Фундамент на винтовых сваях расчет количества свай: Онлайн калькулятор свайного фундамента — рассчитать стоимость фундамента на винтовых сваях

Содержание

Онлайн калькулятор свайного фундамента — рассчитать стоимость фундамента на винтовых сваях

Минимальное количество свай для оформления заказа с монтажом 10 штук

Воспользуйтесь нашим онлайн-калькулятором для расчета свайного фундамента любого строения. Калькулятор поможет рассчитать необходимое количество свай и стоимость монтажных работ.

Обращаем ваше внимание, что данный расчет фундамента является упрощенным и не может учесть все индивидуальные особенности вашего проекта. Для их уточнения наш специалист свяжется с вами в ближайшее время.

Калькулятор не учитывает внутреннюю несущую стенку строения.

Наш сервис позволяет предварительно рассчитать винтовой фундамент, чтобы заранее прикинуть его стоимость. Если вам требуются монтажные работы, то на объект будет отправлена бригада опытных строителей, которые полностью укомплектованы необходимым оснащением, включающим, в том числе генераторы и баки с водой. После того как вы укажете место для вашего будущего свайного фундамента, строители приступят к монтажным работам. У вас есть возможность принять работу в конце дня и обсудить с бригадиром интересующие вас вопросы, касающиеся свайного фундамента. Монтаж фундамента до 25 свай длится всего 1 день. На произведенный нашими специалистами фундамент мы даем гарантию сроком на 10 лет.

Точный расчет, в процессе которого определяется стоимость винтовых свай для фундаментов домов и других конструкций, выполняется в режиме онлайн на базе введенных заказчиком параметров. Для этого предусмотрен удобный и наглядный сервис.

Чтобы рассчитать стоимость фундамента, введите необходимые данные о грунте, размерах, типе строения и его параметрах в калькулятор. Если у вас возникнут дополнительные вопросы, задайте их нашим специалистам. Они помогут вам разобраться и правильно рассчитать винтовой фундамент. Контактные телефоны указаны в верхней части страницы нашего сайта.

Прежде всего, следует рассчитать стоимость винтовых свай для фундамента. Для этого необходимо учесть ряд важных параметров:

Количество свай. Обычно расчет ведется из предположения, что расстояние между сваями не может превышать 3 метров. Таким образом, для фундамента небольшого одноэтажного дома 6х6 метров достаточно девяти свай. Однако для двухэтажного здания лучше располагать их на расстоянии 2-2,5 метра друг от друга.

Диаметр сваи. Здесь все зависит от потенциальной нагрузки фундамента. Для беседки подойдут винтовые сваи диаметром 89 мм, а для дома нужно выбирать классические 108-миллиметровые.

Тип наконечника. Наконечник сваи может быть сварным или литым. Конкретный вариант выбирается, исходя из особенностей грунта. Опорные элементы с литым наконечником обойдутся несколько дороже, но их стоимость компенсируется высокими антикоррозийными характеристиками.

Длина. На стоимости винтовых свай, разумеется, напрямую сказывается их длина. В большинстве случаев она составляет 2,5 метра, однако специалист в обязательном порядке должен провести пробное бурение, чтобы определить точные значения длин свай для конкретного фундамента.

Наличие и размер оголовков. Оголовки привариваются поверх свай и служат опорой для плиты или балки ростверка.

На следующем этапе определяется стоимость обвязки. Обвязка свай может понадобиться в случае необходимости обеспечения дополнительной их стабильности в горизонтальной плоскости. К примеру, обвязка желательна, если высота свай над уровнем земли превышает 50 см или в случае нестабильных торфяных грунтов. Однако даже в общем случае обвязка свай никогда не бывает лишней, поскольку данная операция значительно повышает конструктивную прочность фундамента.

При финальном определении стоимости работ учитываются дополнительные факторы: необходимость предоставления монтажных услуг, расстояние до объекта (расходы на горючее), наличие на объекте электричества (необходима компенсация затрат на доставку и эксплуатацию портативного дизельного генератора).

Калькулятор фундамента из винтовых свай, онлайн расчет цены

Калькулятор фундамента из винтовых свай, онлайн расчет

Калькулятор фундамента из винтовых свай – онлайн расчет – простой способ сориентироваться в ценах на продукцию/на работы по строительству.

Калькулятор фундамента под ключ

Самое главное достоинство онлайн калькулятора в том, что он позволяет выполнить все расчеты самим без помощи специалиста. Сама схема тоже довольно проста.

На большей части страниц нашего сайта в правом верхнем углу есть кнопка «Калькулятор фундамента». Нажав на нее, Вы переходите на отдельную страницу, на которой размещены поля, обязательные для заполнения. От Вас потребуется указать тип строения (дом, баня, забор, пирс), материал стен (для дома это дерево, каркас или кирпич, для забора – профлист, сетка-рабица), этажность, размер постройки. Эти данные необходимы для определения нагрузок от сооружения.

Для удобства все поля снабжены выпадающими вкладками, в которых указаны самые частые варианты. Это значительно сокращает время заполнения.

Калькулятор фундамента от компании «ГлавФундамент» также включает два дополнительных поля – грунтовые условия и коррозионная активность грунта. При их заполнении у Вас, вероятно, могут возникнуть вопросы, так как почти все организаций на рынке не запрашивают эту информацию для расчета цены свай/строительно-монтажных работ. Почему мы сделали их обязательными?

Параметры свай, их количество, расстановка в фундаменте могут назначаться только на основании информации о нагрузках от строения и о грунтах. Если оба эти фактора не будут учтены, возникнет риск просадки (при мощности слоя плотного грунта под сваей менее 1 метра или сезонном намокании некоторых типов грунтов, снижающем их несущую способность) или выпучивания (при действии касательных сил морозного пучения) фундамента. Вы также не сможете быть уверены, что срок службы конструкции будет таким, как требует ГОСТ 27751-2014 «Межгосударственный стандарт. Надежность строительных конструкций и оснований. Основные положения».

Эффективная работа двухлопастных винтовых свай возможна только при рассчитанном, исходя из данных о грунтах, расстоянии между лопастями. То же касается шага лопастей, угла их наклона (больше информации в статье «Особенности расчета двухлопастных винтовых свай»).

Для включения в работу сваи околосвайного массива грунта ненарушенной структуры должна подбираться рациональная конфигурация лопасти, соответствующая типу грунта (подробнее в статье «Ключевые принципы подбора параметров лопастей»).

Толщина металла и марка стали – это тоже переменные, зависящие от степени коррозионной активности грунтов. Если среда сильноагрессивная, а свая выполнена из стали марки Ст3 с толщиной стенки 4 мм и менее, не стоит рассчитывать, что она прослужит более 15-20 лет.

Таким образом, данные о грунтовых условиях площадки строительства столь же необходимы при проектировании, как данные о нагрузках. Если Вы не обладаете необходимой информацией, специалисты компании «ГлавФундамент» проведут необходимые исследования – геолого-литологические изыскания, а также измерения коррозионной активности грунтов (подробнее об услугах в статье «Экспресс-геология (геолого-литологические изыскания) и измерения коррозионной активности грунтов»).

Онлайн калькулятор, разработанный нашей компанией, подходит только для объектов малоэтажного строительства. Фундаменты промышленных и крупных гражданских объектов (трубопроводы, стенды, мачты, вышки, ЛЭП) рассчитываются в системах автоматизированного проектирования (САПР) после проведения полноценных инженерно-геологических изысканий. Для подтверждения полученных результатов организуются контрольные испытания грунтов при действии вдавливающих, выдергивающих и горизонтальных нагрузок. Это связано с предъявлением повышенных требований к уровню безопасности этих объектов.

Если Вам нужно рассчитать промышленную или крупную гражданскую постройку, перейдите по ссылке и заполните заявку в проектный отдел нашей компании, указав необходимые данные. Если потребуется дополнительная информация, мы Вам перезвоним.

Расчет количества, подбор конструкций и расстановка свай

При определении количества и сочетаний свай в программе «Калькулятор фундамента» учитываются требования нормативных документов, действующих в РФ, а также нормы проектирования, разработанные нашими специалистами по результатам исследований и испытаний, как собственных, так и выполненных зарубежными специалистами.

На фундаментную конструкцию практически любого сооружения (дом, баня) воздействуют сразу несколько типов нагрузок (под ответственными узлами сооружения, под несущими и ненесущими стенами, под лагами пола). Каждый тип нагрузок требует применения конструкции сваи с определенной несущей способностью. Поэтому предложенное решение будет включать не один, а сразу несколько их видов.

Но есть моменты, которые сложно учесть при онлайн расчете. Это, например, характеристики провисания ростверка (расчетная величина). Есть мнение, что во избежание провисания ростверка достаточно придерживаться обобщенных значений допустимых нагрузок. Это некорректно. Пролет между сваями определяется для каждого объекта, с учетом нагрузок на обвязочный материал от каждой стены.

В этой связи расчет, выполненный в калькуляторе фундамента, можно рассматривать только как предварительный. Он помогает Вам сформировать общее представление о цене, но это не решение, гарантирующее безопасность здания.

Калькулятор расчета винтового фундамента

При создании калькулятора расчета винтового фундамента мы ставила перед собой задачу разработать программу, которая будет удобна и одновременно полезна.

Во-первых, мы можете сравнить цены. Плюс – для этого не нужно открывать множество вкладок, вся необходимая информация есть на нашем сайте. Сервис рассчитывает цену сразу в трех категориях («Эконом», «Стандарт», «Премиум»). В итоговую цифру также войдет стоимость строительно-монтажных работ (для этого достаточно поставить галочку в поле «С учетом работ»).

Во-вторых, мы добавили в калькулятор справочную информацию, которая дает понять, чем мы руководствуемся, предлагая Вам именно это решение.

К примеру, ограждения и пирсы принято относить к легким сооружениям, из-за чего часто под них рекомендуют однолопастные сваи. Это кажется правильным, ведь небольшие нагрузки от объектов не требуют строительства конструкции с большой несущей способностью. Но такой подход совершенно не учитывает воздействие на сваи значительных выдергивающих и горизонтальных нагрузок.

Заборы из дерева или профлиста характеризуются большой парусностью. Пирсы и причалы подвержены воздействию течения, схода льда. Возникающее усилие будет постоянно пытаться вырвать сваю из земли. А такой тип воздействия наименее предпочтителен для конструкций с одной лопастью.

Чтобы избежать возможных последствий Вы будете вынуждены выполнить бетонирование основания колонны или обвязку швеллером или профтрубой. Введение же дополнительной лопасти решит эту проблему даже без дополнительного усиления конструкции.

Калькулятор фундамента под дом. Расчет цены

Калькулятор фундамента – удобный инструмент, чтобы предварительно спланировать фундаментную конструкцию под дом, баню или любой другой объект малоэтажного строительства. Он также незаменим, когда Вам нужен примерный расчет цены для понимания возможных расходов.

Но мы не рекомендуем опираться исключительно на данные программы. Все-таки сервис – это только набор алгоритмов, который не может в полной мере учесть особенности объекта и участка, не может заменить опыт инженера-конструктора. А если учесть, что проектный отдел компании «Главфундамент» выполняет расчет бесплатно и за 24 часа, то выбор станет очевиден.

Как выполнить расчет количества свай для свайно-винтового фундамента

Чтобы понять, как сделать расчет количества винтовых свай для дома, можно использовать калькулятор расчета свайного фундамента или рассмотреть пример, приведенный для каркасного дома. Характеристики здания:

  • Один этаж с мансардой. Крыша, крытая металлочерепицей, вальмового типа, стены без фронтонов имеют одинаковую высоту;
  • Межкомнатные перегородки толщиной 8 см выполнены из гипсокартона без шумоизоляции.
  • Наружные стены с утеплителем толщиной 15 см, перекрытия деревянные.
  • Высота фасада первого этажа 3 м, высота потолков 2,6 м.
  • Высота стен мансарды 1,5 м.
  • Размеры дома в плане 6×8 м.
  • Общая длина межкомнатных перегородок 25 м

Для подсчета того, сколько свай нужно для дома, требуются данные о типе почвы и особенностях ландшафта. В приведенном примере расчета количества свай для дома строительство ведется на ровном участке с глинистым грунтом, несущий пласт залегает на глубине 3 м от поверхности. Средняя снеговая нагрузка составляет 170 кг/м2.

Для фундамента понадобятся сваи диаметром 108 мм и длиной 3,5 м. Свайные конструкции берут с запасом по длине — 3,8-4,0 м. Для расчета нагрузок принимается примерное количество опор, равное 10. Чтобы понять, как рассчитать свайный фундамент, сбор нагрузок лучше выполнить в форме таблицы. Все полученные значения округляются в большую сторону до целого числа.

Таблица 3. Сбор нагрузок.

Тип нагрузки

Коэффициент надежности

Расчет

наружные стены

1,1

Площадь стен умножить на массу 1 м2.

((2 шт x 6 м) + (2 шт x 8 м)) x 4,5 м x 50 кг x 1,1 = 6930

внутренние стены

1,1

2 шт (на двух этажах) х 3 м (высота стен первого этажа) х 8 м (длина) х 50 кг x 1,1 = 2640

межкомнатные перегородки

1,2

25 м х 2,6 м (высота потолков) x 32 кг x 1,2 = 2496

перекрытия

1,1

2 шт (пол первого этажа и пол мансарды) x 6 м x 8 м x 170 кг x 1,1 = 17952

кровля

1,2

(6 м x 8 м х 65 кг x 1,2) / cos45ᵒ (угол наклона) = 5317

фундамент (предварительно)

1,05

10 шт x 48 кг (вес 1 сваи длиной 4 м) х 1,05 = 504

полезная

1,2

2 этажа х (160 кг x 6 м x 8 м) x 1,2 = 18432

снеговая

1,4

170 кг/м2 х 48 м (площадь кровли) x 1,4 =11424

По предварительным подсчетам сумма всех нагрузок на основание равна 65695 кг. В расчет принимается округленное значение 65,7 тонн. Далее проводится подсчет количества свай. Средняя несущая способность одной опоры составляет 6 тонн. Общий вес конструкции нужно разделить на это число: 65,7 т / 6 т = 10,95 шт. Округляем до целого, получаем 11 свай. Значение окончательно принимается, хотя и отличается от предварительного. Свайные конструкции будут установлены по углам и серединам наружных стен, а также в точках пересечения внутренних стен. Проектирование фундамента позволяет обеспечить устойчивое и прочное основание для постройки дома, избежать перерасхода материалов.

