделенные диэлектрическим материалом, таким как бумага, слюда и т. Д. Что происходит, когда электроды конденсатора подключены к источнику питания? Конденсатор заряжается до полного напряжения и сохраняет заряд. Конденсатор может хранить ток, который измеряется в фарадах.
DISC-CAPS
Емкость конденсатора зависит от площади его электродных пластин и расстояния между ними. Дисковые конденсаторы не имеют полярности, поэтому их можно подключать любым способом.Дисковые конденсаторы в основном используются для развязки / развязки сигналов. Электролитические конденсаторы, с другой стороны, имеют полярность, поэтому, если полярность конденсатора изменится, он взорвется. Электролитические конденсаторы в основном используются в качестве фильтров, буферов и т. Д.
Каждый конденсатор имеет свою собственную емкость, которая выражается как заряд в конденсаторе, деленный на напряжение. Таким образом, Q / V. При использовании конденсатора в цепи следует учитывать некоторые важные параметры. Во-первых, его ценность.Выберите подходящее значение, низкое или высокое значение, в зависимости от схемы.
Значение напечатано на корпусе большинства конденсаторов в мкФ или в виде кода EIA. В конденсаторах с цветовой кодировкой значения представлены в виде цветных полос и с помощью таблицы цветового кода конденсатора; конденсатор легко идентифицировать. Ниже приведена цветовая диаграмма для обозначения конденсатора с цветовой кодировкой.
Видите, как и у резисторов, каждая полоса на конденсаторе имеет значение. Значение первой полосы — это первое число на цветовой диаграмме.Точно так же значение Второй полосы — это Второе число на цветовой диаграмме. Третья полоса — это умножитель, как в случае резистора. Четвертая полоса — это допуск конденсатора. Пятая полоса — это корпус конденсатора, который представляет рабочее напряжение конденсатора. Красный цвет представляет 250 вольт, а желтый — 400 вольт.
Допуск и рабочее напряжение — два важных фактора, которые необходимо учитывать. Ни один из конденсаторов не имеет номинальной емкости и может отличаться.
Поэтому используйте конденсатор хорошего качества, например танталовый, в чувствительных схемах, таких как схемы генератора. Если конденсатор используется в цепях переменного тока, он должен иметь рабочее напряжение 400 вольт. Рабочее напряжение электролитического конденсатора указано на его корпусе. Подбирайте конденсатор с рабочим напряжением в три раза превышающим напряжение блока питания.
Например, если напряжение питания 12 вольт, используйте конденсатор на 25 или 40 вольт. Для сглаживания лучше взять конденсатор емкостью 1000 мкФ, чтобы почти полностью убрать пульсации переменного тока.В источнике питания аудиосхем лучше использовать конденсатор емкостью 2200 мкФ или 4700 мкФ, поскольку пульсации могут создавать шум в цепи.
Другой проблемой конденсаторов является ток утечки. Некоторые заряды будут протекать, даже если конденсатор заряжается. Это стих из схем таймера, так как временной цикл зависит от времени заряда / разряда конденсатора. Доступны танталовые конденсаторы с малой утечкой, которые используются в схемах таймера.
Описание функции конденсатора сброса в микроконтроллере
Сброс используется для запуска или перезапуска функций микроконтроллера AT80C51.Вывод сброса следует двум условиям для запуска микроконтроллера. Это
- Электропитание должно быть в указанном диапазоне.
- Длительность импульса сброса должна быть не менее двух машинных циклов.
Сброс должен оставаться активным до тех пор, пока не будут соблюдены все два условия.
В схеме этого типа конденсатор и резистор от источника питания подключены к контакту сброса №. 9. Пока выключатель питания включен, конденсатор начинает заряжаться.В это время конденсатор вначале действует как короткое замыкание. Когда вывод сброса установлен на ВЫСОКИЙ, микроконтроллер переходит в состояние включения, и через некоторое время зарядка прекращается.
Когда зарядка прекращается, контакт сброса идет на массу из-за резистора. Штифт сброса должен быть слишком высоким, затем слишком низким, тогда программа начнется с попрошайничества. Если в этом устройстве нет конденсатора сброса или он оставался бы неподключенным, программа запускается из любого места микроконтроллера.
Итак, это обзор различных типов конденсаторов и их применения. Теперь у вас есть представление о концепции типов конденсаторов и их применении. Если у вас есть вопросы по этой теме или по электрическим и электронным проектам, оставьте комментарии ниже.
Фото:
Пленочные конденсаторы от en.busytrade
Керамические конденсаторы от made-in-china
Электролитические конденсаторы от solarbotics