Расчет свайно-винтового фундамента | К-ДОМ

Установка свайно-винтового фундамента требует скрупулезного расчета. Для любого столбчатого фундамента определение места установки опор и расчет их несущей способности принципиально отличается от расчета монолитных фундаментов. В данном случае вес конструкции и прочие нагрузки распределяются не равномерно по всему монолиту, а приходятся на каждую отдельную сваю.

1. Нагрузки на фундамент

Основные нагрузки на фундамент несет вес будущей конструкции. Если строится дом, то для определения общей нагрузки необходимо знать вес

  • Обвязки фундамент
  • Нижнего перекрытия
  • Стен внешних и внутренних
  • Верхнего перекрытия и потолка
  • Стропильной системы крыши
  • Кровельного материала
  • Инженерных коммуникаций
  • Оконных и дверных блоков
  • Отделочных материалов
  • Крыльца и веранды, если они находятся на одном фундаменте с домом

Кроме того, на грунт, как конечную опору строения, оказывают нагрузки и сами винтовые сваи – чем больше будет диаметр применяемых труб, тем больше вес.

Основные нагрузки на фундамент

Все перечисленные параметры являются исходными и неизменными после постройки и ввода дома в эксплуатацию. Эксплуатация дома привносит новые нагрузки на фундамент, в частности

  • Вес людей в доме
  • Вес оборудования
  • Вес мебели и бытовых приборов
  • Вес снега на кровле

Очевидно, что эксплуатационные нагрузки будут непостоянными, но учитывать их в расчете нужно по максимуму.

Все указанные нагрузки являются вертикальными. Но кроме них при эксплуатации дома добавляются боковые воздействия:

  • Сила ветра, давящая на стены и скат крыши
  • Сейсмические нагрузки
  • Силы пучинистости грунта зимой
  • Конструкционные нагрузки, связанные с изменениями линейных размеров элементов здания (усушка древесины, увлажнение и проч)

Все нагрузки различаются не только по своей силе, но и по месту приложения, а также по времени воздействия. Различают следующие виды нагрузок:

  1. Равнораспределенные – вес самого здания или снега на кровле
  2. Сосредоточенные, такие как вес оборудования или мебели на ограниченном участке дома
  3. Статические – постоянные во времени
  4. Динамические – например, ударная нагрузка порывов ветра или вибрация от работы тяжелого оборудования

В некоторых случаях нагрузки могут совпадать, усиливая общее воздействие на опору, и это тоже должно быть учтено в расчете фундамента.

2. Основные опорные точки

При расчете необходимо иметь представление о том, как действуют те или иные нагрузки – отсюда можно определить положение опорных точек столбчатого фундамента. Для этого рассмотрим конструкцию здания и то, как перераспределяются по ней нагрузки.

Так, вес кровли и снега на нем передается на стропильную систему. Та, в свою очередь установлена на боковые стены и в некоторых случаях на верхнее перекрытие. Перекрытие тоже опирается на боковые и внутренние несущие стены. В некоторых случаях крыша может выступать за периметр основания дома и опираться на отдельные опоры – столбы или колонны – в этом случае часть нагрузок на стены уменьшается, но в устройстве фундамента должны быть предусмотрены дополнительные опорные точки.

Таким образом, очевидно, что вертикальные нагрузки со стороны кровли и крыши в основном направлены на стены здания.

Это означает, что опорные точки  фундамента должны быть расположены в первую очередь под стенами. Как правило, опоры ставятся по периметру всего здания и по линиям  расположения несущих стен. Сами стены со своим весом и нагрузками, переданными от верхней части здания, давят на обвязку фундамента.

Нижнее перекрытие оказывает давление в первую очередь на боковые опоры, т.е. на балки нижней обвязки фундамента – по периметру и в более сложном по поперечным балкам.

Как упоминалось выше, в здании могут иметься дополнительные элементы, повышающие общий вес дома. Примером может служить массивное котельное оборудование. Несмотря на то, что вес любых предметов, находящихся в помещении, передается более-менее равномерно на нижнее перекрытие, в таких особо нагруженных местах создаются дополнительные локальные нагрузки на сами балки перекрытия, точнее на участки, расположенные непосредственно под местом расположения оборудования.

Очевидно, что они требуются создания отдельных опорных точек.

Винтовые сваи в опорных точках

3. Учет характеристик грунта

Характеристики грунта с точки зрения установки фундамента определяют в первую очередь его несущую способность, то есть устойчивость к нагрузкам со стороны установленных на нем конструкций без проседания. Она измеряется в тн/м2  или кгс/см2. Наиболее значимыми для несущей способности грунта являются

  • Тип грунта
  • Степень уплотнения
  • Влажность

Для изучения параметров грунта в общем случае необходимо проводить геологические изыскания. Однако стоимость их достаточно высока, и на практике строители пользуются наработанными опытом обобщенными параметрами для тех или иных грунтов, а также пользуются упрощенными методами определения свойств грунта.

Во-первых, существуют определенные известные характеристики для основных видов грунта, на котором планируется постройка – песчаных или глинистых.

Во-вторых, проводится пробное вкручивание свай.

Для самостоятельного определения типа грунта можно использовать известный способ —

скатать шарик из земли и растереть ладонями. При этом можно увидеть, что:

  1. Шар из песка практически не скатывается, и при растирании чувствуются отдельные песчинки
  2. Шар из песчаного грунта (до 90% состава) формируется, но разрушается при самых небольших нагрузках
  3. Шар из суглинка (до 30% глины) держит форму, но при воздействии нагрузками трескается по краям
  4. Шар из глины отлично формируется и при надавливании не дает трещин

Плотность различных типов грунтов и их несущая способность определена практикой и приводится в таблицах. Приведем некоторые параметры для наиболее употребимых грунтов:

  • Крупнозернистый песок – 5-6 т/м2
  • Средний песок – 4-5 т/м2
  • Мелкозернистый зернистый песок – 3-4 т/м2
  • Мелкозернистый влажны песок – 2-3 т/м2
  • Супесь – 2,5-3 т/м2
  • Увлажненная супесь– 2-2,5 т/м2
  • Крупнозернистый песок – 5-6 т/м2
  • Суглинок – 2-3 т/м2
  • Глина – 2,5-6 т/м2
  • Влажная глина – 1-4 т/м2

Насыщенность влагой тоже можно определить простым проверенным способом. Отрыть небольшую (до полуметра глубиной) ямку: если через некоторое время в ней будет скапливаться вода, то грунт можно считать влажным. В противном случае – сухим.

Обобщая сказанное, можно с уверенностью сказать, что для самостоятельного расчета фундамента можно смело использовать данные, приведенные выше. Как правило, тип грунта в данной местности известен.

Пробное вкручивание поможет выявить, насколько общий тип грунта, характерный для близлежащих участков может локально отличаться от среднего.

4. Определение параметров свай

Для того, чтобы определить параметры свай, устанавливаемых в качестве фундамента, необходимо знать их несущую способность. Расчеты показывают, что допустимая нагрузка на сваю зависит от диаметра трубы, толщины стенки, длины сваи и ширины лопасти.

Теоретически несущая способность сваи рассчитывается по формуле

F=S*Ro

S – площадь опоры, т.е. лопасти

Ro – прочностная характеристика грунта

Поскольку учет параметров грунта взят не из геологических исследований, а из таблиц, необходимо применить понижающий коэффициент. В большинстве случае он берется равным порядка 1,4-1,7, то есть фундамент рассчитывается с запасом прочности до 70%.

Опытным путем установлены усредненные характеристики различных свай. Так сваи диаметром 108 мм способны выдерживать нагрузку до 5-7 тонн. При диаметре 89 мм – предельная несущая нагрузка – около 3-5 тонн. Самые тонкие сваи  диаметром 73 мм способны выдержать до 3 тонн веса.

Выбор длины винтовой сваи зависит в основном от типа грунта, на которую будет опираться лопасть. Так на участках с устойчивым грунтом достаточно длины сваи 2,5 метра. Окончательный выбор должен учитывать запас на перепад высот на участке под строительство.

5. Расчет количества свай

Из предыдущего параграфа видим, что количество свай на тот или иной фундамент можно определить, разделив общий вес дома на несущую способность одной сваи.

Приведем приблизительный расчет количества свай для обычного дома.

Так, вес его будет складываться из веса всего здания, умноженного на коэффициент надежности для того или иного типа конструкций. Он равен при постоянной нагрузке:

  1. Для деревянных конструкций – 1,05
  2. Металлических конструкций – 1,2
  3. Стяжек, изоляции – 1,3
  4. Для снеговой нагрузки – 1,4

6. Распределение свай по площади фундамента

Существуют основные правила распределения свай:

  1. В обязательном порядке сваи устанавливаются под углы здания. Это самые напряженные точки, так как здесь сходятся нагрузки как минимум от двух стен.
  2. При необходимости под каждую стену устанавливается еще одна или несколько свай, в зависимости от длины стен, в том числе и внутренних несущих
  3. В участки с повышенной нагрузки сваи также устанавливаются по углам.

Приведем расчет количества свай для дома с мансардой, который оказывает нагрузку на фундамент до 50 тонн с учетом приведенных коэффициентов.

Количество, необходимое для возведения фундамента для такого дома:

  • Сваи диаметром 108 мм – 50/6= 8,3 сваи. Реально требуется 9 свай.
  • Сваи диаметром 89 мм – 50/4=12,5 свай. С запасом берется 13 свай.

При прямоугольном сечении 6х4,5м и одной несущей стене 6х3 м сваи устанавливаются: 4 по углам, остальные вдоль стен.

Рассмотрим применение сваи 89 мм. По углам здания ставится 4 сваи. Две сваи устанавливаются по концам внутренней несущей стены. Таким образом, остается 13-6=7 свай. Одну целесообразно установить под среднюю точку несущей стены, а остальные распределить по периметру. Если добавить еще две сваи, то на каждую из боковых стен (кроме угловых) будет приходиться по 2 сваи. Тогда шаг их установки оставит 1.5 метра, что вполне соответствует хорошему запасу прочности.

План свайного поля

7. Заключение

Расчет фундамента имеет большое значение в закладке основы под строительства, особенно на слабых грунтах и естественных уклонах площадки под постройку дома. Его можно провести самостоятельно, но при строительстве большого дома лучше обратиться к специалистам.

Фирма «К-ДОМ» специализируется в возведении фундаментов на винтовых сваях и имеет наработки в расчете фундаментов любой сложности. Мы готовы оказать консультационные услуги, провести контрольное вкручивание и дать компетентные рекомендации по использованию того или иного типа фундамента, а также установить свайно-винтовой фундамент под ключ.

Свайный фундамент. Расчет количества свай

Для расчёта необходимого количества свай для свайного фундамента можно воспользоваться онлайн-калькуляторами, которые предлагает вездесущий интернет.

Но, как ученик в школе, привыкший пользоваться арифметическим калькулятором. Зачастую даже не знает таблицы умножения, так и строитель, использующий онлайн-калькулятор для расчёта количества свай, не будет знать откуда берутся результаты расчёта.

Основная функция любого фундамента – это принятие на себя всех нагрузок от конструкций здания – стен, перегородок, перекрытий потолка, крыши и пола. По сути, фундамент «удерживает» вес всего здания вместе с дополнительными нагрузками, например, весом снега, который накопился на крыше или весом камина, расположенном на втором этаже здания.

Алгоритмы для расчета свайного фундамента

Итак, вначале рассчитаем нагрузку здания на ленточный фундамент, а потом по аналогии перейдём к расчёту свайного фундамента из винтовых свай.

Для примера берём кирпичный дом размером 6 на 6 метров, с внутренней опорной перегородкой, толщина стен – двойной кирпич — 0,4 м.

Длина стен дома будет равна 6*4 = 24 м, длина внутренней перегородки 6 м. Итого — 30 м.

Вес кирпичного дома с дополнительными нагрузками условно возьмём в 120 т (можно и вычислить вес здания, посчитав объём кирпича, раствора, штукатурки, вес потолочного перекрытия и крыши). Толщину фундамента примем такую же как и толщина стен — 0,4 м.

Тогда площадь основания фундамента будет равна: 30*0,4 = 1,2 м2.

Итак, на площадь 1,2 м2 давит здание весом 120 т или 120000 кг. Или 10,0 кг на 1 см2. Толщина фундамента, как правило, больше толщины стен (это видно по характерному выступу цоколя). Если увеличим толщину фундамента по 10 см на внешнюю и внутреннюю сторону стены, то его площадь будет равна 30*0,6 =1,8 м2. В этом случае давление здания на фундамент составит 120 000/18 000 = 6,7 кг/см2. Это давление превышает величину сопротивления грунта, для глины он равен 6,0 кг/см2. Поэтому необходимо ещё увеличивать толщину фундамента. 2= 3,14*0,25*0,25 =0,197 м2

На одну сваю приходится давления 0,197* 6 =11 820 кг.

Необходимо свай: 160 000/11 820 =13,5 =14 свай.

Расчёт количества свай для каркасного дома, как и любого другого, согласно, приведённых алгоритмов будет аналогично зависеть от веса дома, удельного сопротивления грунта на строительной площадке и диаметра винтовой сваи.

Расчет количества винтовых свай КСАмет

Свайные оголовки КСАмет выпускаются диаметром 20, 25 и 30 см. Поэтому расчёт количества свай будет зависеть, как и в прошлых примерах от веса дома, удельного сопротивления грунта и диаметра используемых свай. Единственное отличие при расчёте в том, что в технических характеристиках этих свай указаны максимальные допустимые нагрузки на сваю. Поэтому расчёт ведётся в соответствии с техническими характеристиками свай КСАмет.

Как уже отмечалось в интернете можно найти калькуляторы онлайн-расчётов количества фундаментных свай. Однако, всё-таки лучше самостоятельно изучить алгоритмы расчётов свайных фундаментов, хотя бы на вышеприведённых примерах.

Калькулятор

Расчет свайно-винтового фундамента в «СвайБур» делают исходя из типа, количества свай, расстояния между ними и расположения опор на схеме наружной и внутренней сторон здания. Примерную стоимость изделий и монтажа вы можете рассчитать самостоятельно через пошаговый калькулятор.

1 Выберите тип постройки ДомБаняВерандаХозблокПристройкаАнгарПирс Далее

Как работает калькулятор расчета фундамента

Калькулятор расчета винтовых свай автоматически подсчитывает примерную стоимость фундамента с монтажом или без него. Формула, на основе которой работает расчет, учитывает тип, материал длину сторон постройки, ее площадь, необходимость оголовков и обвязки свай, стоимость забура и закрепления опор.

Мы производим винтовые сваи под фундамент жилых и хозяйственных построек. Винтовые сваи бывают диаметром: 57, 76, 89 и 108 мм. Какая толщина свай нужна, сервис определяет по примерной нагрузке, поэтому важно правильно выбрать в пошаговом калькуляторе тип и длину сторон постройки, по которым подсчитывается вес и площадь строения.

  • СВСН 57 мм подходят для заборов, натяжных оград из сетки.
  • СВСН 76 мм выдерживают заборы из дерева, профлиста, хозпостройки.
  • СВСН 89 мм достаточно прочные для одноэтажных щитовых, каркасных зданий.
  • СВСН 108 мм подойдут под дом из бруса, пеноблоков, каркасную постройку.

Помимо типа свай, калькулятор свайно-винтового фундамента учитывает частоту размещения столбов. Максимально допустимое расстояние между опорами свайного фундамента считают по правилам, которые учитывают тип возводимого объекта и материал строительства.

  • Дома из газо- и пенобетона ставят на фундамент с шагом столбов до 2 м.
  • Дома из бруса, срубы, каркасные постройки ставят на винтовые сваи шагом 2,5–3 м.
  • Хозяйственные конструкции, заборы, ограды возводят на сваях фундаментов шагом до 3,5 м.

Кроме общих параметров, учтенных в калькуляторе расчета стоимости свайного фундамента, на цену конструкции и монтажа влияет тип грунта, перепады высот, количество арматуры для обвязки, бетона — для заполнения и укрепления свай.

Как провести расчет фундамента из винтовых свай

Провести предварительный расчет винтовых свай и стоимости их монтажа можно на странице. Для этого выберите тип строения, на следующем шаге — материал, следом длину сторон постройки, определитесь, нужны ли оголовки и обвязка.

На оголовки опор кладут или жестко фиксируют обвязкой из арматуры ростверк — плиту, двутавр, швеллер, балку из металла или бетона. Задача ростверка — равномерно распределить нагрузку по сваям. Для ленточного связывания опор конструкции столбчатого фундамента подходят готовые блоки или изготовленные на месте из бетона при помощи арматурного каркаса и опалубки.

* Рассчитать свайно-винтовой фундамент на сайте можно с приблизительной точностью. Калькулятор не сможет учесть площадь, если постройка не прямоугольная, тип грунта, перепады, которые также сказываются на стоимости столбчатого основания.

Точный расчет столбчатого фундамента с учетом необходимого объема опор, типа грунта, площади элементов постройки неправильной формы, вам сделают сотрудники «СвайБур» по запросу. Чтобы подсчитать расход с максимальной точностью, мастера выезжают на участок под застройку для проведения замеров, составления или сверки проекта фундамента. Запросите расчет и получите консультацию по услуге монтажа свайно-винтового фундамента по телефону в Москве: +7 (495) 777-17-18.

Расчет количества Винтовых свай КСАмет под Ваш дом. Примеры.

Расчет количества свай необходимых для возведения фундамента состоит из 2 частей.

1 Общая нагрузка/вес здания, который будет воспринимать фундамент из винтовых свай КСАмет.

Общий вес, который воспринимает фундамент, состоит из:

1.1 Фактический вес материала дома. Вес стен, полов, межэтажных перекрытий, крыши, внутренней и фасадной отделки.

1.2 Расчетная полезная нагрузка. Нагрузка создаваемая при эксплуатации помещения людьми. Рассчитывается исходя из   п. 3.11  СНиП 2.01.07-85*  «НАГРУЗКИ И ВОЗДЕЙСТВИЯ», как 150кг/кв.м. жилой площади для жилых домов, 200 кг/кв.м.  для офисных и административных зданий.

1.3 Расчетная снеговая нагрузка на крышу здания. Давление снеговых масс на фундамент при сезонном скопление их на всей поверхности крыши.  Рассчитывается исходя из   п. 5.2  СНиП 2.01.07-85*  «НАГРУЗКИ И ВОЗДЕЙСТВИЯ», как 180кг/кв.м. поверхности крыши для III снегового района Российской Федерации.

1.4 Общая нагрузка от всех факторов складывается и умножается на коэффициент запаса: n=1,1-1,2.

2 Грузонесущая характеристика грунта на месте вворачивания свай. Эта характеристика определяет предельно-возможное нагружение на 1 Винтовую сваю КСАмет без проседания. Расчет полностью опирается на данные геологических изысканий на месте застройки.

2.1 На основе геологических исследований производится индивидуальный расчет грузонесущей характеристики сваи согласно п. 4.10 СНиП 2.02.03-85 «Свайные фундаменты».

Примеры расчетов для грунта: «плотная не мало-пластичная глина». Глубина залегания винтовой части сваи 1700мм:

Расчет грузонесущей характеристика для ВСК 108х300х2500 на глубине в 1700мм в плотной глине

Расчет грузонесущей характеристика для ВСК 89х250х2500 на глубине в 1700мм в плотной глине

2.2 Если же произвести геологические исследования нет возможности, то принимается минимально-расчетная нагрузка на 1 Винтовую сваю КСАмет. Нагрузка рассчитывается для мало-грузонесущих грунтов супесей/суглинков.

Примеры расчетов без геологических исследований. Глубина залегания винтовой части сваи 1700мм:

Расчет грузонесущей характеристика для ВСК 108х300х2500 на глубине в 1700мм в текучепластичном суглинке

Расчет грузонесущей характеристика для ВСК 89х250х2500 на глубине в 1700мм в текучепластичном суглинке

В таблице приводим усредненные характеристики допустимых нагрузок на Винтовые сваи КСАмет без проведения геологических исследований.

Типоразмер сваиГлубина залегания винта [мм]Расчетная минимальная нагрузка на 1 сваю [кг]
ВСК 76х200х250017001000
ВСК 89х250х250017002000
ВСК 108х300х250017002500

Общий вес здания рассчитанный в п.1.4 необходимо разделить на грузонесущую характеристику сваи в месте монтажа фундамента п. 2.1, п.2.2. Высчитываем минимальное количество свай необходимое для гарантированного фундамента под здание. Сваи располагаются согласно проекта здания. Шаг установки Винтовых свай КСАмет регламентируется согласно общестроительный ГОСТов и сводов правил (СП). Шаг установки варьируется от 1,5 до 3 метров между винтовыми сваями.

Пример №1. Расчет свайного поля для дома 6х6, брус 150х150. 1 этаж + мансарда.

 1.1 Общий вес материала: 16,2 куб.м. бруса, по 800кг/ куб. = 12 960,00 кг.

1.2 Полезная нагрузка: 6х6х150=5 400,00 кг.

1.3 Снеговая нагрузка: 6х6х180=6 480,00 кг.

1.4 Итого: 24 840,00 умножаем на коэффициент надежности n=1,1.

1.5 Общий вес: 27 324,00 кг.

2.1 Общий вес делим на 2 000,00 кг (из расчета 2 000,00 кг на 1 ВСК 89х250х2500)

27 324,00/2 000,00=14 ВСК 89х250х2500.-минимальное количество свай необходимое для дома 6х6.

3.1 Составляем схему свайного поля. Решено выбрать шаг установки свай 2 метра. Для организации половых лаг были добавлены 2 сваи внутри дома.

Всего потребовалось 16 ВСК 89х250х2500. Глубина заворачивания рассчитана на 1800мм. Высота цоколя 600мм в максимальной точке над уровнем земли.

Всего потребовалось 16 ВСК 89х250х2500. Глубина заворачивания расчитана на 1800мм

Дачный домик из бруса. 6х6. г. Калуга. [подробнее об этом объекте Вы можете прочитать в этой статье…]


Пример №2. Расчета свайного поля для дома 6х12, брус 200х200. 2 этажа.

 1.1 Общий вес материала: 51,9 куб.м. бруса, по 800кг/ куб. = 41 520,00 кг.

1.2 Полезная нагрузка на 1 этаж: 6х12х150=10 800,00 кг., Полезная нагрузка на 2 этажа: 10 800х2=21 600кг.

1.3 Снеговая нагрузка: 6х12х180=12 960 кг.

1.4 Итого: 76 080,00 умножаем на коэффициент надежности n=1,1.

1.5 Общий вес: 83 680,00 кг.

2.1 Общий вес делим на 2 500 кг (из расчета 2 500,00 кг на 1 ВСК 108х300х2500)

86 680,00/2 500,00=34 ВСК 1080х3000х2500.-минимальное количество свай необходимое для дома 6х12.

3.1 Составляем схему свайного поля. Шаг установки меняется согласно схемы обвязки дома. Для соблюдения симметричного шага установки винтовых свай была добавлена 1 ВСК 108х300х2500.

Всего 35 ВСК 108х300х2500. Глубина заворачивания рассчитана на 1800мм. Высота цоколя 450мм в максимальной точке над уровнем земли.

Схема свайного фундамента. 35 ВСК 108х300х2500. Калужская область. Полотняный завод. [подробнее об этом объекте Вы можете прочитать в статье на нашем сайте…]

35 ВСК 108х300х2500. Монтаж зимой. Калужская область. Полотняый завод.


Пример №3. Расчет свайного поля для дома 10,6х8, брус 200х200. 2 этажа.

1.1 Общий вес материала: 54,9 куб.м. бруса, по 800кг/ куб. = 43 920,00 кг.

1.2 Полезная нагрузка на 1 этаж: 10,6х8х150=12 720,00 кг., Полезная нагрузка на 2 этажа: 12 720х2=25 440кг.

1.3 Снеговая нагрузка: 10,6х8х180=15 264 кг.

1.4 Итого: 84 624,00 умножаем на коэффициент надежности n=1,1.

1.5 Общий вес: 93086,00 кг.

2.1 Общий вес делим на 2 500 кг (из расчета 2 500,00 кг на 1 ВСК 108х300х2500)

93 086,00/2 500,00=38 ВСК 1080х3000х2500.-минимальное количество свай необходимое для дома 10,6х8.

3.1 Составляем схему свайного поля. Шаг установки витовых свай КСАмет меняется согласно схемы обвязки дома. В центре фундамента конструкторами была заложена  дополнительная стена. Для создания фундамента под стену были заменены 2 ВСК 108х300х2500 из расчета на 4 ВСК 89х250х2500.

Всего 36 ВСК 108х300х2500 под основную часть дома и 4 ВСК 89х250х2500 под центральную стену. Глубина заворачивания рассчитана на 1800мм. Высота цоколя 520мм в максимальной точке над уровнем земли.

Схема свайного поля под дом 8х10. Калужская область. д. Яглово

 

Фундамент на винтовых сваях под дом 8х10.Калужская область. д. Яглово. [Подробнее об этом объекте Вы можете прочитать в статье на нашем сайте…]


 

Пример №4. Расчет свайного поля для дома 9х11, брус 200х200. 2 этажа.

1.1 Общий вес материала: 96,7 куб.м. бруса, по 800кг/ куб. = 77 830,00 кг. С учетом стропильной системы и веса кровли.

1.2 Полезная нагрузка на 1 этаж: 9х11х150=14 850,00 кг.,

Полезная нагрузка на 2 этажа: 14 850х2=29 700кг.

1.3 Снеговая нагрузка: 9х11х180=17 820 кг.

1.4 Итого: 124 900,00 умножаем на коэффициент надежности n=1,1.

1.5 Общий вес: 137 400,00 кг.

2.1 Общий вес делим на 2 500 кг (из расчета 2 500,00 кг на 1 ВСК 108х300х2800)

137 400/2 500,00=55 ВСК 108х3000х2800.-минимальное количество свай необходимое для дома 9х11.

3.1 Составляем схему свайного поля. Шаг установки витовых свай КСАмет меняется согласно схемы обвязки дома. Под веранды и крыльцо были добавлены сваи меньшего диаметра 89х250х2800.

Всего 55 ВСК 108х300х2800 под основную часть дома и 8 ВСК 89х250х2800 пристройки.

Глубина заворачивания рассчитана на 1800мм. Высота цоколя 935мм в максимальной точке над уровнем земли.

Схема свайного поля под деревянный дом 9х11. Московская область г. Можайск

 

Фундамент на винтовых сваях. Дом 9х11. Брус 200х200. Московская область. г. Можайск.  [Подробнее об этом объекте Вы можете прочитать в статье на нашем сайте…]

Дом 9х11. Два этажа. Брус 200х200. Чистовая отделка . 2013 год. Московская область. г. Можайск. [Подробнее об этом объекте Вы можете прочитать в статье на нашем сайте…]


Пример №5. Расчет свайного поля для дома 7,3х9,3, брус 150х150. 2 этажа.

 1.1 Общий вес материала: 71,15 куб.м. бруса(стропильной системы, крыши), по 800кг/ куб. = 56 920,00 кг.

1.2 Полезная нагрузка на 1 этаже: 7,3х9,3х150=10 183,00 кг.

Полезная нагрузка на 2 этаже: 7,3х9,3х150=10 183,00 кг.

1.3 Снеговая нагрузка: 7,3х9,3х180=12 220,20 кг.

1.4 Итого: 89 506,00 умножаем на коэффициент надежности n=1,1.

1.5 Общий вес: 98 456,00 кг.

2.1 Общий вес делим на 2 500,00 кг (из расчета 2 500,00 кг на 1 ВСК 108х300х2500)

99 452,00/2 500,00=40 ВСК 108х300х2500.-минимальное количество свай необходимое для дома 7,3х9,3.

3.1 Составляем схему свайного поля. Решено выбрать шаг установки свай не превышая 2 метров.

На участке существует неравномерный перепад высот 600 мм.  Для создания фундамента выбирались сваи 3 длин. ВСК 108х250х2500, ВСК 108х300х2800, ВСК 108х300х3000

Всего потребовалось 40 ВСК 108х300х2500-3000. Глубина заворачивания рассчитана на 1800мм. Высота цоколя 500мм в минимальной точке над уровнем земли.

Фундамент под дом 7х9. г. Калуга. Схема свайного поля.

4.1. Для ликвидации перепада высот по оголовникам свай была произведена обвязка швеллером №20.

Фундамент под дом 7х9. г. Калуга. Схема обвязки швеллером №20.

Фундамент под дом 7х9. г. Калуга. Обвязка швеллером №20. [Подробнее об этом объекте Вы можете прочитать в статье на нашем сайте…]


Над статьей работали: Крипень И.С.  Инженер-специалист по свайно-винтовым фундаментам.

Что еще Мы можем для Вас сделать?

Звоните: 8-800-700-59-17 Бесплатно для Всей России

Контакты г. Калуга:

Звоните: +7 (4842) 75-13-23 —Центральный офис.

Звоните: +7 902 391-51-45— Телефон для приема заявок.

Электронная почта: [email protected]

(PDF) Методика расчета окончательной осадки винтовых свай в глине

APCSCE

IOP Conf. Серия: Материаловедение и инженерия 456 (2018) 012025 IOP Publishing

doi: 10.1088 / 1757-899X / 456/1/012025

3

характеризуется равномерным (линейным) увеличением осадки S и заканчивается определенным значение осадки S1

, при достижении которой происходит «срез» почвы по боковой поверхности «грунтового цилиндра»

. Внешняя нагрузка N1, соответствующая концу линейной зависимости на графике осадки

S = f (N), составляет

N1 = Nf + NR, (1)

где Nf — часть внешней нагрузки, передаваемая на припочвенный массив грунта боковой поверхностью

«грунтового цилиндра», кН; NR то же, перенесенный на грунт основания винтом

нижней лопастью двухлопастной сваи на стадии линейной зависимости окончания осадков S = f (N)

(в момент полной реализации грунта сопротивление по боковой поверхности «заземленного цилиндра»), кН.

При достижении вертикального смещения сваи, соответствующего величине осадки S1,

начинается второй этап винтового двухлопастного нагружения сваи, таким образом, работа нижней отвала в грунте

наступает в полном объеме. сила. В этом случае график S = f (N) имеет нелинейную зависимость. Второй этап

нагружения винтовой двухлопастной сваи (рабочий) завершается при достижении внешней нагрузки N2,

, что соответствует полному истощению несущей способности сваи на грунте и неустойчивой

(погруженной) осадке. S2.Пиковое значение нагрузки винтовой сваи на грунт составляет

N2 = Nf + Nn, (2)

, где N2 — внешняя нагрузка, соответствующая полному истощению несущей способности грунта

основания винтового двойника. — ворс лопастей и нестерилизованный (отказавший) осадок, кН; N1, Nf —

то же, что в (1), кН; Nn — часть внешней нагрузки, передаваемая на грунт нижним отвалом

и соответствующая потере его несущей способности на грунте, кН.

Окончательная осадка винтовой двухлопастной сваи S для заданной нагрузки N (N1

сумме осадок S1 и :

S = S1 . (2а)

3. Результаты исследования

подшипник вала (ведомый, встроенный в месте) расчет сваи в первой секции линии определяется

в соответствии с M.F. Рэндольф и К. Метод гнева [11].Авторы метода [11] при выводе уравнения

учитывали только деформацию сдвига. Авторы условно приняли

деформацию грунта вокруг свай в виде концентрических цилиндров по бокам, которые представляют собой касательные напряжения

τ, демпфированные от свай в радиальном направлении. Уравнение для определения осадки w вала сваи несущей сваи

за счет действия касательных напряжений вдоль ее боковой поверхности имеет вид [11].

0

0 0 0 0

0

ln

м

rm

r

r dr rr

wG r G r



 9000 9000 9000 9000 



, (3)

где r — горизонтальное расстояние z от вертикальной оси сваи до любой границы в пределах

линейно деформируемой области приповерхностного грунтового массива, м; rm — горизонтальное расстояние z от

вертикальной оси сваи до границы, где вертикальные перемещения грунта (радиус воздействия) равны

нулю, м; r0 — радиус лопасти сваи, м; 0 — касательные напряжения, действующие на боковую поверхность

«заземленного цилиндра», кПа; G — начальный модуль сдвига грунта, кПа.

Рассмотрим использование М.Ф. Randolph et al. метод (1978) [11] для расчета осадки двухлопастной сваи

в глинистом грунте на первом этапе ее нагружения. Предполагается, что касательные напряжения 0 равны

,

равномерно распределены по боковой поверхности «шлифованного цилиндра» (см. Рисунок 1):

0 =

, (4)

, где r0 — радиус винта. двухлопастная свая «грунтовый цилиндр» (нижняя лопасть), м; L — высота

«наземного цилиндра» (расстояние между лопастями), м; Nf такое же, как в формуле (1).

Вертикальное смещение w сваи в уравнении (3) формируется касательными напряжениями , действующими в

области вокруг ее боковой поверхности, ограниченной расстоянием rm (радиусом влияния). Расстояние

об / мин можно определить по формуле [11]

 

2,5 1

м

rl   

, (5)

Сравнение несущей способности винтовой сваи с прямой трубной сваей при аналогичных грунтовых условиях

  • 1.

    Carter JP, Randolph MF, Worth CP (1979) Некоторые аспекты характеристик открытых и закрытых свай. В: Продолжающаяся конференция по численным методам забивки свай в открытом море, Лондон, стр. 165–170

  • 2.

    Де Никола А., Рэндольф М.Ф. (1997) Поведение забивных и опорных свай в песке. Геотехника 47 (4): 841–856

    Статья

    Google Scholar

  • 3.

    Гарнье Дж., Годен С., Спрингман С., Каллинган С. М., Гудингс Д., Кониг Д., Каттер Б., Филлипс Р., Рэндлоф М. Ф., Торел Л. (2007) Законы масштабирования каталога и вопросы подобия в геотехническом моделировании центрифуг.Int J Phys Model Geotech 3: 1–24

    Google Scholar

  • 4.

    Гали А., Ханна А., Ханна М. (1991) Момент затяжки винтовых анкеров в песке. Найденные почвы 31 (2): 77–92

    Статья

    Google Scholar

  • 5.

    Хойт Р.М., Клеменс С.П. (1989) Подъемная способность спиральных анкеров в грунте. В кн .: Материалы 12-й международной конференции по механике грунтов и фундаментостроению.Рио-де-Жанерио, Бразилия, том 2, стр. 1019–1022

  • 6.

    Кишида Х. (1963) Распределение напряжений в модельных сваях в песке. Найденные почвы 4 (1): 1–23

    Статья

    Google Scholar

  • 7.

    Клос Дж., Тейчман А. (1981) Расчет опор для трубных свай. В кн .: Материалы 10-й международной конференции по механике грунтов и фундаментостроению. Stockholm, vol 2, pp 751–754

  • 8.

    Ли Дж., Салгадо Р., Пайк К. (2003) Оценка несущей способности трубных свай в песке на основе результатов испытаний на проникновение конуса.J Geotech Geoenviron Eng 129 (6): 391–403

    Статья

    Google Scholar

  • 9.

    Малик А.А., Кувано Дж., Маэдзима Т. (2013) Влияние деформации спирали / крыла на концевое несущее сопротивление винтовых свай. В: Материалы 38-й ежегодной конференции по глубокому заложению фундаментов, Феоникс, США, стр. 505–510

  • 10.

    Малик А.А., Кувнао Дж., Тачибана С., Маэдзима Т. (2016) Интерпретация данных испытаний нагрузки винтовой сваи с использованием метода экстраполяции плотный песок.Int J Geomate 10 (1): 1567–1574

    Google Scholar

  • 11.

    Мейерхоф Г.Г., Адамс Д.И. (1968) Максимальная подъемная способность фундаментов. Can Geotech J 4: 225–244

    Артикул

    Google Scholar

  • 12.

    Митч М.П., ​​Клеменс С.П. (1985) Подъемная способность спиральных анкеров в песке. В кн .: Известия АСКЕ. Нью-Йорк, стр. 26–47

  • 13.

    Нарасимха Р.С., Прасад С., Шетти М.Д., Джоши В.В. (1989) Подъемная способность анкеров для винтовых свай.Geotech Eng 20 (2): 139–159

    Google Scholar

  • 14.

    Нарасимха Р.С., Прасад YVSN (1993) Оценка подъемной способности винтовых свай в глинах. J Geotech Eng 119 (2): 352–357

    Статья

    Google Scholar

  • 15.

    Пайковский С.Г., Уитман Р.В. (1990) Влияние закупоривания на характеристики и конструкцию сваи. Can Geotech J 27 (4): 429–440

    Артикул

    Google Scholar

  • 16.

    Пайк К., Салгадо Р. (2003) Определение несущей способности открытых свай в песке. J Geotech Geoenviron Eng 129 (1): 46–57

    Статья

    Google Scholar

  • 17.

    Пайк К., Салгадо Р., Ли Дж., Ким Б. (2003) Поведение открытых и закрытых свай, забитых в песок. J Geotech Geoenviron Eng 129 (4): 296–306

    Статья

    Google Scholar

  • 18.

    Perko HA (2009) Винтовые сваи: практическое руководство по проектированию и установке.Уайли, Нью-Джерси

    Google Scholar

  • 19.

    Рэндлоф М.Ф., Уорт К.Ф. (1978) Анализ деформации вертикальных нагруженных свай. J Geotech Eng Div 104 (12): 1465–1488

    Google Scholar

  • 20.

    Randolph MF, Steinfelt JS, Worth CP (1979) Влияние типа сваи на параметры конструкции забивных свай. В кн .: Материалы 7-й Европейской конференции по механике грунтов. Британское геотехническое общество, Лондон, том 2, стр. 107–114

  • 21.

    Rakotonindriana MHJ, Kouby AL, Buttigieg S, Derkx F, Thorel L, Garnier J (2010) Расчет инструментальной модели сваи для осевого циклического нагружения. В: Laue J, Seward L (eds) Физическое моделирование в геотехнике — Springman. Taylor & Francis Group, Лондон, стр. 991–996

    Google Scholar

  • 22.

    Робинский Е.И., Моррисон К.Ф. (1964) Смещение и уплотнение песка вокруг модельных фрикционных свай. Can Geotech J 1 (2): 81–93

    Артикул

    Google Scholar

  • 23.

    Саэки Э., Оки Х. (2003) Исследование винтовой сваи — результаты монтажных и нагрузочных испытаний, а также анализ механизмов проникновения. В кн .: Материалы 4-го международного геотехнического семинара по глубокому фундаменту на буронабивных и шнековых сваях. Millpress, Роттердам, BAP IV, стр. 259–266

  • 24.

    Sakr M (2009) Характеристики винтовых свай в нефтеносном песке. Can Geotech J 46 (9): 1046–1061

    Артикул

    Google Scholar

  • 25.

    Сакр М., Митчеллс Р., Кензи Дж. (2009) Испытания винтовой сваи и забивных стальных труб под нагрузкой на якорную стоянку, Аляска. В: Материалы 34-й ежегодной конференции по глубокому фундаменту, DFI, Канзас-Сити, Миссури, США

  • 26.

    Sakr M (2011) Установка и рабочие характеристики винтовых свай большой емкости в несвязных грунтах. DFI J 5 (1): 39–57

    Google Scholar

  • 27.

    Szechy CH (1959) Испытания с трубчатыми сваями.Acta Technica 24: 181–219

    Google Scholar

  • 28.

    Szechy CH (1961) Влияние вибрации и забивки на пустоты в зернистом грунте, окружающем сваю. В: Материалы 5-й международной конференции по механике грунтов и проектированию фундаментов, Париж, стр. 161–164

  • 29.

    Цуха CHC, Aoki N, Rault G, Thorel L, Garnier J (2007) Физическое моделирование спиральных анкеров. Int J Phys Model Geotech 7 (4): 1–12

    Google Scholar

  • 30.

    Tsuha CHC, Aoki N (2010) Взаимосвязь между крутящим моментом при установке и подъемной способностью глубоких винтовых свай в песке. Can Geotech J 47 (6): 635–647

    Артикул

    Google Scholar

  • 31.

    Vesic AS (1971) Устойчивость к прорыву объектов, погруженных в дно океана. J Soil Mech Found Div 97 (9): 1183–1205

    Google Scholar

  • 32.

    Ян Дж. (2006) Зона влияния концевых несущих свай в песке.J Geotech Geoenviron Eng 132 (9): 1229–1237

    Статья

    Google Scholar

  • 33.

    Yttrup PJ, Abramsson G (2003) Предельная прочность стальных винтовых свай в песке. Aust Geomech 38 (1): 17–27

    Google Scholar

  • 34.

    Yu F, Yang J (2012) Несущая способность открытых стальных трубных свай в песке. J Geotech Geoenviron Eng 138 (9): 1116–1128

    Статья

    Google Scholar

  • Как построить палубу — Винтовые сваи

    После статьи об установке и строительстве деревянного настила, вот статья, которая будет полезна для самостоятельной установки свай.

    Палубные винтовые сваи

    Наше бесплатное онлайн-приложение пересчитывает конструкцию свай патио при каждом щелчке мышью и при каждом изменении, внесенном в ваш проект. Установка винтовых свай внутреннего дворика, в частности, сваи нашего партнера Pylex, — более простой способ сделать фундамент, чем бетонные опалубочные трубы.

    Для этого метода вы должны выкопать яму глубиной от 4 до 5 футов под зоной замерзания диаметром около 14 дюймов. Для этого нужна особая лопата. Также вам необходимо купить бетон, перевезти его, замесить и заварить.Бетонный мешок весит около 60 фунтов, и это для одной стопки (8 дюймов), и на него потребуется как минимум 4-5 мешков. Так что, если у вас 4 сваи, этот метод потребует нескольких часов транспортировки, перемешивания…

    Рассчитать количество свай

    По всем этим причинам мы предлагаем использовать сваи Pylex, чтобы облегчить вашу работу. Кроме того, они следуют отраслевым стандартам. Виртуальный конструктор создается последовательно, поэтому он мгновенно вычисляет нужное количество винтовых свай (см. Рисунок ниже).

    Установка винтовых свай под настил

    Установка проста: с помощью рычага и удлинителя для облегчения поворотов и забивания свай на большую глубину. Они совместимы с удлинителем на 24 дюйма. Более того, они регулируются; они могут заработать до 3 дюймов в высоту. Их можно использовать с опорами 3 ¼ дюйма и 3 ½ дюйма. Сваи Pylex очень прочные и долговечные, потому что деревянный столб находится вне земли.

    Характеристики винтовых свай

    Сваи Pylex (регулируемые на 50 дюймов) могут выдерживать тысячи фунтов.Все зависит от типа грунта, на котором они размещены. Обратите внимание, что глинистые почвы могут нести меньше зарядов, чем песчаные. Благодаря своей стальной конструкции и винтовой передаче сваи обеспечивают исключительную устойчивость. Таким образом, они устойчивы к перемещению грунта и замерзанию / оттаиванию.

    Определение стоимости винтовых свай в строительстве

    Стоимость винтовых свай определяется рядом факторов. Некоторые из них более очевидны, чем другие, но в конечном итоге шансы получить точную оценку будут гораздо более вероятными, если опытный установщик взвесит следующие критерии.

    Географическое положение рабочей площадки

    Одним из факторов стоимости, который может вас удивить, является географическое положение. В ходе обследования затрат, проведенного Helical Pile World в 2016 году, стало очевидно, что затраты на один и тот же тип винтовых свай будут значительно отличаться в зависимости от того, какая часть работ в стране была выполнена. Вообще говоря, более дорогие цены были в штатах Северо-Запад и Средняя Атлантика, в то время как наименьшая стоимость винтовых свай была указана компаниями в штатах Среднего Запада и Равнин.Итак, если у вас есть проект, в котором будут использоваться винтовые сваи, первый фактор стоимости будет зависеть от того, в каком регионе страны будет расположен ваш проект.

    Ремонт или новое строительство

    Вторым по важности фактором стоимости в этом обзоре является тип строящегося проекта. Компании-участники повсеместно указали более высокие цены на восстановительные проекты, связанные со спиральными сваями, по сравнению с проектами нового строительства с использованием свай. Во многих случаях стоимость нового строительства составляла лишь половину стоимости ремонтных работ.

    После этих двух основных факторов, элементы затрат, как правило, тесно связаны с фактическими работами по установке фундамента, которые включают сами сваи. Мы разбили эти факторы следующим образом.

    Количество свай

    Количество свай, необходимых для данного проекта, лишь частично определяется размером и площадью основания поддерживаемой конструкции. На необходимое количество свай также сильно влияют требования к нагрузке, требования к опорам, тип конструкции и строительные нормы, применяемые к проекту.

    Что еще более важно, поскольку винтовые сваи бывают разных размеров в разных ценовых категориях, сто свай одного размера может стоить меньше пятидесяти другого. Подрядчик по оценке и инженеры проекта должны обладать большим опытом, чтобы определить, сколько спиральных свай каждого размера необходимо будет использовать.

    Тип свай

    Типы используемых винтовых свай могут также различаться по диаметру, форме и стилю, а также от того, устанавливаются они с цементным раствором или без него.

    Форма сваи — квадратная или круглая. Обычные квадратные сваи бывают 1,5 дюйма, 1,75 дюйма, 2 дюйма, 2,25 дюйма и более. Обычные трубные сваи бывают 2 7/8 дюйма, 3,5 дюйма, 4,5 дюйма, 5,5 дюйма, 6,5 дюйма, 8 дюймов, 10 дюймов и т. Д. Как правило, чем больше диаметр ствола сваи, тем дороже они будут.

    Стыки с цементным раствором — это относительно новая разработка винтовых свай. Когда анкер ввинчивается в грунт, столб цементного раствора под действием силы тяжести подается по всему валу, чтобы снизить вероятность коробления под действием высоких нагрузок.Такой метод обычно используется на мягких грунтах и ​​позволяет сделать всю колонну более жесткой, одновременно увеличивая несущую способность самого фундамента. Сваи с цементным раствором не стоят значительно дороже, чем установка свай без цемента, но могут значительно повысить производительность. Во многих случаях небольшие сваи с квадратным стволом, залитые цементным раствором, на самом деле стоят меньше, чем сваи с зазором из труб с аналогичной грузоподъемностью.

    Еще раз, тип используемой сваи очень зависит от проекта, и лучшая цена будет определена оценщиком опыта.

    Глубина установки сваи

    Глубина установки сваи повлияет на стоимость винтовых свай просто потому, что для установки более глубоких и надежных фундаментов требуется больше времени и материалов. Во многих случаях анкерное крепление необходимо просверлить достаточно глубоко, чтобы обеспечить более прочный слой почвы. Требования к несущей способности проекта также повлияют на то, насколько глубокие сваи необходимо закрепить.

    Например, свая глубиной 40 футов увеличит материальные затраты на работу, чем свая глубиной всего 20 футов. К основному стволу необходимо добавить дополнительные сваи, чтобы добиться большей глубины. Установка более длинных свай также увеличивает время, которое буровые бригады должны находиться на месте.

    Почвенные условия

    Конструкция и выбор свай, используемых для конкретного проекта, напрямую зависит от встречающихся почвенных условий. Изгиб, разжижение, плотность несущего слоя, через который необходимо проникнуть, и плотность верхних слоев заполнения — все это играет роль при выборе сваи и общей стоимости работы.

    Короче говоря, грунтовые условия для проекта будут играть большую роль в определении количества, типа, размера и глубины используемых свай. Как объяснялось выше, выбор винтовой сваи существенно влияет на стоимость материала винтовой сваи, необходимого для проекта.

    Стоимость винтовых свай — Итог

    Как и все строительные работы, сметные заявки могут быть связаны с непредвиденными обстоятельствами. Однако, когда опытный подрядчик / установщик / оценщик составляет смету для конкретной установки винтовых свай и принимает во внимание ВСЕ вышеперечисленные соображения, вы можете быть уверены, что полученная вами оценка реалистична и точна.Местоположение, тип работы (новое строительство или ремонт), количество, тип и глубина установки свай, а также тип почвы — все это важные факторы. В совокупности они определят вашу цену и то, почему только опытный установщик винтовых свай сможет предоставить достаточно точные цифры для вашего проекта.

    Требуется ценовое предложение на винтовые сваи?

    Запрос ставки от Conte Company

    или свяжитесь с нами

    Страница не найдена | Пирс Атлас

  • Лори Кэмп

    «Atlas Piers проделали большую работу по ремонту нашего тонущего фундамента.У нас действительно было несколько перерасходов в счетах из-за непредвиденных проблем с работой, но они были хороши, чтобы договориться о цене до доступной для нас. Спасибо за охрану нашего дома!

  • Дивья Сукумар

    «Мы позвонили в Atlas Piers, чтобы получить экспертное заключение о фундаменте нашего дома. У нас был продавец гидроизоляционной компании, который сказал нам, что наш фундамент тонет, и предложил установить опоры. Уэйн тщательно осмотрел наш дом и подтвердил, что наш фундамент в хорошем состоянии и не работает. нужны простенки.Он был очень услужливым и хорошо осведомленным и явно заботился о наших интересах, а не просто пытался совершить продажу. Очень рад, что мы подтвердили наши подозрения — очень рекомендую этот бизнес!

  • Дэйв Кольер

    «Меня направил в Атлас Пирс мой друг, который занимается внутренним ремонтом и реконструкцией. Я использовал их, чтобы решить небольшую проблему в моем доме. Они установили (2) Пирса для поддержки конструкции. Довольны качеством конструкции. работать и ценить вовлеченного владельца, который пришел проверить и проследить за мной после того, как работа была завершена.

  • Лаура Стил

    «Atlas Piers — первоклассная компания. Они невероятно профессиональны, своевременны, хорошо осведомлены и поддерживают свой продукт. Мы позвонили им по поводу спиральных стяжек, которые они установили для предыдущего домовладельца 12 лет назад. Несмотря на то, что мы не были первоначальным владельцем и на них не распространялась какая-либо гарантия, они немедленно назначили встречу, и владелец вышел посмотреть. Они втиснули нас для быстрого ремонта в течение этой недели, и с тех пор у нас не было никаких проблем.Очень ценю их профессионализм и то, что они стоят за своим продуктом. Обязательно порекомендую их всем, кому эта услуга может понадобиться в будущем.

  • Эндрю Хитдеркс

    «Они искренне прислушиваются к вашим потребностям и откликаются на них. Не на деньги.

  • Уэйн Д.

    «seripor. Флойд Мур, приехал осмотреть мою собственность. У меня была трещина в фундаменте на кирпичной внешней стене, которая со временем увеличилась.Мистер Мур провел тщательный осмотр и не обнаружил серьезных повреждений фундамента. Он был полезным, информативным и, прежде всего, ЧЕСТНЫМ. Другая компания (которая постоянно рекламирует) пыталась взимать с меня тысячи за ненужную работу. Когда придет время, я обязательно позвоню в Атланту Пирс. Ваша честность и профессиональные манеры — вот что мы больше всего ценим в этом мире… A +.

  • Филип Роджерс

    «Мы использовали опоры Atlas Piers для стабилизации и подъема кирпичного дома у бассейна.Ранее мы работали с известной компанией по ремонту гидроизоляции и фундамента, чтобы решить эту проблему. По сравнению с этим объем работы, выполненной другой компанией, был ничтожным. Опоры этого домика у бассейна не были сделаны должным образом и не могли поддерживать устанавливаемые опоры. Проект был отложен, пока мы работали над укреплением фундаментов. Компания Atlas Piers сохранила гибкость в отношении своих рабочих бригад, своевременно выполняющих работу.

  • Юджин Хирш

    «Авторитетная и профессиональная компания, навсегда решившая мою проблему поселения.У них отличное обслуживание клиентов, они своевременны и эффективны. Я бы ни с кем не имел дела для такой работы.

  • Джеймс Рис

    «Уэйн (владелец) дал нам твердую оценку нашей проблемы. Он был открыт и практичен в отношении наилучшего решения, а цена была конкурентоспособной. Команда Atlas Piers была оперативна в назначенный день, очень хорошо общалась и проделала отличную работу. Они почистили, убедились, что я доволен, и оставил меня вполне довольным, что наша проблема была решена.

  • Кристи Кроуфорд

    «Мои покупатели были обеспокоены проблемами с фундаментом в доме, который они покупали, поэтому мы пригласили Атлас Пирс (мистер Фаррис) взглянуть на него. Он был очень хорошо осведомлен и честен. В доме не было серьезных структурных проблем, вызывающих беспокойство просто регулярное заселение дома. Мистер Фаррис не занимался ремонтом, чтобы получить деньги за работу. Он был честен, и поэтому я всегда буду к нему обращаться в будущем.

  • Питер Чыонг

    «Я имел трещину в колонке поддержки в моем доме.Вышел инженер, посмотрел, сказал мне, что мне не нужно ничего делать с этим, сказал мне, при каких конкретных обстоятельствах мне нужно над ним поработать, а затем сказал мне, как не допустить, чтобы вода разъедала стены моего дома в качестве дополнительного бонус. Все это дружелюбное, своевременное обслуживание, и мне не взяли ни цента. Они могли легко продать мне пирс за 2000 долларов, но не хотели тратить зря свое время или мои деньги. Обычно я совершаю покупки, прежде чем найду подрядчика, но в следующий раз, когда мне понадобится инженер-строитель, я просто пойду в Атлас.

  • Эрик Карлсон

    «Уэйн пришел ко мне домой сегодня утром как раз вовремя. Очень честно. Я очень рекомендую эту компанию.

  • Эрик Чизм

    «Мы использовали Atlas для создания спиральных затворов в доме, который мы приобрели в январе 2018 года. Их первоначальная работа была своевременной и профессиональной. В декабре 2018 года, через три дня после Рождества, во время особенно сильного дождя (обширные ливневые наводнения по всей Атланте, ручьи, дороги, подвалы), у нас возникла небольшая проблема с болтами в анкерных креплениях.После вызова Тони в течение часа к нам домой приехала бригада. Экипаж быстро оценил и в приятной, профессиональной манере исправил ситуацию. Замечательный продукт и обслуживание клиентов!

  • Гвен Боннер

    «Чад Костелло, вице-президент Atlas Piers, человек большой добросовестности. Команда, выполнившая эту работу, была высококвалифицированной и профессиональной. Очень рекомендую эту компанию.

  • Кудзу Обзор

    «Бригада работала эффективно и профессионально на нашем крутом склоне двора, чтобы добраться до нашей плиты, чтобы поднять часть нашего дома. Они действительно знали, что делают.

  • Кудзу Обзор

    «Наше крыльцо опускалось. Атлас Пирс вышел, осмотрел работу, сказал нам, что нужно. Их команда была абсолютно исключительной: вежливая, прилежная и, прежде всего, эффективная. Нас не так легко впечатляют большинство подрядчиков — эти ребята и компания абсолютно феноменальная!

  • Кудзу Обзор

    «Компания и сотрудники были очень профессиональны и полезны.Работа была сделана своевременно. Настоятельно рекомендую для любых работ по фундаменту, которые могут вам понадобиться.

  • Google Обзор

    «Большое дерево упало на мой дом, и мне нужно было поднять его в исходное положение. Атлас проделал большую работу. Дом был восстановлен, а ландшафт вернулся в исходное состояние. Я буду использовать их снова

  • Google Обзор

    «Атлас был очень профессионален и выполнил работу в срок.Они были, безусловно, лучшими из 5 компаний, к которым я обратился с предложением отремонтировать мои подвальные стены. Я их настоятельно рекомендую.

  • Google Обзор

    «Эти ребята профессиональные, с ними легко работать. Я рекомендую их всем!

  • Google Обзор

    «Одна из самых профессиональных компаний, с которыми мы работали, работала у нас дома. Они очень дружелюбны, отлично обслуживают клиентов, быстро и, что самое главное, сделали свою работу правильно с первого раза.

  • Google Обзор

    «Я очень доволен выполненной работой и профессионализмом бригады. Я бы порекомендовал их для ремонта вашего фундамента или даже если вы хотите узнать мнение о новых фундаментных работах.

  • Google Обзор

    «Чад определил настоящую проблему всего за несколько минут осмотра. Мой фундамент не проседал. Это было большим облегчением …Другая компания дала мне дорогое предложение всего за 5 дней до визита Чада.

  • Список клиентов Энджи

    «Они сказали мне, что, по моему мнению, мне не нужно, и направили меня к тому, кто занимается проверками фондов. Они были абсолютно честными и полезными.

  • Обзор списка Энджи

    «Отлично. Атлас был так сговорчив с нашей неотложной ситуацией.Они сделали работу за один день; это было прекрасно и позволило нам закрыть наш дом в соответствии с графиком. Дата оказания услуги: 2014

  • Обзор списка Энджи

    «Я чувствовал себя очень комфортно, выбрав Атлас для выполнения работы. Бригадир был чрезвычайно профессионален и нашел время, чтобы ответить на мои многочисленные вопросы. Бригада проделала отличную работу по уборке.

  • Обзор списка Энджи

    «Эти люди знают, что делают, и делают это очень эффективно, хорошо и по разумной цене.Я определенно буду использовать их снова для любых будущих проблем с фундаментом и настоятельно рекомендую их

  • Обзор списка Энджи

    «Уэйн был очень честен, и я определенно воспользуюсь ими снова. Очень профессионально и знающе.

  • Обзор списка Энджи

    «Atlas Piers отлично справились с установкой опор для большой передней ступеньки. Они пунктуальны, высокопрофессиональны и выполнили работу без проблем.Я очень рекомендую их для любой работы. Они очень честны.

  • Обзор списка Энджи

    «Это была очень сложная работа, и с ними было так много всего. Они постоянно информировали меня об этом процессе. Я очень рекомендую их.

  • Обзор списка Энджи

    «Сьюзен так мило разговаривала по телефону, что я сразу же захотел оставить отзыв. Она направила меня к специалисту, чтобы узнать то, что я искал.Спасибо.

  • Билл Хантер

    «Я вызвал их посмотреть на какой-то поселок в доме 75-летней давности. Атлас приехал, провел тщательный осмотр и решил, что поселение довольно старое, и нет необходимости устанавливать опоры, так как он больше не оседает. . Их честность и порядочность сэкономили мне 10-15 тысяч долларов.

  • Брук Джайлз

    «Очень хорошо осведомлен, профессионален и заслуживает доверия.НАСТОЯТЕЛЬНО рекомендую им позвонить вам в первый раз.

  • Свайные фундаменты — Руководство по проектированию, строительству и испытаниям

    Свайные фундаменты сооружаются, когда невозможно построить конструкцию на фундаменте мелкого заложения. В зависимости от характера конструкции и по большему количеству причин выбор свайных фундаментов производится, как описано в статье.

    Мы сконцентрируемся на следующих основных темах этой статьи.

    Свайные фундаменты — обзор

    Проектирование свайных фундаментов

    Строительство свай

    Испытания свай

    Давайте начнем с понимания…

    Что такое свайный фундамент?

    Это тип фундамента, который закладывается глубоко в землю, и в строительстве используются в основном круглые секции.

    Неглубокие фундаменты опираются на землю и передают вертикальные нагрузки непосредственно на почву. Пропускная способность грунта представлена ​​как допустимая несущая способность, и если приложенное давление меньше допустимого давления на опору, геотехнический расчет в порядке.

    Однако в свайных фундаментах используются другие методы и другие параметры.

    При проектировании учитываются поверхностное трение грунта (положительное и отрицательное), поверхностное трение выветриваемой породы, поверхностное трение в породе и торцевой подшипник породы.

    Почему сваи должны поддерживать конструкцию

    • Когда вертикальные нагрузки, прикладываемые к фундаменту, не могут переноситься мелкими фундаментами из-за низкой несущей способности.
    • При наличии слабых слоев почвы, таких как торф, в почве
    • Для передачи растягивающих усилий, приложенных к фундаменту. Сваи могут быть закреплены в скале, чтобы выдерживать растягивающие усилия.
    • Для восприятия боковых нагрузок (сжатия), приложенных к фундаменту. Будет построена наклонная свая, способная выдерживать как сжимающие, так и растягивающие усилия.
    • При очень высоких вертикальных нагрузках, особенно в высоких зданиях, несущая способность грунта недостаточна для выдерживания таких нагрузок. нам нужны сваи.

    Факторы, влияющие на проектирование и строительство свайных фундаментов

    • Нагрузки от верхнего строения
    • Состояние почвы. В зависимости от характера почвы трение кожи будет различным. Когда есть слои почвы, такие как торф, при геотехническом проектировании сваи необходимо учитывать отрицательное поверхностное трение.
    • Состояние породы. Значения RQD и CR, определенные в результате исследования ствола скважины, сильно влияют на вместимость сваи.
    • Стоимость строительства также является основным фактором во внимание при выборе сваи в качестве опорной системы.
    • Доступность сайта проверяется.
    • Необходимо проверить зазоры от границ.
    • Проверить ограничение вибраций и уровней звука. Чрезмерная вибрация может привести к повреждению прилегающих участков.

    Типы свайных фундаментов

    Эта категоризация была произведена на основе типа материала, используемого при строительстве свай, и на основе характера конструкции.

    1. Буронабивные сваи / монолитные сваи
    2. Забивные сваи / сборные сваи
    3. Микросваи
    4. Шпунтовые сваи
    5. Деревянные сваи
    6. Винтовые сваи

    Буронабивные или монолитные сваи

    Чаще всего и широко используются б / у тип сваи.В большинстве построек, построенных на свайном фундаменте, наблюдается набивка досок.

    Свая втыкается в скалу. В зависимости от характера нагрузки и ее величины глубина заделки в скале будет варьироваться.

    Кроме того, количество свай, необходимое для поддержки колонны, зависит от грузоподъемности сваи и приложенной нагрузки.

    Во-первых, мы находим геотехническую способность и структурную способность сваи. Тогда минимальное из этих значений принимается за вместимость сваи.

    Поскольку приложенная нагрузка известна, количество свай можно рассчитать.

    Буронабивные сваи строятся как одиночные или групповые в зависимости от приложенных нагрузок. Обычно групповые сваи требуются для поддержки сдвиговых стержней, стенок, лифтовых стержней и т. Д.

    Забивные сваи / сборные сваи

    Это сборные сваи.

    Они сконструированы, когда прилагаемая нагрузка сравнительно мала по сравнению с буронабивными сваями.

    Кроме того, сборные сваи не забиваются в скалу, а заканчиваются или вставляются в твердый слой почвы.Должен быть плотный слой почвы, чтобы поддерживать сваю и обеспечивать опору на конце.

    Эти сваи в основном представляют собой сваи с преобладанием трения, хотя имеется концевой подшипник.

    Забивку можно производить вручную путем падения массы в сваю или с помощью вибропогружателя.

    Доступны сваи разных размеров от 400 мм. Далее, в зависимости от характера конструкции, могут быть изготовлены и меньшие размеры.

    Кроме того, эти типы свайных фундаментов широко используются в малоэтажных зданиях, когда они не могут быть построены на мелком фундаменте.

    Микросваи

    Микросваи довольно популярны в малоэтажном строительстве.

    Когда состояние грунта слабое и нет достаточной несущей способности, чтобы выдерживать нагрузки от надстройки, необходимо построить глубокий фундамент.

    На этом фоне, если посмотреть на доступные варианты; мы должны выбрать тип фундамента из буронабивных свай, сборных свай и микросвай.

    Из них буронабивные сваи в целом более дороги по сравнению с двумя другими типами.

    Выбор типа сваи зависит от характера и типа нагрузок от надстройки.

    Кроме того, при строительстве фундаментов такого типа желательно получить рекомендацию инженера-геолога.

    Проект должен быть выполнен на основе параметров, представленных в отчете по исследованию грунта, и они должны быть проверены после строительства путем проведения необходимых испытаний.

    Микросвая представляет собой стальную оболочку, заполненную бетоном.При необходимости и по мере увеличения диаметра микросваи арматурный каркас также можно разместить внутри сваи, чтобы улучшить ее конструктивную способность.

    Микросваи используются при строительстве устоев и мостовых опор. Боковые нагрузки, приложенные к опоре, могут передаваться на грунт наклонными микрошваями.

    При строительстве опор стоят три сваи или шесть свай шестиугольной формы, используемые для несения вертикальных нагрузок.

    Основным риском конструкции этого типа является коррозия стали.Если подвергнуть воздействию коррозии или дать ей возможность соответствовать требованиям по коррозии, свая может разрушиться.

    Однако, с другой стороны, риск меньше, так как свая находится под землей, и меньше шансов получить все ингредиенты для коррозии.

    Если конструкция должна быть построена в прибрежной зоне, особое внимание следует уделить защите стального кожуха.

    Микросваи состоят из стальных обсадных труб 150, 200, 300 мм и т. Д.

    Шпунтовые сваи

    Шпунтовые сваи также могут рассматриваться как тип свайного фундамента, хотя в большинстве случаев они не используются для непосредственной поддержки конструкций, как другие типы. свай.

    Например, шпунтовые сваи используются для поддержки почвы вокруг конструкции, а также действуют как постоянная конструкция. Удаление или рассмотрение как постоянных работ зависит от характера конструкции и состояния земли.

    Кроме того, в строительстве широко используются шпунтовые сваи, чтобы удерживать землю для земляных работ. В конструкциях глубоких подвалов, также как указано выше, могут использоваться правильно закрепленные шпунтовые сваи.

    Кроме того, он полезен также при строительстве коффердамов.

    Существуют разные типы шпунтовых свай в зависимости от профиля и схемы соединения. Кроме того, мы можем выбрать подходящую шпунтную сваю на основе необходимого модуля упругости сечения согласно проектным требованиям.

    В статье, шпунтовых подпорная стенка обсудить дизайн устойчивости шпунтовой подпорной стенки.

    Деревянные сваи

    Не только в нынешнем, но и в древнем строительстве использовались более совершенные технологии.

    Они знали, что когда есть слабая почва, нужно делать сваи. Поэтому для этого они использовали экологически чистый материал.

    Даже сейчас, когда строительство или расширение закончено, можно наблюдать забивание деревянных свай.

    В частности, здания и мосты построены на деревянных сваях.

    Деревянные сваи долговечны, экономичны и экологичны.

    Используется специальная древесина с хорошими прочностными характеристиками.

    Пожалуйста, снимайте нагрузку с кожного трения и концевого подшипника.

    Конструкции в очень слабых местах, где нельзя приближаться к тяжелым машинам, используются деревянные сваи.

    Винтовые сваи

    Свая похожа на винт, как показано на следующем рисунке.

    Тип винта зависит от типа конструкции.

    Кроме того, бывают разные типы винтовых свай.

    В соединениях зданий или любых других конструкциях, таких как строительство мостов, можно использовать винтовые сваи.

    Проектирование свайных фундаментов

    После того, как сваи выбраны в качестве фундамента типа в соответствии с рекомендациями отчета о геотехнических исследованиях, выполняется оценка количества свай.

    Тогда нам понадобится вместимость сваи.

    В свайных фундаментах имеется двухкомпонентный фундамент для оценки несущей способности слоев.

    Возьмем меньшее из нижеприведенных.

    • Геотехническое проектирование
    • Конструктивное проектирование

    Геотехническое проектирование свай

    Оценка геотехнической способности сваи проводится в зависимости от состояния грунта и состояния породы. рок.

    Геотехническая нагрузка сваи может быть представлена ​​следующим уравнением:

    Qu = Qp + Qs

    Где

    Qu — максимальная геотехническая нагрузка сваи

    Qp — максимальная концевая опора сваи

    Qs — Предельное поверхностное трение сваи

    Допустимая нагрузка (Qall) может быть рассчитана как

    Qall = Qu / FoS

    FoS — коэффициент безопасности; варьируется 2,5 -4

    Кроме того, существуют разные методы расчета допустимой грузоподъемности сваи.Метод применения запаса прочности может отличаться от страны к стране в зависимости от местных стандартов.

    Иногда применяется отдельный коэффициент безопасности как для концевого подшипника, так и для поверхностного трения, а также единичный коэффициент безопасности.

    Замечено, что низкий коэффициент безопасности, такой как 2,0, также используется для трения кожи. При проектировании настоятельно рекомендуется соблюдать местные стандарты.

    В основном есть пять компонентов, связанных с геотехнической емкостью сваи.

    1. Кожное трение грунта (положительное поверхностное трение и отрицательное поверхностное трение)
    2. Кожное трение выветриваемой породы
    3. Кожное трение горной породы
    4. Концевой подшипник скальной породы
    5. Концевой подшипник грунта

    Если свая заканчивается в грунте (твердом слое), в случае сборных свай, используется торцевая опора в грунте. Если сваи вставлены в скалу (набивные сваи на месте), концевой подшипник в скале используется для расчета несущей способности сваи.

    Указанные выше пять параметров указаны в геотехнических рекомендациях, основанных на данных исследования скважин.

    Если мы знаем параметры почвы, мы можем рассчитать значения поверхностного трения по уравнениям.

    Для расчета поверхностного трения почвы доступны следующие методы.

    Трение кожи в песке
    • На основе покрывающей породы и угла трения между грунтом и сваей
    • Корреляция со стандартным тестом на проникновение (SPT)
    • Корреляция с тестом на проникновение конуса (CPT)
    Трение кожи в глине
  • λ
      90 метод
    • α метод
    • β метод
    • Корреляция с CPT

    Концевой подшипник почвы также может быть рассчитан с помощью различных предложенных методов.Следующие методы широко используются дизайнерами.

    Подшипник на конце грунта
    • Метод Мейерхофа (песок / глина)
    • Метод Васича (песок / глина)
    • Метод Койла и Кастелло (песок)
    • Корреляция с SPT и CPT
    Трение кожи скалы

    964 Обшивка породы определяется в зависимости от состояния и типа породы.

    Как правило, предельное поверхностное трение свежей породы и погодных пород указывается в отчете о геотехнических исследованиях.

    Мы должны применить коэффициент запаса прочности для расчета допустимой мощности. Если указана допустимая мощность, мы можем использовать ее напрямую.

    Точечный подшипник скалы (концевой подшипник)

    Оценка основана на результатах испытаний. В большинстве случаев для определения прочности породы проводится испытание на прочность на одноосное сжатие (UCS).

    Связь между ПСК и концевым подшипником используется для определения окончательного значения.

    Значения RQD и CR также должны проверяться при определении несущей способности сваи и длины раструба, поскольку они отражают состояние породы.

    Таким образом, мы получим необходимые геотехнические параметры, такие как поверхностное трение и значения концевых подшипников, из отчета о геотехнических исследованиях. Что нам нужно сделать, так это применить необходимый запас прочности и рассчитать геотехнические возможности.

    Конструктивное проектирование сваи

    Допустимое напряжение бетона в буронабивных монолитных сваях в большинстве стандартов рассматривается как 0,25fcu . Есть лишь небольшие отклонения.

    • ACI 318: 0,25 fcu
    • EC2: 0,26 fcu
    • CP4: 0,25 fcu

    Однако сваю необходимо проверять на изгиб, особенно если она построена на слабом грунте. Таким образом, выполняется анализ продольного изгиба свайного фундамента.

    И, учитывая то же, можно сделать конструктивный расчет или расчет арматуры.

    Есть два метода / этапа проектирования сваи.

    1. Рассчитайте критическую нагрузку на изгиб и проверьте, превышает ли она приложенную нагрузку.
    2. Выполните более тщательный анализ потери устойчивости и проектирование.

    Сводка шагов расчета выглядит следующим образом. Дальнейшее чтение необходимо сделать перед выполнением проектирования.

    Шаг 01

    Рассчитайте критическую нагрузку потери устойчивости (Pcr).

    Шаг 02

    На основе Pcr, грунтовых пружин, вращения в верхней части сваи (может иметь некоторую устойчивость к вращению) и т. Д. Найдите эффективную длину (Lcr).

    Step 03

    Поскольку нам известны приложенные нагрузки, эффективная длина и диаметр сваи, мы можем спроектировать сваю обычным методом или с помощью программного обеспечения.

    Ключевые факторы, которые необходимо учитывать при проектировании свайных фундаментов, резюмируются следующим образом.

    • Оцените геотехническую способность и конструктивную способность сваи и примите меньшее значение в качестве несущей способности сваи.
    • Разделите грузоподъемность сваи на приложенную нагрузку (нагрузка на колонну или приложенная нагрузка; предельное состояние эксплуатационной пригодности), чтобы найти количество свай.
    • При проектировании группы свай индивидуальная нагрузка должна рассчитываться на основе центра нагрузки и геометрического центра каждой сваи.Нагрузки распределяются в зависимости от положения сваи.
    • Если имеется более одной сваи, минимальный зазор между ними должен составлять 2,5 диаметра сваи.
    • Увеличение зазора между сваями не позволит использовать ферменную аналогию с конструкцией сваи . Поэтому зазор между сваями выдерживают в 2,5 — 3 раза больше диаметра сваи.
    • Следует обратить внимание на отрицательное трение кожи при наличии органических загрязнений. В противном случае оценка вместимости сваи будет неверной.
    • Раскряжевку сваи следует проверять при наличии очень слабых грунтов, таких как торф, на большей глубине.
    • Обратите внимание на значения RQD и CR при выборе длины раструба.
    • Как правило, в соответствии с большинством стандартов допустимый допуск для конструктивных отклонений составляет 75 мм. Это необходимо учитывать при проектировании заглушки сваи. Особое внимание следует обращать на одиночную стопку. Момент центричности должен передаваться балками грунта.Следовательно, это необходимо учитывать при проектировании заземляющего луча.

    Строительство свайного фундамента

    Давайте обсудим основные этапы строительства свай. Следующая процедура обсуждается в отношении свай, уложенных на месте.

    Следующие допуски допускаются различными стандартами как допустимые отклонения во время строительства.

    Код Допустимый допуск
    ACI-336 4% диаметра или 75 мм; в зависимости от того, что меньше
    BS EN 1536 100 мм; для диаметра сваи (D) ≤ 1000 мм

    0.1D для 1000

    150 мм D> 1500

    Конструкция для граблей менее 1 из 15 пределов до 20 мм / м

    Конструкция с граблями от 1 к 4 до 1 из 15 пределов до 40 мм / м

    CP4 75 мм
    BS 8004 Не более 1 из 75 от вертикали или 75 мм

    Отклонение до 1 из 25 допускается для буронабивных свай, пробуренных с граблями до 1 из 4

    Этапы строительства сваи и ключевые аспекты, требующие внимания

    • Выполнение разбивки
    • Начните удаление верхнего слоя почвы до уровня породы.Он всегда должен стараться поддерживать положение сваи, как указано на чертежах, хотя обычно существует приемлемый допуск 75 мм.
    • Начать выемку керна и контролировать глубину залегания керна. В этом случае он должен следить за тем, чтобы бурение керна происходило в свежей породе, а не в выветрившейся породе.
    • Он должен быть измерен с помощью образцов, скорости проникновения, данных каротажа скважины, других глубин сваи, если таковые имеются.
    • Из-за трудностей с поиском свежей породы первый слой будет заброшен ближе к скважине.Затем можно оценить другие параметры. Исходя из этого, можно приступать к укладке свай.
    • Производятся визуальные наблюдения для проверки качества породы.
    • Кроме того, для проверки прочности породы можно использовать такие методы испытаний, как испытание точечной нагрузкой. Результаты испытаний на точечную нагрузку можно сопоставить, чтобы найти концевую опору сваи. Если это не дает удовлетворительных результатов, следует проводить отбор керна до тех пор, пока не будет найден здоровый камень. Для получения дополнительной информации о тестировании можно обратиться к статье методы тестирования строительных материалов .
    • После завершения бурения породы в соответствии с длиной раструба, будет проведена очистка.
    • Основная цель очистки — удалить грязь, песок и т. Д. Из бентонита. Это также называется промыванием.
    • Есть параметры, которые необходимо проверить, чтобы убедиться, что свая должным образом чиста. На следующем рисунке указаны предельные значения. Эти значения будут меняться от спецификации к спецификации.
    • Как только бентонит в выработке достигает заданных пределов, промывка прекращается.
    • Затем в выемку кладут трубу.
    • Затем медленно заливается бетон. После того, как он заполнен, дрожь снимается на очень небольшое количество, позволяя бетону вытекать.
    • Этот бетон будет постепенно подниматься вверх вместе со всей грязью и нечистотами на дне сваи. Затем снова заполняют треми бетоном и дают возможность бетону вытекать.
    • Он должен следить за тем, чтобы конец дрожжевой трубы всегда находился в свежем бетоне.Это позволяет всегда свежему бетону смешиваться со свежим бетоном, и верхний слой бетона постепенно поднимается вверх.
    • Кроме того, очень важно контролировать скорость заливки бетона, чтобы избежать подъема арматурного каркаса. Если скорость выше, клетка будет поднята.
    • Повторяйте это до тех пор, пока бетонирование не будет завершено.

    Испытания свайных фундаментов

    В отличие от других фундаментов, мы не можем видеть, что происходит под землей.

    Ничего не видно…

    Как определить, правильно ли мы построили сваю с помощью..

    • Соответствующее покрытие арматуры
    • Без образования перемычек
    • Без выпуклостей
    • Без бетонных смесей с бентонитом
    • Без полостей (например, сот) в бетоне
    • Без грязи на дне сваи
    • 000

    • И т.д. Поэтому нам необходимо провести испытания сваи, чтобы убедиться, что она построена правильно.

      Подрядчик несет ответственность за проведение испытаний свай по согласованию с консультантом по проекту и сторонним испытательным агентством.

      Методы испытания свай

      В основном существует четыре типа методов испытания свай.

      1. Испытание на целостность сваи (испытание на целостность при низкой деформации)
      2. Испытание на динамическую нагрузку (испытание на высокую деформацию)
      3. Испытание на статическую нагрузку
      4. Звуковое испытание в поперечном отверстии
      Испытание на целостность сваи

      Самый простой метод прогнозирования целостности сваи.

      С помощью этого теста можно предсказать выпуклости, шейки, углубления и т. Д.

      Это лучший метод определения дефектного файла, но не может оценить вместимость сваи.

      Обеспечивает первоначальное предупреждение о том, неисправна ли свая.

      Испытание на целостность сваи используется для идентификации свай, подлежащих испытанию другими методами, такими как динамическое испытание сваи и испытание статической нагрузкой сваи.

      Кроме того, этот метод тестирования не требует больших затрат по сравнению с другими тестами. Далее все сваи испытываются этим методом.

      Испытание динамической нагрузкой

      Наиболее широко используемый метод определения несущей способности сваи в существующей конструкции.

      В отличие от теста статической нагрузки, он дает результаты мгновенно. Емкость плие можно получить на месте сразу после тестирования. Однако будет проведен дальнейший анализ, чтобы дать точные ответы после анализа с помощью программного обеспечения, такого как CAPWAP.

      Мы можем получить трение обшивки сваи и концевую опору, разработанную для испытательной нагрузки.

      Первоначально испытание сваи будет смоделировано с помощью программного обеспечения, а высота падения молота будет определена таким образом, чтобы он не создавал растягивающих напряжений, превышающих допустимые или которые могут восприниматься арматурой сваи.

      Это называется анализом волнового уравнения (WEAP). При использовании этого метода не требуется прикладывать ударную нагрузку несколько раз, пока мы не найдем испытательную нагрузку.

      WEAP обеспечивает взаимосвязь между испытательной нагрузкой, сжимающим напряжением и развитием растягивающего напряжения.

      Таким образом, тестирование может быть выполнено очень легко.

      Испытание статической нагрузкой

      Это более надежный и традиционный метод, используемый при испытании свай. Поскольку все измерения производятся вручную, мы имеем представление о том, что происходит с увеличением нагрузки.

      Нагрузку на сваю увеличиваем до испытательной нагрузки, указанной в проекте сваи, и постепенно снижаем.

      Деформация сваи отслеживается и проверяется, находится ли она в пределах.

      Акустический тест с поперечным отверстием

      Этот тест используется для проверки состояния сваи. Его можно использовать для проверки состояния соответствующих работ в отверстиях, размещенных в свае.

      Трубопроводы укладываются в штабель. Затем испытательный инструмент кладут в стопку и проверяют.Передатчик и приемник используются для проверки состояния сваи.

      На основе скоростей волн прогнозирует состояние сваи. Дополнительную информацию о методе тестирования можно найти в статье Википедии Межскважинный акустический каротаж .

      Фундаменты со спиральными сваями | JLC Онлайн

      Моя компания по разработке колодок строит около 50 проектов в год, от базовых до сложных. Это создает много опор, а я ненавижу рыть ямы под опоры.Линия замерзания в районе Нью-Джерси, где я строю, составляет 36 дюймов, и нам повезло со всеми типами каменистых почв, известных человеку. До того, как я перешел на винтовые сваи, я изнашивал множество копателей и лопат, и я даже купил компактный гусеничный погрузчик со шнеком, чтобы сделать установку фундамента палубы менее опасной.

      Копать ямы было только частью удовольствия. Затем мне пришлось бы назначить инспекцию со строительными чиновниками, неспособными указать конкретное время или день, но со способностью появиться после сильного дождя, когда мои прежде нетронутые ямы превратились в грязевые болота.Иногда я получал красную бирку с пометкой: «Очистите грязь от забоя». Так что после вычистки ямы (что я бы сделал в любом случае) мне пришлось бы ждать повторной проверки.

      Затем я загружал 80-фунтовые мешки с бетонной смесью в свой грузовик, разгружал их на стройплощадке и отнес к задней части дома. Затем последовали часы безрадостного микширования в тачке. Если бы мы использовали грузовик для готовой смеси, это было бы немного проще, но они дорого обходились для небольших работ, могли повредить подъездные пути и не всегда появлялись вовремя.И нам часто все равно приходилось возить тачки по бетону с улицы на задний двор.

      Кроме того, мне всегда было интересно, какой вес могут выдержать мои бетонные опоры. Без отчета о грунте невозможно узнать точную несущую способность грунта, поэтому я обычно перестраиваю основание, чтобы быть в безопасности.

      Каждый раз, когда я обнаруживал плохие почвенные условия во время раскопок, я привлекал инженера-грунтовика, что было дорогостоящим и требовало много времени. В последний раз, когда я делал это, домовладелец получил заказ на замену на 6000 долларов для дополнительных земляных работ, не считая гонорара инженера-почвенника.

      Винтовые сваи?

      Около двух лет назад я наткнулся на фотографию проекта настила, построенного не на бетонных опорах, и написал подрядчику по электронной почте, чтобы узнать, что он использовал. Его ответ — винтовые сваи — изменил мой бизнес.

      Рисунок 1. Винтовые сваи представляют собой винтовые пластины, приваренные к стальному валу. Доступны различные размеры для разных почв и областей применения.

      Я никогда не слышал о спиральных сваях, и мне пришлось поискать их в Google, чтобы узнать, что это такое.Я узнал, что винтовая свая — это искусственный стальной фундамент, который вкручивается в почву (рис. 1). Он имеет вывод или вал, обычно длиной 7 футов, приваренный к пластине или винтовой опоре, и колпачок, который прикрепляет вал к раме.

      Рисунок 2. Толстое покрытие цинка защищает стальные сваи от коррозии.

      Обычно сваи для жилищного строительства представляют собой горячеоцинкованную сталь (рис. 2). Если почва особенно агрессивна, можно использовать расходуемые аноды (аналогичные тем, которые используются для защиты подземных резервуаров для сжиженного нефтяного газа).Однако в большинстве коммерческих и промышленных применений сваи даже не оцинкованы.

      Рисунок 3. Доступны несколько типов заглушек для крепления свай к каркасу. Некоторые из них можно регулировать по высоте, чтобы точно настроить высоту палубы.

      Размер спирали зависит от почвенных условий. Как правило, установщик винтовой сваи выбирает спираль меньшего размера для каменистых почв и более крупную для болотных и глинистых почв. После того, как свая установлена, доступны различные заглушки, чтобы привязать опору к каркасу; некоторые из них имеют винтовой узел, позволяющий точно настраивать высоту (рис. 3).

      Моей первой мыслью было отклонить спиральные сваи как еще одну уловку. Но оказывается, что они использовались в США более 100 лет, в основном, на тяжелых коммерческих проектах. Конструкции, гораздо более сложные, чем терраса на заднем дворе, солярий или что-то еще, опираются на винтовые сваи в качестве фундамента. Я был так впечатлен, что купил дилерский центр и теперь устанавливаю винтовые сваи для других подрядчиков, а также для моих собственных настилов (см. «Винтовые сваи для жилых домов»).

      Рис. 4. Когда водитель поворачивает сваю, она просто ввинчивается в землю, пока установщик не убедится, что она ниже линии замерзания и находится в грунте с достаточной несущей способностью.

      Как они работают

      Винтовые сваи ввинчиваются в землю ниже линии замерзания с помощью гидравлического оборудования (Рисунок 4). Несущая способность винтовой сваи обычно зависит от величины крутящего момента, необходимого для ее установки, и зависит как от размера винтовой сваи, так и от несущей способности грунта.Манометр на установочной машине считывает крутящий момент, когда сваи вращается в земле (Рисунок 5).

      Рис. 5. Несущая способность винтовой сваи обычно зависит от крутящего момента, необходимого для ее забивания. Манометр на машине измеряет гидравлическое давление, которое коррелирует с крутящим моментом.

      Если почва слабая, манометр покажет низкие числа, что означает, что сваю нужно вкручивать глубже, чтобы получить более прочную почву. Когда спираль находится ниже линии замерзания и манометр показывает достаточно высокое значение, соответствующее требованиям к нагрузке конструкции, установка завершается.Это значение давления подставляется в формулу, называемую корреляцией крутящего момента, которая вычисляет фактическую несущую способность сваи.

      Рис. 6. Можно приварить вал дополнительной длины и забить сваю на такую ​​глубину, которая необходима для достижения грунта с соответствующей несущей способностью.

      Рис. 7. Вы не узнаете этого, глядя, но эта куча проникает в землю примерно на 13 футов. Винтовые сваи не создают груды пустой породы, как обычные опоры.

      Когда плохие почвенные условия требуют углубления, чем стандартный вал длиной 7 футов, на него приваривается удлинитель (Рисунок 6).Иногда все, что нужно, — это на фут глубже, чтобы перейти от совершенно ужасной почвы к твердой, как камень. Это особенно актуально, если вы строите отдельно стоящую площадку, где опоры рядом с домом могут начинаться с обратной засыпки. С бетонным основанием вы должны выкопать целинную землю на уровне фундамента дома, до 7 футов или 8 футов, если в доме есть подвал. Забить спиральную сваю на эту глубину несложно (рисунок 7).

      Кроме того, с традиционным бетонным основанием никогда не знаешь, что скрывается в дюйме ниже основания котлована.Теперь, когда я занимаюсь производством спиральных свай, я часто вижу ситуации, когда, казалось бы, хорошая почва превращается в целую кучу дюймов ниже того места, где я обычно установил бы бетонную основу.

      А как насчет камней?

      Рис. 8. Иногда сваю приходится обходить ниже уровня грунта путем перемещения стрелы машиниста. После преодоления препятствия стрела снова тянет вал по вертикали.

      «Что вы делаете, когда ударяетесь о камень?» — это вопрос, который я часто слышу от подрядчиков, впервые рассматривающих винтовые сваи.Ответ: это зависит от обстоятельств. Обычно мы просто пробиваемся сквозь рыхлый камень размером с баскетбольный мяч и меньше. Установочная машина создает достаточный крутящий момент, чтобы спираль выталкивала камни в сторону при ее повороте. Иногда установщик может фактически повернуть спираль вокруг камня, а затем использовать стрелу машины, чтобы вернуть сваю в вертикальное положение (рис. 8).

      Если под линией промерзания встречается большой камень, сваю ставят поверх камня и испытывают нагрузку (см. «Испытания под нагрузкой»). Если предположить, что он проходит испытание на нагрузку — а обычно проходит — свая никогда не сдвинется с места.Если бы она не прошла испытание на нагрузку, сваю пришлось бы установить в другом месте.

      Когда большая скала встречается над линией промерзания, ее можно пробурить, а стержень сваи прикрепить к скале без спирали. Однако иногда в работе бывает так много породы, что винтовые сваи просто не работают. В некоторых местах я даже не пытаюсь установить сваи, потому что все участки на улице были выбиты из коренной породы. В таких местах нужно использовать разные методы.

      Преимущества

      Винтовые сваи обладают рядом преимуществ по сравнению с традиционными опорами. Две большие проблемы заключаются в том, что они устраняют необходимость рыть ямы для фундамента и работать с бетоном. Но я нашел несколько других причин их использовать.

      Рис. 9. Полевой отчет, заполняемый установщиком, отмечает расположение и глубину свай, а также либо их значения крутящего момента, либо величину, которую они затопили при испытании кувалдой. Отчет отправляется инженеру для проверки и печати.

      Например, осмотр фундамента не требуется. Установщик записывает показания давления, глубину сваи и результаты нагрузочных испытаний для каждой сваи в полевом отчете (рисунок 9). Компания, с которой я работаю, может получить печать отчета инженера и отправить его напрямую в строительный отдел, если это необходимо. (Некоторым отделам печать не требуется. Ваш местный установщик знает, как действовать дальше.) Стоимость этой инженерной работы включена в стоимость каждой спиральной сваи, которую мы устанавливаем; другой производитель может взимать отдельную плату за технический отчет.

      Рис. 10. Забивка винтовой сваи в мерзлом грунте начинается с того, что вставляют специальный нагревательный стержень в отверстие, просверленное перфоратором (вверху). Как только земля нагреется, сваю забивают в обычном режиме (справа). Фото: Дэйв Нортап

      Рис. 11. Было бы невозможно вырыть традиционную опору в этой земле, если бы она не была заполнена водой.

      В мерзлом или влажном грунте установка традиционных опор может быть затруднена или невозможна.Для винтовых свай мерзлый грунт не является препятствием (рис. 10), поэтому в более холодном климате они упрощают управление строительными настилами круглый год. Их также можно установить там, где традиционное отверстие для фундамента заполнялось бы водой, когда оно было вырыто, что делает винтовые сваи хорошим решением для дощатых мостков, доков и настилов на берегу озера (Рисунок 11)

      Рис. 12. Поскольку винтовые сваи не сильно нарушают почву, их можно устанавливать рядом с существующими элементами ландшафта. Фото: Грег ДиБернардо

      В процессе установки винтовых свай большая часть земли остается нетронутой (Рисунок 12).На участке не будет грязи, которую можно потерять или унести. Спиральная куча в плохой почве может опускаться на 20 футов; подумайте о традиционных раскопках такой глубины — если бы это вообще было возможно — и о том, сколько грязи было бы поднято. В сваях почти нет и следа, кроме торчащей из земли трубы. Кроме того, оборудование легкое и может пересекать ухоженный газон, не повреждая его.

      Спиральные сваи также экономят много времени и предлагают большую грузоподъемность при покупке.Забивка винтовой сваи в среднем грунте занимает всего около 10 минут — и она на 100 процентов готова к установке и обладает большой несущей способностью. Самая маленькая свая, которую я устанавливаю, может выдержать нагрузку в 6800 фунтов, тогда как бетонная опора должна быть больше 16 дюймов в диаметре в проверенном грунте с давлением 4000 фунтов на квадратный дюйм для достижения такой же способности. Еще одним преимуществом большей вместимости является то, что вы обычно можете использовать меньше опор, хотя вам, возможно, придется использовать балки большего размера для достижения больших пролетов.

      Рисунок 13.Поскольку несущая способность винтовых свай может быть проверена, часто можно использовать меньшее количество опор и большую опорную балку. В этом случае расстояние между сваями превышает 15 футов. Фото: Грег ДиБернардо

      В случае спиральных свай корреляция крутящего момента в сочетании с испытанием нагрузки на сваю также означает, что нет необходимости проверять несущую способность грунта или полагаться на предположения. Вы будете абсолютно уверены в несущей способности каждой сваи (рис. 13).

      Наконец, есть ценность инженерного продукта.Это большой аргумент для домовладельцев.

      Недостатки

      Для моей компании преимущества винтовых свай намного перевешивают недостатки, но это может быть не так. Для начала установка винтовой сваи требует найма субподрядчика для выполнения работ, если вы не вкладываете средства в обучение и оборудование, как я. Возможно, у вас нет в наличии одежды со спиральным ворсом на месте, но звоните по всему миру. Большинство установщиков, которых я знаю, преодолевают значительные расстояния, чтобы рассказать о своем продукте.

      Как и в случае с любой другой субмариной, вы должны быть осторожны с тем, кого вы нанимаете. Некоторые производители продают стопки любому, у кого чек не отскакивает. Убедитесь, что ваш установщик должным образом обучен и может обеспечить техническую поддержку своей работы. Имейте в виду, что некоторые установщики используют свои сваебойные погрузчики с бортовым погрузчиком или мини-экскаваторами, которые могут повредить газоны клиентов. Кроме того, некоторые установщики привыкли выполнять более тяжелую коммерческую работу и могут взимать коммерческие цены даже за работу в жилых помещениях.

      Многие подрядчики считают, что винтовые сваи слишком дороги.Стоимость может варьироваться в зависимости от региона, размера и глубины сваи, но установка нашей типичной винтовой сваи для жилых домов стоит от 150 до 250 долларов. Это включает в себя сваю, установку, инжиниринг и кронштейн для соединения сваи с конструкцией. Это меньше, чем мне стоит установить бетонный фундамент, если учесть все затраты на рабочую силу в дополнение к стоимости материалов.

      Вы можете столкнуться с некоторым сопротивлением со стороны местного строительного чиновника, когда впервые предложите винтовые сваи.Скорее всего, он или она не имеют опыта работы с винтовой сваей, поэтому вам, возможно, придется предоставить подтверждающую документацию вместе с вашими строительными чертежами. Попросите установщика предоставить эту документацию вместе со своими планами. Как правило, большинству чиновников просто нужно понимать, как работает спиральная свая, но некоторые могут усложнить жизнь. По моему опыту, когда они видят готовый продукт вместе с печатью полевого отчета, они не только верят в спиральные сваи, но и рекомендуют их другим подрядчикам.

      Винтовые сваи для жилых домов

      Поиск в Google по запросу «спиральные сваи» обнаружит множество производителей и установщиков. Однако у многих из них нет достаточно небольшого оборудования для установки в жилых помещениях, или подрядчики настолько привыкли выполнять тяжелые работы, что могут не беспокоиться о небольших жилых проектах. Я выбрал Techno Metal Post (technometalpostusa.com) и даже купил франшизу, потому что они хорошо подходят для моего бизнеса. Их винтовые опоры доступны как по стоимости, так и по логистике.Для большинства других винтовых опор требуется бортовой погрузчик или экскаватор для обеспечения мощности их водителей, но Techno Metal Post использует запатентованное оборудование, достаточно маленькое, чтобы пройти через ворота, подняться по ступенькам и даже въехать на существующую платформу для модернизации опор. скажем, чтобы поддержать новую гидромассажную ванну.

      Нагрузочное испытание

      Нагрузочное испытание спиральной сваи намного проще, чем кажется. Измеряется высота сваи над уровнем земли (слева). Далее в ворс вставляется колпак, чтобы защитить его верх.По этой крышке пять раз ударяют кувалдой (справа) и снова измеряют высоту сваи. Вес саней зависит от размера сваи — для больших свай используется более тяжелый молот. Степень погружения сваи указывает на несущую способность почвы, которую проверит инженер. Динамическая нагрузка, создаваемая ударной нагрузкой, на удивление велика и коррелирует со статической нагрузкой, которую может выдержать свая.

      Нагрузочное испытание, в отличие от снятия показаний крутящего момента, проводится в нескольких случаях.Один из них — когда куча достигает дна на большом камне. Другой случай — когда почва особенно скользкая — например, мокрая глина. На скользкой почве несущая способность может быть выше, чем предполагают показания крутящего момента, потому что почва смазывает спираль и снижает усилие, необходимое для ее поворота.

      .

  • Related Posts

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *