Как амперметр переделать в миллиамперметр: Подключение амперметра через шунт. Подбор и расчет устройства

Содержание

Подключение амперметра через шунт. Подбор и расчет устройства

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Как из миллиамперметра сделать вольтметр

Наглядность – большое дело. Вот и народная мудрость гласит: – «Лучше раз увидеть, чем сто услышать». А в электронике, где протекающие процессы в работе того или иного устройства, подтверждаются зачастую косвенно, а то и вообще подразумеваются и даже берутся на веру, наглядное отображение вообще переоценить сложно. Недаром таким почитанием в среде радиолюбителей пользуются осциллографы, дающие возможность «заглянуть» даже внутрь процесса. Но не буду о сложном – разобраться бы с простым. Собрал почти десяток различных зарядных устройств, а для зарядки аккумуляторов использую всё больше простенький лабораторный блок питания, имеющий визуальное отображение выходного напряжения и тока. Измерительные головки чётко информируют, сколько вольт и миллиампер идёт на заряжаемый аккумулятор. Вот только далеко не везде есть возможность их использовать, даже самые маленькие из них, зачастую всё равно будут непомерно большими для многих радиолюбительских самоделок. А вот стрелочные индикаторы от магнитофонов и других радиотехнических устройств прошлого века, которые не перевелись на базарах до сих пор, будут тут в самый раз. Вот некоторые из них:

Стрелочный индикатор М476 предназначен для работы в цепях постоянного тока, при любом положении шкалы. Ток полного отклонения (зависит от модели) 40 – 300 мкА. Внутреннее сопротивление 4000 Ом. Длина шкалы – 28 мм, масса 25 гр.

Стрелочный индикатор М4762 предназначен для работы при вертикальном положении шкалы. Ток отклонения 220 – 270 мкА. Внутреннее сопротивление 2800 Ом. Размеры 49 х 45 х 32 мм. Длина шкалы – 34 мм.

Стрелочный индикатор М68502 предназначен для работы при любом положении шкалы. Ток полного отклонения не более 250мкА. Внутреннее сопротивление 1000 Ом. Размеры 21,5 х 60 х 60,5 мм. Масса 30 гр. Эти индикаторы и им подобные объединяет:

  • небольшой размер
  • простота конструкции
  • низкая стоимость
  • и, конечно же, принцип действия

Принцип действия основан на взаимодействии двух магнитных полей. Поля постоянного магнита и поля, образованного током, проходящим по бескаркасной рамке, которая состоит из большого числа (115 – 150) витков медного провода диаметром всего 8 – 9 микрон. Не вникая в нюансы можно назвать два основных действия, которые необходимо произвести для того, чтобы стало возможным использовать имеющийся индикатор:

  1. Оснастить его шунтом или добавочным сопротивлением (применяются для изменения верхнего предела измерения), в зависимости от того как будете его использовать (вольтметр / амперметр).
  2. Изготовить новую шкалу.

Подбор шунта – подходящий по мощности низкоомный резистор ставим на контакты индикатора, параллельно ему переменный резистор с большим сопротивлением, выставляем ток, на который будет использоваться индикатор, вращением переменного резистора устанавливаем стрелку на крайнее правое деление шкалы.

Подбор добавочного сопротивления – подходящий по мощности переменный резистор большого сопротивления ставим на один из контактов индикатора, выставляем напряжение и вращением резистора устанавливаем стрелку на крайнее правое деление шкалы. Теперь дело за малым – нужно «добраться» до шкалы внутри индикатора, а для этого необходимо открыть его корпус. И вот тут впору растеряться, потому как никакого крепежа нет и корпус, состоящий из двух половинок, элементарно склеен. Потому, насколько качественно эта операция выполнена и какой клей применён, можно судить о том родились ли Вы под счастливой звездой )). Будем открыть индикатор М4762, на мой взгляд, самый сложный вариант. Но даже если был применён дихлорэтан, отчаиваться не стоит, так как он наверняка растворил только верхний слой органического стекла – материала, из которого изготовлен корпус. Поэтому берём в руки надфиль с крупной насечкой и обтачиваем по периметру место соединения двух половинок корпуса, равномерно со всех сторон.

В процессе обтачивания периодически необходимо пробовать разъединить половинки корпуса, прилагая при этом какое-то усилие. В результате всё получилось.

Изготовить новую шкалу не сложно:

  1. сканируем старую
  2. вставляем изображение в специализированный графический редактор Sprint-Layout
  3. обрисовываем
  4. распечатываем
  5. вырезаем и клеим по месту

Что там ни говори, а даже самый простой пробник с индикатором – это уже целый измерительный прибор!

Обсудить статью СТРЕЛОЧНЫЕ ПРИБОРЫ – ИНДИКАТОРЫ

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор. Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор. Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление. То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей. Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

  1. От 0 вольт до единицы.
  2. От 0 вольт до 10В.
  3. От 0 В до 100 вольт.
  4. От 0 до 1000 В.

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
  • Uп – это максимальное напряжение измеряемого предела;
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.

Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

  • для первого предела – 1,5 кОм;
  • для второго – 19,5 кОм;
  • для третьего – 199,5;
  • для четвертого – 1999,5.

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

Данная схема работает так:

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
  • напряжение проходит через амперметр к правому зажиму;
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.

Рассмотрены не сложные схемы цифровых вольтметра и амперметра, построенных без использования микроконтроллеров на микросхемах СА3162, КР514ИД2. Обычно, у хорошего лабораторного блока питания есть встроенные приборы, – вольтметр и амперметр. Вольтметр позволяет точно установить выходное напряжение, а амперметр покажет ток через нагрузку.

В старых лабораторных блоках питания были стрелочные индикаторы, но сейчас должны быть цифровые. Сейчас радиолюбители чаще всего делают такие приборы на основе микроконтроллера или микросхем АЦП вроде КР572ПВ2, КР572ПВ5.

Микросхема СА3162Е

Но существуют и другие микросхемы аналогичного действия. Например, есть микросхема СА3162Е, которая предназначена для создания измерителя аналоговой величины с отображением результата на трехразрядном цифровом индикаторе.

Микросхема СА3162Е представляет собой АЦП с максимальным входным напряжением 999 mV (при этом показания «999») и логической схемой, которая выдает сведения о результате измерения в виде трех поочередно меняющихся двоично-десятичных четырехразрядных кодов на параллельном выходе и трех выходах для опроса разрядов схемы динамической индикации.

Чтобы получить законченный прибор нужно добавить дешифратор для работы на семисегментный индикатор и сборку из трех семисегментных индикаторов, включенных в матрицу для динамической индикации, а так же, трех управляющих ключей.

Тип индикаторов может быть любым, -светодиодные, люминесцентные, газоразрядные, жидкокристаллические, все зависит от схемы выходного узла на дешифраторе и ключах. Здесь используется светодиодная индикация на табло из трех семисегментных индикаторов с общими анодами.

Индикаторые включены по схеме динамической матрицы, то есть, все их сегментные (катодные) выводы включены параллельно. А для опроса, то есть, последовательного переключения, используются общие анодные выводы.

Принципиальная схема вольтметра

Теперь ближе к схеме. На рисунке 1 показана схема вольтметра, измеряющего напряжение от 0 до 100V (0. 99,9V). Измеряемое напряжение поступает на выводы 11-10 (вход) микросхемы D1 через делитель на резисторах R1-R3.

Конденсатор СЗ исключает влияние помех на результат измерения. Резистором R4 устанавливают показания прибора на ноль, при отсутствии входного напряжения А резистором R5 выставляют предел измерения так чтобы результат измерения соответствовал реальному, то есть, можно сказать, им калибруют прибор.

Рис. 1. Принципиальная схема цифрового вольтметра до 100В на микросхемах СА3162, КР514ИД2.

Теперь о выходах микросхемы. Логическая часть СА3162Е построена по логике ТТЛ, а выходы еще и с открытыми коллекторами. На выходах «1-2-4-8» формируется двоичнодесятичный код, который периодически сменяется, обеспечивая последовательную передачу данных о трех разрядах результата измерения.

Если используется дешифратор ТТЛ, как, например, КР514ИД2, то его входы непосредственно подключаются к данным входам D1. Если же будет применен дешифратор логики КМОП или МОП, то его входы будет необходимо подтянуть к плюсу при помощи резисторов. Это нужно будет сделать, например, если вместо КР514ИД2 будет использован дешифратор К176ИД2 или CD4056.

Выходы дешифратора D2 через токоограничивающие резисторы R7-R13 подключены к сегментным выводам светодиодных индикаторов Н1-НЗ. Одноименные сегментные выводы всех трех индикаторов соединены вместе. Для опроса индикаторов используются транзисторные ключи VT1-VT3, на базы которых подаются команды с выходов Н1-НЗ микросхемы D1.

Эти выводы тоже сделаны по схеме с открытым коллектором. Активный ноль, поэтому используются транзисторы структуры р-п-р.

Принципиальная схема амперметра

Схема амперметра показана на рисунке 2. Схема практически такая же, за исключением входа. Здесь вместо делителя стоит шунт на пятиваттном резисторе R2 сопротивлением 0,1 От. При таком шунте прибор измеряет ток до 10А (0. 9.99А). Установка на ноль и калибровка, как и в первой схеме, осуществляется резисторами R4 и R5.

Рис. 2. Принципиальная схема цифрового амперметра до 10А и более на микросхемах СА3162, КР514ИД2.

Выбрав другие делители и шунты можно задать другие пределы измерения, например, 0. 9.99V, 0. 999mA, 0. 999V, 0. 99.9А, это зависит от выходных параметров того лабораторного блока питания, в который будут установлены эти индикаторы. Так же, на основе данных схем можно сделать и самостоятельный измерительный прибор для измерения напряжения и тока (настольный мультиметр).

При этом нужно учесть, что даже используя жидкокристаллические индикаторы прибор будет потреблять существенный ток, так как логическая часть СА3162Е построена по ТТЛ-логике. Поэтому, хороший прибор с автономным питанием вряд ли получится. А вот автомобильный вольтметр (рис.4) выйдет неплохой.

Питаются приборы постоянным стабилизированным напряжением 5V. В источнике питания, в который будут они установлены, необходимо предусмотреть наличие такого напряжения при токе не ниже 150mA.

Подключение прибора

На рисунке 3 показана схема подключения измерителей в лабораторном источнике.

Рис. 3. Схема подключения измерителей в лабораторном источнике.

Рис.4. Самодельный автомобильный вольтметр на микросхемах.

Детали

Пожалуй, самое труднодоставаемое – это микросхемы СА3162Е. Из аналогов мне известна только NTE2054. Возможно есть и другие аналоги, о которых мне не известно.

С остальным значительно проще. Как уже сказано, выходную схему можно сделать на любом дешифраторе и соответствующих индикаторах. Например, если индикаторы будут с общим катодом, то нужно КР514ИД2 заменить на КР514ИД1 (цоколевка такая же), а транзисторы VТ1-VТЗ перетащить вниз, подсоединив их коллектора к минусу питания, а эмиттеры к общим катодам индикаторов. Можно использовать дешифраторы КМОП-логики, подтянув их входы к плюсу питания при помощи резисторов.

Налаживание

В общем-то оно совсем несложное. Начнем с вольтметра. Сначала замкнем между собой выводы 10 и 11 D1, и подстройкой R4 выставим нулевые показания. Затем, убираем перемычку, замыкающую выводы 11-10 и подключаем к клеммам «нагрузка» образцовый прибор, например, мультиметр.

Регулируя напряжение на выходе источника, резистором R5 настраиваем калибровку прибора так, чтобы его показания совпадали с показаниями мультиметра. Далее, налаживаем амперметр. Сначала, не подключая нагрузку, регулировкой резистора R5 устанавливаем его показания на ноль. Теперь потребуется постоянный резистор сопротивлением 20 От и мощностью не ниже 5W.

Устанавливаем на блоке питания напряжение 10V и подключаем этот резистор в качестве нагрузки. Подстраиваем R5 так чтобы амперметр показал 0,50 А.

Можно выполнить калибровку и по образцовому амперметру, но мне показалось удобнее с резистором, хотя конечно на качество калибровки очень влияет погрешность сопротивления резистора.

По этой же схеме можно сделать и автомобильный вольтметр. Схема такого прибора показана на рисунке 4. Схема от показанной на рисунке 1 отличается только входом и схемой питания. Этот прибор теперь питается от измеряемого напряжения, то есть, измеряет напряжение, поступающее на него как питающее.

Напряжение от бортовой сети автомобиля через делитель R1-R2-R3 поступает на вход микросхемы D1. Параметры этого делителя такие же как в схеме на рисунке 1, то есть для измерения в пределах 0. 99.9V.

Но в автомобиле напряжение редко бывает более 18V (больше 14,5V уже неисправность). И редко опускается ниже 6V, разве только падает до нуля при полном отключении. Поэтому прибор реально работает в интервале 7. 16V. Питание 5V формируется из того же источника, с помощью стабилизатора А1.

Шунт для амперметра. Или как сделать вольтметр из амперметра и наоборот. — Источники питания — Каталог статей

Шунт для амперметра. Или как сделать вольтметр из амперметра и наоборот.

Эту статью я решил написать, когда делал источник питания для своей домашней лаборатории. Из собственного опыта замечено, что на регулируемом блоке питания должен быть вольтметр, для оценки устанавливаемого напряжения. А так же амперметр, для приблизительной оценки тока потребляемого нагрузкой. Решено в новый источник питания установить эти полезные элементы: вольтметр и амперметр. Поискав в ящиках, нашел две подходящих измерительных головки (основной критерий — минимальные размеры). С максимальным током 50мкА и 30мА.

 

Сначала сделаем вольтметр из амперметра

Итак, перейдем к расчетам.

Самое простое сделать вольтметр из амперметра, я использую второй амперметр. Для расчетов нам понадобятся: максимальный ток отклонения стрелки — в моем случае 30мА, Максимальное напряжение, которое должен измерять наш вольтметр — 30В.

Используя закон Ома находим сопротивление: R=U/I, R=1кОм.

Значит шунт (резистор) сопротивлением 1кОм нужно подключить последовательно с амперметром. При этом мы получим вольтметр. Т.е. если через такую последовательную цепь будет протекать ток в 30мА, то падение напряжения на этом резисторе равно 30В. В моем случае мне даже не нужно изменять шкалу прибора, достаточно наклеить букву «V», чтобы было понятно, что это вольтметр.

Следует помнить, что через такой вольтметр всегда будет течь ток 0-30мА, в зависимости от измеряемого напряжения от 0-30В. А так как он используется в блоке питания это не критично. Так же не следует забывать, что резистор должен быть подходящей можности, которую определим по формуле P = I*I*R получим P=30мА*30мА*1кОм=0,9Вт ставим с запасом не меньше 1Вт.

Надо ещё учесть внутреннее сопротивление прибора. Тогда добавочный резистор считается так: Rд=Uп/Iи-Rи.
Rд — сопротивление добавочного резистора;
Uп — макс. значение выбранного предела измерения напряжения;
Iи — ток полного отклонения выбранного амперметра;
Rи — внутреннее сопротивление (рамки прибора) выбранного амперметра, оно указывается.

Делаем амперметр из амперметра у которого маленькая шкала.

У первого амперметра шкала 50мкА это очень мало, мне нужно 1,5А. Чтобы расширить диапазон измерения амперметра, нужно установить шунт, но не последовательно, а параллельно с измерительной головкой. Получается ток будет разветвляться и одна часть потечет через амперметр, а другая через сопротивление. Нужно подобрать такое сопротивление, чтобы ток в 1,5А делился на два, 50мкА через амперметр, а остальной ток через резистор.

Для расчетов понадобится знать сопротивление амперметра, но так как его я не знаю, то шунт буду изготавливать методом подгона. Для этого нужно взять медную проволоку диаметром 0,8-1мм длинной 1 метр и измерить ток, при котором стрелка отклоняется в крайнее положение. 

Для этого понадобится регулируемый источник напряжения и нагрузка, я использовал автомобильную лампочку. Далее таким образом подгоняем шунт увеличивая длину проволоки если нужно уменьшить максимальный ток или укорачиваем проволоку если нужно увеличить максимальное значение шкалы амперметра.

У меня получился вот такой шунт в четыре слоя. Края я проклеил силиконовым клеем.

Следует помнить, что если случайно оторвется шунт, то через микроамперметр потечет большой ток и он выйдет из строя.

Амперметр из вольтметра делается по аналогии с первым вариантом, только шунт устанавливается не последовательно а параллельно. Также бывает, что в вольтметрах устанавливаются внутренние резисторы, убрав которые можно получить амперметр.

Следует помнить что амперметр должен иметь минимальное сопротивление, а вольтметр должен обладать очень высоким сопротивлением.

Расчёт шунтирующего сопротивления амперметра. Супер онлайн калькулятор. :: АвтоМотоГараж

Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра.  Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.

 

В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.

Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.

Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.

Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.

Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:

где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)

Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:

 

В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.

Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.

Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.

Цена деления прибора рассчитывается по формуле:

где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями

Для упрощения можно воспользоваться онлайн калькулятором ниже:

 

 

Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.

Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах

Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.

Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.

Формула для расчёта тока отклонения стрелки до максимального значения:

Расчёт: 0.075/2.52=0.02976А

Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:

 

Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах

Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.

О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье: Как сделать шунт (шунтирующий резистор) для амперметра. Самый простой метод подбора.

И ещё одно продолжение этой тематики: Как изменить предел измерения амперметра. Как переделать амперметр постоянного тока на переменный.

Расчет шунта для амперметра онлайн калькулятор

Расчет шунта для амперметра онлайн калькулятор

Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра. Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.

В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.

Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.

Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.

Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.

Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:

где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)

Если все данные для расчёта имеются, то можно приступать к самому расчёту. Для упрощения можно воспользоваться онлайн калькулятором ниже:

В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.

Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.

Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.

Цена деления прибора рассчитывается по формуле:

где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями

Для упрощения можно воспользоваться онлайн калькулятором ниже:

Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.

Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах

Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.

Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.

Формула для расчёта тока отклонения стрелки до максимального значения:

Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:

Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах

Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.

О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье.

РАСЧЁТ ШУНТА

РАСЧЁТ ШУНТА

Не знаю как вы, а я любому цифровому амперметру и вольтметру в лабораторном блоке питания предпочту старые добрые стрелочные индикаторы. Ведь при наличии каких либо коротких импульсов тока, на цифровом индикаторе будет абракадабра, а то и вообще показания останутся без изменений, если стоит в схеме небольшая задержка обновления показаний. Так же и короткое КЗ может остаться без внимания, а вот стрелка амперметра, дёрнувшись, сразу покажет что к чему.

В общем во многих аппаратах таки лучше ставить стрелочные головки. И блок питания — это тот случай, когда за модой на цифровые АЛС-ки лучше не гонятся, а сделать именно стрелочную индикацию вольт и ампер. Убедил? Тогда приступим к расчёту и изготовлению. Не буду грузить вас многострочными формулами, теориями и коэффициентами поправки на температуру воздуха и цены на нефть. Для этих целей подойдёт простая, годами проверенная технология практического расчёта шунта для любого, даже на неизвестный предел измерения, стрелочного индикатора.

Собираем вот эту простенькую экспериментальную схемку с участием контрольного цифрового амперметра (мультиметра), нагрузки (паруваттного резистора на несколько Ом или простой лампочки на 6,3В) и собственно самого неизвестного стрелочного индикатора. Всё это хозяйство соединяем последовательно — цепочкой, и подсоединяем к регулируемому (желательно) блоку питания. Выставляем, допустим 10 В и смотрим, что у нас показывает контрольный цифровой мультиметр — амперметр.

Теоретически он покажет предположим 0,5 А. В идеале, для нужного предела в 1 А и стрелочник должен показать отклонение на пол шкалы. Ах вам надо чтоб он стал амперметром не на 1 А, а на 2 А? Не проблема. Последовательно с головкой включаем подстроечный (для эксперимента, потом замеряем получившееся сопротивление и заменим на постоянный) резистор R3 на несколько килоом, и уменьшаем понемногу его сопротивление, чтоб полное отклонение стрелки индикатора соответствовало току 2 А. Он предварительно должен стоять на максимуме сопротивления. Само собой, что эти 2 А надо предварительно выставить напряжением с блока питания.

Вот, сделали. А если у нас стрелочник наоборот показывает при токе по мультиметру 0,5 А всего четверть шкалы, а по плану вы хотите чтоб полное отклонение стрелки было при 0,1 А? Тогда просто увеличьте сопротивление шунта где-то в два раза и посмотрите что получилось. А получится то, что стрелка отклонится уже дальше, может и на всю шкалу если угадали с номиналом резистора. Перебор? Зашкаливает уже? Тогда подкручиваем переменник пока не вернём стрелку куда надо.

Если теперь вы думаете как всё это добро встроить в блок питания на индикацию тока, вот схема подключения. Шунтируя стрелочный прибор двумя разными резисторами R1 или R1+R2, можно получить два диапазона измерения тока: в нашем случае 0,1 А или 1 А. Сопротивление резисторов этих указано ориентировочно — в процессе настройки и в зависимости от самого микроамперметра их сопротивление может отличаться.

С расчётом шунта для превращения стрелочного индикатора в вольтметр ещё проще. Последовательно включаем цифровой контрольный вольтметр (на схеме не указан), головку, подстроечный резистор R3 на максимальный предел 200 — 1000 килоом, на всякий пожарный защитный резистор R7 на 10-50 килоом и естественно блок питания. Выставляем на БП 10 вольт (по контрольному мультиметру) и вращая подстроечник R3, который предварительно выставлен на максимальное сопротивление (иначе стрелочный индикатор сгорит моментально, помним этот момент всегда!), добиваемся отклонения стрелки на максимум. Во что превратился наш микроамперметр? Правильно — в вольтметр на 10 вольт. По аналогичному принципу можно превратить стрелочный индикатор в вольтметр на любое напряжение. В конце эксперимента меряем сопротивление переменника и заменяем его таким же постоянным.

Ну и наконец вот полная схема вольтметра — амперметра на основе одного стрелочного индикатора. Переключение «вольты — амперы» производим тумблером. Обратите внимание: переключение режимов шунта (0,1-1 А) производится не переключателем, а включателем. Именно включателем, чтоб не возникло ситуации, при которой внутренний рычажок переключателя уже оторвался от одного контакта, а к другому ещё не подключился. Тогда весь ток к нагрузке пойдёт через стрелочник на 100 мкА — вылетит в момент. А нанести деления на шкалу можно так: ненужные циферки индикатора аккуратно зачищаем лезвием, а вместо них гелевой чёрной ручкой пишите свои значения.

Расчет измерительного шунта миллиамперметра

Шунт (англ. Shunt) — электрическое или магнитное ответвление, которое включают параллельно основного контура цепи. Параллельное подключение одного звена электрической цепи к другому с целью понижения общего электрического сопротивления называется процессом шунтирования. Это нашло широкое применение в схемотехнике.

Шунты измерительных приборов

Измерительный шунт — сопротивление, параллельно подключенное к зажимам измерительного амперметра (параллельно его внутреннему электрическому сопротивлению). Это позволяет прибору расширить измерительный диапазон по току при снижении его чувствительности и разрешающей способности.

Измерительные шунты производят из манганина. В зависимости от конструктивного исполнения бывают:

Для определения небольших значений тока (не более 30 А) шунт чаще всего находится внутри корпуса прибора. В случае измерения внушительных значений тока во избежание чрезмерного нагрева корпуса шунт имеет наружную конфигурацию исполнения.

В портативных магнитоэлектрических устройствах, рассчитанных на силу тока не более 30 ампер, внутренние шунты рассчитаны на несколько граничных значений измеряемой величины.

Многопредельный шунт устроен в виде ряда резисторов, которые возможно коммутировать в соответствии с пределом измерения, рычажным тумблером либо путем перемещения провода с одной клемы на другую.

У внешних резисторов, как правило, присутствует калибровка, с расчётом на распространенные значения тока и напряжения. Такие шунтирующие сопротивления имеют ряд номинальных значений напряжения: 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

При использовании элементов шунтирования в измерениях величин переменного тока наблюдается добавочная погрешность, связанная с преобразованием частоты, поскольку сопротивления измерительного механизма и шунтирующего устройства находятся в различных зависимостях от частоты.

Шунтирующие звенья классифицируются согласно точности: 0,02, 0,05, 0,1, 0,2, и 0,5. Цифровые значения, отвечающие каждому классу, указывают на допустимую величину расхождения сопротивления с его номиналом, выраженную в процентах.

Эксплуатационные требования, выдвигаемые к элементам шунтирования: низкие потери напряжения в области шунта, во избежание перегрева оборудования; стабильное значение сопротивления, обеспечивающие точность измерения; стойкость к коррозии и к воздействиям окружающей среды.

Контроль величины постоянного тока имеет широкий диапазон применения, в том числе:

  • фотоэлектрическая промышленность,
  • источники электропитания общественного транспорта,
  • электрические генераторы и двигатели,
  • оборудование для сварочных работ,
  • инверторы,
  • и другие системы с наличием высоких значений постоянного тока.

Во многих промышленных отраслях применение шунтирующих резисторов зарекомендовало себя как надежный, точный и долговременный способ для беспрерывного измерения тока постоянной величины.

Расчет и изготовление шунта

Амперметр M367 имеет максимальный предел измерения тока 150 А. Очевидно, что при определении таких величин силы тока задействовано внешнее шунтирующее сопротивление. Освобожденный от влияния шунтирующего элемента прибор приобретает свойства миллиамперметра с максимальным показанием силы тока 30 мА.

Следовательно, варьируя разными значениями сопротивления електр. звена, можно добиться любой области измерения. Чтобы подтвердить это на практике, можно создать шунт для амперметра своими руками.

Основные понятия и формулы

Значение суммарной величины тока I распределяется между шунтирующим резистором (Rш, Iш) и изм. прибором (Rа, Iа) и находится в обратно пропорциональной зависимости сопротивлению этих участков.

Электросопротивление ответвления измерительной цепи: Rш=RаIа / (I-Iа).

Для умножения масштаба измерения в n раз следует принять значение: Rш=(n-1) / Rа, при этом показатель n=I/Iа — коэффициент шунтирования.

Расчет шунтирующего звена

Для расчета шунта микроамперметра можно воспользоваться данными об измерительной головке прибора: сопротивление рамки (Rрам), величина тока, которая соответствует максимальному отклонению индикаторной стрелки (Iинд) и наибольшее значение прогнозируемой шкалы измерения тока (Imax). Максимальным измеряемым током примем значение 30 мА. Значение Iинд определяется экспериментальным путем. Для этого последовательно включается в электрическую цепь переменный резистор R, шкала индикатор и измерительный тестер.

Перемещая ходунок резистора R, следует добиться максимального показания стрелки на шкале индикатора и зафиксировать показания Iинд на тестере. Вследствие опыта известны величины Iинд = 0.0004 А и Rрам=1кОм (также измеряется тестером), этого достаточно для дальнейшего расчета сопротивления шунта микроамперметра (индикатора) по формуле:

Rш=Rрам * Iинд / Imax; получаем Rш=13,3 Ом.

Длина проводника

Выбрав материал для изготовления и зная величину его удельного сопротивления, необходимо рассчитать длину токовой части шунта.

Согласно соотношению: Rш=p*J/S,

где: p-удельное сопротивление, J-длина, S- площадь поперечного сечения проводника, подбираются геометрические параметры медного провода (p=0.0175 Ом*мм2 /м).

Величину площади можно рассчитать из формулы, вооружившись предполагаемым значением диаметра:

Тогда искомая величина будет равна:

При диаметре проводника d= 0.1 мм, подставив значения получается длина:

Расчет шунта для амперметра постоянного тока определил такие выходные данные:

максимальный ток измерения — 30 мА;

материал проводника — медная жила 0.1 мм в диаметре длиною 0,45 м.

Для удобства и упрощения расчетов относительно шкал измерительных приборов используют онлайн-калькулятор.

Амперметр для зарядного устройства

Нелишним будет знать, как сделать из вольтметра амперметр и применить его в процессе контролирования силы тока при зарядке аккумуляторных батарей.

Необходимый стрелочный вольтметр проверяется на способность стрелки полностью отклонятся вдоль измерительной шкалы. Следует убедиться в отсутствии добавочных сопротивлений или внутреннего шунта.

До этого был рассмотрен расчетный метод подбора шунтирующего резистора, в этом случае самодельный амперметр получается сугубо практическим путем, с помощью добавочного изм. прибора или тестера с пределом измерения до 8 А.

Соединяется в простую схему зарядный выпрямитель, дополнительный образцовый амперметр, проводник для будущего шунта и заряжаемая аккумуляторная батарея.

Для изготовления шунта для амперметра 10А своими руками на концах неизолированного толстого медного проводника длиною до 80 см выгибаются кольцеобразные дуги под крепеж болтом. После чего подсоединяется последовательно с образцовым изм. прибором в электрическую цепь выпрямитель — аккумулятор.

Один из концов стрелочного вольтметра основательно соединяется с шунтом, а другим, как щупом, проводится по медному проводу. Подается питание через выпрямитель и устанавливается по образцовому амперметру сила тока в цепи 5А.

Начиная от места крепления, щупом от вольтметра следует вести по проводу, пока на обоих приборах не установятся одинаковые значения тока. Согласно величине сопротивления рамки используемого стрелочного вольтметра определяется нужная длина провода шунтирования величиною до метра.

Проводник шунта возможно смотать в виде спирали либо как-то еще. Витки легонько растянуть с целью избежать прикосновений между ними или изолировать хлорвиниловой трубкой по всей длине спирали шунта.

Вариант предварительного определения длины провода для последующей замены изолированным проводником тоже вполне приемлем и практичен, но требует внимательности и тщательности в операциях замены шунта, повторяя все этапы по нескольку раз. Связано это с точностью показаний амперметра.

Соединительные провода от вольтметра должны быть обязательно припаяны непосредственно к шунтирующей спирали, иначе прибор будет иметь погрешности в показаниях.

Провода соединяющие шунт и изм. прибор выбирают произвольной длины, поэтому шунтирующий элемент возможно поместить в любой части корпуса выпрямителя.

Шкала амперметра для измерения величины постоянного тока равномерная, этим нужно руководствоваться при ее выборе. Букву V правильно заменить на А, а цифровые значения подогнать из расчета максимального тока в 10 А.

Расчет шунта для амперметра онлайн калькулятор

Рассчитать сопротивление шунта к миллиамперметру на 100 мА сопротивлением RA =0,5Ом, чтобы прибором можно было измерять ток до 1А.

Определите цену деления прибора без шунта и с шунтом, если шкала имеет 50 делений. Нарисуйте схему включения шунта.

Дано: RA =0,5 Ом; I1=1А NА=100; IA=100 мА.

Определить: Nш-?; R1ш-?; R2ш-?; R3ш-?; N-?

1. Определяем сопротивление шунта для расширения предела измерения амперметра.

где — шунтовый коэффициент; он показывает во сколько раз измеряемый ток больше тока амперметра, т. е. во столько раз расширяются пределы измерения амперметра.

2. Шунт включается параллельно амперметру. Соединение параллельное, зн. напряжение на шунте и на амперметре имеет одно и то же значение U, а сила тока IА проходящая через амперметр уменьшается IА= I- IШ.

3. Рассчитаем сопротивление шунта

4. Определяем цену деления прибора без шунта.

Максимальное значение измерения амперметра IA=100 мА, делений на шкале N=50, значит цена деления амперметра без шунта , цена деления амперметра с шунтом

Иногда, в радиолюбительской практике и не только, требуется измерить токи, величиной в несколько десятков ампер. Обычный мультиметр может измерять токи до 10 А, ито не всегда. Зачастую имеющийся под рукой прибор позволяет делать измерения до десятых долей ампера. Опытный радиолюбитель легко выйдет из положения, поэтому статья предназначена в первую очередь для новичков. Итак, будем разбираться, как измерить ток с помощью закона Ома.

Применение закона Ома

Основной закон электротехники, он же закон Ома, гласит: I=U/R где I-это ток в амперах, U-напряжение в вольтах, R-сопротивление в омах. Эта формула говорит нам, что если в разрыв измеряемой нагрузки (где нужно измерить ток) включить шунт (R) и измеренное на шунте напряжение (U) подставить в формулу, по двум величинам R и U мы узнаем нужную нам I — протекающий ток.

Пример: мы ожидаем ток 20-30 А, а может и больший от потребления двигателем шуруповерта. У нас имеется проволочный шунт, сопротивлением 0,035 Ом. Шунт подключается в разрыв плюса или минуса, это не важно — действующий ток одинаков на всех участках цепи. Так же параллельно шунту подключается вольтметр — по его показания можно судить о токе, потребляемом нагрузкой. У меня при почти полном торможении вала двигателя вольтметр показывал около 0,9 В. Подставив известные нам значения в формулу I=0,9/0,035=25,7А — такой ток потребляет мотор.

Обратите внимание:
При измерении пульсирующих и динамически меняющихся токов, цифровой вольтметр не очень подходит, так как его контроллер очень медленно снимает показания. Для данной цели больше подходит стрелочный вольтметр.

Подобрав шунт нужного сопротивления, можно измерять любые постоянные или пульсирующие токи, хоть до 300 А и более. Хотя я сомневаюсь, что такие измерения вам понадобятся. Обычные резисторы не подходят в роли шунта для больших токов, так как обладают малой мощностью рассеяния. Рассчитать примерную мощность рассеяния шунта можно умножив ожидаемый ток в амперах на падение на нем в вольтах. Для выше приведенного примера это 25,7*0,9=23,13 Вт, такой мощностью обладают проволочные резисторы.

Калькулятор расчета тока по сопротивлению и напряжению на шунте

Напряжение на шунте, В

Сопротивление шунта, Ом

Самодельный шунт

Не всегда под рукой имеются проволочные резисторы таких мизерных сопротивлений, я бы даже сказал чаще их нет. Из положения можно выйти при помощи нихромовой проволоки от вышедших из строя нагревателей, в крайнем случае можно использовать обычный медный провод. Для определения сопротивления куска проволоки понадобится амперметр (прям замкнутый круг) и источник питания с нагрузкой. Амперметр может конечно быть рассчитан на меньшие токи, чем предполагается измерять шунтом.

Например, для измерения сопротивления своего шунта 0,035 Ом я использовал источник напряжения 12 В и галогеновую лампу 12 В 35 Вт. Предварительно оценив, что лампа потребляет 35Вт/12В=2,9А, я использовал амперметр на 5 А. Безусловно, когда мы знаем ток потребления нагрузкой, как в моем случае, амперметром можно и не пользоваться, однако будет большая погрешность в измерениях.

Итак, подключаем шунт неизвестного сопротивления в разрыв между источником питания и нагрузкой (лампой). Аналогично, как при измерении тока, включаем параллельно шунту вольтметр. В ситуации с лампой вполне сойдет цифровой вольтметр. Закон Ома здесь применим с той лишь разницей, что теперь нам известен ток и напряжение, а сопротивление нет. Используя ту же формулу, подставляем известные значения: 2,9(ток потребления лампы)=0,1(напряжение на измеряемом шунте)/X(сопротивление неизвестно) — 2,9=0,1/X или данное уравнение можно записать иначе: X=0,1/2,9=0,034 Ома — сопротивление шунта.

Измерение переменного тока

Для измерения переменного тока так же применимы вышеописанные методы, с той лишь разницей, что нужно использовать вольтметр переменного напряжения, а в случае с измерением сопротивления шунта — амперметр переменного тока.

Для измерения в цепях с частотой 50 Гц вполне сойдут и цифровые вольтметры и амперметры (при наличии у них таких функций). При более высоких частотах цифровые приборы малопригодны, их показания могут сильно отличаться от реальности. Стрелочные измерительные приборы в этом случае куда более подходящие.

Однако самым лучшим вариантом измерения токов любой формы является осциллограф. Осциллограф подключается к шунту вместо вольтметра. Это позволит измерить размах тока или или среднее его значение. Другими словами — мы увидим ток «воочию». Основная сложность при таких замерах — согласовать значения напряжений на осциллографе с сопротивлением шунта по закону Ома. Здесь могу посоветовать одно — калькулятор в начале страницы вам в помощь.

Хочется обратить внимание: при измерении переменного тока следует производит расчеты не по амплитудным значениям напряжения, а по среднеквадратическим — именно так принято в электротехнике измерять переменные токи и напряжения. Величины указываются усредненные, эквивалентные постоянным. Собственно это и стоит учитывать при использовании осциллографа. У цифровых «ослов» среднеквадратическая величина напряжения может рассчитываться автоматически, называется она «Vrms».

Вышенаписанное справедливо при измерении так называемых «действующих» токов, с относительно стабильной формой. Когда же нужно узнать пиковые токи — здесь в формулу рассчета (или калькулятор в начале) нужно подставлять амплитудные значения напряжений на шунте. Как говорится «все хорошо к месту» — в радиолюбительской практике требуются различные варианты.

Все о ремонте и не только

Для визуальной оценки силы зарядного тока мне потребуется прибор для измерения силы тока – амперметр. Так как под рукой ничего толкового не нашлось, будем использовать то, что есть. И это «что есть» — обычный индикатор от старых совковых магнитол. Так как индикатор реагирует на очень малые токи, нужно изготовить для него шунт.

Шунт – это проводник, обладающий неким удельным сопротивлением, который подключают к устройству измерителя тока параллельно. При этом он пропускает через себя или шунтирует большую часть электрического тока. Вследствие чего, через устройство измерителя пройдет номинальный рассчитанный для него ток. Чтобы понять, как протекают токи в узлах схемы, изучаем законы Кирхгофа.

Для того , чтобы рассчитать шунт для амперметра, мне потребуются некоторые параметры измерительной головки (индикатора): сопротивление рамки (Rрам), значение тока, при котором стрелка индикатора максимально отклоняется (Iинд) и верхнее значение тока, которое должен измерять в будущем индикатор (Imax). За максимальный измеряемый ток берем 10 А. Теперь нужно определить Iинд, что достигается экспериментально. Но для этого нужно собрать небольшую электрическую схему.

При помощи резистора R1 добиваемся максимального отклонения стрелки индикатора и снимаем эти показания с тестера PA1. В моем случае Iинд= 0.0004 А. Сопротивление рамки Rрам замеряем также при помощи тестера, которое составило 1кОм. Все параметры известны, остается теперь рассчитать сопротивление шунта амперметра (индикатора).

Расчет шунта для амперметра будем производить по следующим формулам:

Rш=Rрам * Iинд / Imax; получаем Rш=0,04 Ом.

Основное требование, предъявляемое к шунтам – это его способность пропускать токи, не вызывающие сильный его нагрев, т.е. обладать нормами по плотности электрического тока для проводников. В качестве шунтов используются различные материалы. Так как у меня под рукой нет «различного материала», я буду использовать старый добрый медный проводник.

Далее, исходя, что Rш=0,04 Ом, по справочнику удельных сопротивлений медных проводников подбираем соответствующий размер отрезка медного провода. Чем больше диаметр, тем лучше, но при этом увеличивается длина медного провода. Я «забью» на эти требования и выберу метровый отрезок. Главное для меня, чтобы мой шунт не расплавился, тем более, что больше 6А я его насиловать не буду. Выбранный медный проводник скручиваю в спираль и припаиваю параллельно к измерительной головке. Все, шунт готов. Теперь остается более точно подогнать сопротивление шунта и проградуировать шкалу измерителя. Делается это экспериментально.

Собственно, девайсы. Видон не очень, что уж там…

Амперметр тока.

Прибор, который измерит силу тока электрической цепи, называют амперметр тока. Причём данное устройство рассчитано на измерение силы тока определённой величины. Вот, к примеру, когда речь касается электроники, то там зачастую употребляют такие единицы измерения силы тока, как мкА, мА и А.

Небольшая расшифровка единиц измерения:

  • А — Ампер;
  • мА — миллиАмпер;
  • мкА — микроАмпер.

По принципу именно таких подразделений и поделены приборы, которые названы общим собирательным названием амперметры. Это следовательно Амперметры, миллиамперметры, микроамперметры.

У каждого устройства своё зашифрованное название:

1. Амперметр — PA1;

2. Миллиамперметр — PA2;

3. Микроампер метр — PA3.

На схемах принципиальных амперметры всегда обозначаются подобным образом:

Разновидности амперметров тока.

Существует два типа устройств, для измерения силы тока, два вида амперметров тока. Тип первый и тип второй.

  • Тип первый — аналоговый (он же стрелочный амперметр).
  • Тип второй — цифровой.

Тип первый — стрелочный амперметр тока, выглядит он вот таким образом:

Система этого амперметра тока магнитоэлектрическая. А в составе устройства: постоянный магнит, внутри которого вращается катушка из тонкой проволоки. В момент подачи тока катушка направлена на поле при действии момента вращения. Причём величина момента является пропорциональной силе тока. Имеется в устройстве и специальная пружина, которая в момент подачи тока является неким препятствием для вращающейся катушки. Момент упругости пружины в свою очередь пропорционален углу закручивания.

Измерение силы тока происходит таким образом, что при уравновешивании вышеописанных моментов стрелка и показывает искомое значение, равное силе тока, силе воздействия.

Чтобы увеличить предел измерения необходимо параллельно амперметру установить шунт. Резистор, определённой величины, которая рассчитана заранее. Такое устройство названо — резистор шунтирующий.

Для точных измерений с резистором в цепи необходимо придерживаться простых правил. Если в цепи действует измерительный прибор — вольтметр, то входное сопротивление необходимо делать немного больше у самого прибора. В случае работы с амперметром ситуация другая и входное сопротивление прибора следует сделать меньше. В противном случае, если не придерживаться таких правил измерение окажется неверным, и некорректными окажутся показания амперметра. Вся измерительная техника всегда была разработана с учётом неких особенностей и грамотное и правильное использование только залог успешного измерения и результата в целом.

Насколько внимательно отнесётесь к режиму работы устройств мультиметров, настолько правильными окажутся опыты и текущие измерения. Пренебрегая законами и правилами эксплуатации приборов и техники можно не только выяснить неверные результаты измерений, но и испортить устройство, вывести его из строя.

По сей день пользуются аналоговыми амперметрами тока. И это не случайно, их плюсов так много, что люди ещё не скоро смогут от них отказаться. И смогут ли отказаться вообще? Плюсы прибора под названием аналоговый амперметр:

— не нуждаются в независимом питании;

— удобны в отображении информации;

— имеется винтик, на большинстве моделей, который корректирует точность измерения.

Минус тоже есть, но он всего один и очень невзрачный:

— небольшая инертность стрелок может заставить несколько секунд ожидать результаты измерений.

Тип второй — амперметр тока цифровой. В его составе значатся:

— АЦП (аналого-цифровой преобразователь). Именно он преобразует силу тока в данные цифровые, что в дальнейшем можно видеть на дисплее устройства. Дисплей современного ЖК вида.

Огромное отличие таких видов амперметров только в том, что нет стрелки и нет инертности. Результаты измерения можно видеть сразу на дисплее. Разные виды амперметров тока выводят информацию на экран с различной скоростью. Современные виды к тому же и малогабаритны.

Имеются и минусы таких новичков:

— наличие собственного источника питания должно быть непременно.

Несомненно, изобрели и цифровые амперметры, питающиеся от собственной сети, но они слишком дорогие по цене.

Деление на этом амперметров не закончилось. Существуют также виды, которые измеряют силу тока переменного напряжения и измеряющие силу тока постоянного напряжения. Но это не значит, что при отсутствии амперметра для измерения переменного тока Вы не сможете её измерить. Измерить можно, и поможет вот такая схема:

Поможет не собирать каждый раз подобную систему мультиметр. Устройство сочетает в себе сразу несколько функций и может измерить силу тока и постоянного и переменного.

Вот схема для измерения силы тока амперметром:

И теперь чтобы верно измерить силу тока, необходимо, только узнать какая сила тока. Переменное или постоянное напряжение. Нагрузкой же может стать абсолютно любой предмет (лампочка, компьютер, сотовый телефон).

Подключение амперметра через шунт. Подбор и расчет устройства

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Расчет шунта для амперметра онлайн калькулятор

Расчет шунта для амперметра онлайн калькулятор

РАСЧЁТ ШУНТА

Не знаю как вы, а я любому цифровому амперметру и вольтметру в лабораторном блоке питания предпочту старые добрые стрелочные индикаторы. Ведь при наличии каких либо коротких импульсов тока, на цифровом индикаторе будет абракадабра, а то и вообще показания останутся без изменений, если стоит в схеме небольшая задержка обновления показаний. Так же и короткое КЗ может остаться без внимания, а вот стрелка амперметра, дёрнувшись, сразу покажет что к чему.

В общем во многих аппаратах таки лучше ставить стрелочные головки. И блок питания — это тот случай, когда за модой на цифровые АЛС-ки лучше не гонятся, а сделать именно стрелочную индикацию вольт и ампер. Убедил? Тогда приступим к расчёту и изготовлению. Не буду грузить вас многострочными формулами, теориями и коэффициентами поправки на температуру воздуха и цены на нефть. Для этих целей подойдёт простая, годами проверенная технология практического расчёта шунта для любого, даже на неизвестный предел измерения, стрелочного индикатора.

Собираем вот эту простенькую экспериментальную схемку с участием контрольного цифрового амперметра (мультиметра), нагрузки (паруваттного резистора на несколько Ом или простой лампочки на 6,3В) и собственно самого неизвестного стрелочного индикатора. Всё это хозяйство соединяем последовательно — цепочкой, и подсоединяем к регулируемому (желательно) блоку питания. Выставляем, допустим 10 В и смотрим, что у нас показывает контрольный цифровой мультиметр — амперметр.

Теоретически он покажет предположим 0,5 А. В идеале, для нужного предела в 1 А и стрелочник должен показать отклонение на пол шкалы. Ах вам надо чтоб он стал амперметром не на 1 А, а на 2 А? Не проблема. Последовательно с головкой включаем подстроечный (для эксперимента, потом замеряем получившееся сопротивление и заменим на постоянный) резистор R3 на несколько килоом, и уменьшаем понемногу его сопротивление, чтоб полное отклонение стрелки индикатора соответствовало току 2 А. Он предварительно должен стоять на максимуме сопротивления. Само собой, что эти 2 А надо предварительно выставить напряжением с блока питания.

Вот, сделали. А если у нас стрелочник наоборот показывает при токе по мультиметру 0,5 А всего четверть шкалы, а по плану вы хотите чтоб полное отклонение стрелки было при 0,1 А? Тогда просто увеличьте сопротивление шунта где-то в два раза и посмотрите что получилось. А получится то, что стрелка отклонится уже дальше, может и на всю шкалу если угадали с номиналом резистора. Перебор? Зашкаливает уже? Тогда подкручиваем переменник пока не вернём стрелку куда надо.

Если теперь вы думаете как всё это добро встроить в блок питания на индикацию тока, вот схема подключения. Шунтируя стрелочный прибор двумя разными резисторами R1 или R1+R2, можно получить два диапазона измерения тока: в нашем случае 0,1 А или 1 А. Сопротивление резисторов этих указано ориентировочно — в процессе настройки и в зависимости от самого микроамперметра их сопротивление может отличаться.

С расчётом шунта для превращения стрелочного индикатора в вольтметр ещё проще. Последовательно включаем цифровой контрольный вольтметр (на схеме не указан), головку, подстроечный резистор R3 на максимальный предел 200 — 1000 килоом, на всякий пожарный защитный резистор R7 на 10-50 килоом и естественно блок питания. Выставляем на БП 10 вольт (по контрольному мультиметру) и вращая подстроечник R3, который предварительно выставлен на максимальное сопротивление (иначе стрелочный индикатор сгорит моментально, помним этот момент всегда!), добиваемся отклонения стрелки на максимум. Во что превратился наш микроамперметр? Правильно — в вольтметр на 10 вольт. По аналогичному принципу можно превратить стрелочный индикатор в вольтметр на любое напряжение. В конце эксперимента меряем сопротивление переменника и заменяем его таким же постоянным.

Ну и наконец вот полная схема вольтметра — амперметра на основе одного стрелочного индикатора. Переключение «вольты — амперы» производим тумблером. Обратите внимание: переключение режимов шунта (0,1-1 А) производится не переключателем, а включателем. Именно включателем, чтоб не возникло ситуации, при которой внутренний рычажок переключателя уже оторвался от одного контакта, а к другому ещё не подключился. Тогда весь ток к нагрузке пойдёт через стрелочник на 100 мкА — вылетит в момент. А нанести деления на шкалу можно так: ненужные циферки индикатора аккуратно зачищаем лезвием, а вместо них гелевой чёрной ручкой пишите свои значения.

Расчет измерительного шунта миллиамперметра

Шунт (англ. Shunt) — электрическое или магнитное ответвление, которое включают параллельно основного контура цепи. Параллельное подключение одного звена электрической цепи к другому с целью понижения общего электрического сопротивления называется процессом шунтирования. Это нашло широкое применение в схемотехнике.

Шунты измерительных приборов

Измерительный шунт — сопротивление, параллельно подключенное к зажимам измерительного амперметра (параллельно его внутреннему электрическому сопротивлению). Это позволяет прибору расширить измерительный диапазон по току при снижении его чувствительности и разрешающей способности.

Измерительные шунты производят из манганина. В зависимости от конструктивного исполнения бывают:

Для определения небольших значений тока (не более 30 А) шунт чаще всего находится внутри корпуса прибора. В случае измерения внушительных значений тока во избежание чрезмерного нагрева корпуса шунт имеет наружную конфигурацию исполнения.

В портативных магнитоэлектрических устройствах, рассчитанных на силу тока не более 30 ампер, внутренние шунты рассчитаны на несколько граничных значений измеряемой величины.

Многопредельный шунт устроен в виде ряда резисторов, которые возможно коммутировать в соответствии с пределом измерения, рычажным тумблером либо путем перемещения провода с одной клемы на другую.

У внешних резисторов, как правило, присутствует калибровка, с расчётом на распространенные значения тока и напряжения. Такие шунтирующие сопротивления имеют ряд номинальных значений напряжения: 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

При использовании элементов шунтирования в измерениях величин переменного тока наблюдается добавочная погрешность, связанная с преобразованием частоты, поскольку сопротивления измерительного механизма и шунтирующего устройства находятся в различных зависимостях от частоты.

Шунтирующие звенья классифицируются согласно точности: 0,02, 0,05, 0,1, 0,2, и 0,5. Цифровые значения, отвечающие каждому классу, указывают на допустимую величину расхождения сопротивления с его номиналом, выраженную в процентах.

Эксплуатационные требования, выдвигаемые к элементам шунтирования: низкие потери напряжения в области шунта, во избежание перегрева оборудования; стабильное значение сопротивления, обеспечивающие точность измерения; стойкость к коррозии и к воздействиям окружающей среды.

Контроль величины постоянного тока имеет широкий диапазон применения, в том числе:

  • фотоэлектрическая промышленность,
  • источники электропитания общественного транспорта,
  • электрические генераторы и двигатели,
  • оборудование для сварочных работ,
  • инверторы,
  • и другие системы с наличием высоких значений постоянного тока.

Во многих промышленных отраслях применение шунтирующих резисторов зарекомендовало себя как надежный, точный и долговременный способ для беспрерывного измерения тока постоянной величины.

Расчет и изготовление шунта

Амперметр M367 имеет максимальный предел измерения тока 150 А. Очевидно, что при определении таких величин силы тока задействовано внешнее шунтирующее сопротивление. Освобожденный от влияния шунтирующего элемента прибор приобретает свойства миллиамперметра с максимальным показанием силы тока 30 мА.

Следовательно, варьируя разными значениями сопротивления електр. звена, можно добиться любой области измерения. Чтобы подтвердить это на практике, можно создать шунт для амперметра своими руками.

Основные понятия и формулы

Значение суммарной величины тока I распределяется между шунтирующим резистором (Rш, Iш) и изм. прибором (Rа, Iа) и находится в обратно пропорциональной зависимости сопротивлению этих участков.

Электросопротивление ответвления измерительной цепи: Rш=RаIа / (I-Iа).

Для умножения масштаба измерения в n раз следует принять значение: Rш=(n-1) / Rа, при этом показатель n=I/Iа — коэффициент шунтирования.

Расчет шунтирующего звена

Для расчета шунта микроамперметра можно воспользоваться данными об измерительной головке прибора: сопротивление рамки (Rрам), величина тока, которая соответствует максимальному отклонению индикаторной стрелки (Iинд) и наибольшее значение прогнозируемой шкалы измерения тока (Imax). Максимальным измеряемым током примем значение 30 мА. Значение Iинд определяется экспериментальным путем. Для этого последовательно включается в электрическую цепь переменный резистор R, шкала индикатор и измерительный тестер.

Перемещая ходунок резистора R, следует добиться максимального показания стрелки на шкале индикатора и зафиксировать показания Iинд на тестере. Вследствие опыта известны величины Iинд = 0.0004 А и Rрам=1кОм (также измеряется тестером), этого достаточно для дальнейшего расчета сопротивления шунта микроамперметра (индикатора) по формуле:

Rш=Rрам * Iинд / Imax; получаем Rш=13,3 Ом.

Длина проводника

Выбрав материал для изготовления и зная величину его удельного сопротивления, необходимо рассчитать длину токовой части шунта.

Согласно соотношению: Rш=p*J/S,

где: p-удельное сопротивление, J-длина, S- площадь поперечного сечения проводника, подбираются геометрические параметры медного провода (p=0.0175 Ом*мм2 /м).

Величину площади можно рассчитать из формулы, вооружившись предполагаемым значением диаметра:

Тогда искомая величина будет равна:

При диаметре проводника d= 0.1 мм, подставив значения получается длина:

Расчет шунта для амперметра постоянного тока определил такие выходные данные:

максимальный ток измерения — 30 мА;

материал проводника — медная жила 0.1 мм в диаметре длиною 0,45 м.

Для удобства и упрощения расчетов относительно шкал измерительных приборов используют онлайн-калькулятор.

Амперметр для зарядного устройства

Нелишним будет знать, как сделать из вольтметра амперметр и применить его в процессе контролирования силы тока при зарядке аккумуляторных батарей.

Необходимый стрелочный вольтметр проверяется на способность стрелки полностью отклонятся вдоль измерительной шкалы. Следует убедиться в отсутствии добавочных сопротивлений или внутреннего шунта.

До этого был рассмотрен расчетный метод подбора шунтирующего резистора, в этом случае самодельный амперметр получается сугубо практическим путем, с помощью добавочного изм. прибора или тестера с пределом измерения до 8 А.

Соединяется в простую схему зарядный выпрямитель, дополнительный образцовый амперметр, проводник для будущего шунта и заряжаемая аккумуляторная батарея.

Для изготовления шунта для амперметра 10А своими руками на концах неизолированного толстого медного проводника длиною до 80 см выгибаются кольцеобразные дуги под крепеж болтом. После чего подсоединяется последовательно с образцовым изм. прибором в электрическую цепь выпрямитель — аккумулятор.

Один из концов стрелочного вольтметра основательно соединяется с шунтом, а другим, как щупом, проводится по медному проводу. Подается питание через выпрямитель и устанавливается по образцовому амперметру сила тока в цепи 5А.

Начиная от места крепления, щупом от вольтметра следует вести по проводу, пока на обоих приборах не установятся одинаковые значения тока. Согласно величине сопротивления рамки используемого стрелочного вольтметра определяется нужная длина провода шунтирования величиною до метра.

Проводник шунта возможно смотать в виде спирали либо как-то еще. Витки легонько растянуть с целью избежать прикосновений между ними или изолировать хлорвиниловой трубкой по всей длине спирали шунта.

Вариант предварительного определения длины провода для последующей замены изолированным проводником тоже вполне приемлем и практичен, но требует внимательности и тщательности в операциях замены шунта, повторяя все этапы по нескольку раз. Связано это с точностью показаний амперметра.

Соединительные провода от вольтметра должны быть обязательно припаяны непосредственно к шунтирующей спирали, иначе прибор будет иметь погрешности в показаниях.

Провода соединяющие шунт и изм. прибор выбирают произвольной длины, поэтому шунтирующий элемент возможно поместить в любой части корпуса выпрямителя.

Шкала амперметра для измерения величины постоянного тока равномерная, этим нужно руководствоваться при ее выборе. Букву V правильно заменить на А, а цифровые значения подогнать из расчета максимального тока в 10 А.

Амперметр тока.

Прибор, который измерит силу тока электрической цепи, называют амперметр тока. Причём данное устройство рассчитано на измерение силы тока определённой величины. Вот, к примеру, когда речь касается электроники, то там зачастую употребляют такие единицы измерения силы тока, как мкА, мА и А.

Небольшая расшифровка единиц измерения:

  • А — Ампер;
  • мА — миллиАмпер;
  • мкА — микроАмпер.

По принципу именно таких подразделений и поделены приборы, которые названы общим собирательным названием амперметры. Это следовательно Амперметры, миллиамперметры, микроамперметры.

У каждого устройства своё зашифрованное название:

1. Амперметр — PA1;

2. Миллиамперметр — PA2;

3. Микроампер метр — PA3.

На схемах принципиальных амперметры всегда обозначаются подобным образом:

Разновидности амперметров тока.

Существует два типа устройств, для измерения силы тока, два вида амперметров тока. Тип первый и тип второй.

  • Тип первый — аналоговый (он же стрелочный амперметр).
  • Тип второй — цифровой.

Тип первый — стрелочный амперметр тока, выглядит он вот таким образом:

Система этого амперметра тока магнитоэлектрическая. А в составе устройства: постоянный магнит, внутри которого вращается катушка из тонкой проволоки. В момент подачи тока катушка направлена на поле при действии момента вращения. Причём величина момента является пропорциональной силе тока. Имеется в устройстве и специальная пружина, которая в момент подачи тока является неким препятствием для вращающейся катушки. Момент упругости пружины в свою очередь пропорционален углу закручивания.

Измерение силы тока происходит таким образом, что при уравновешивании вышеописанных моментов стрелка и показывает искомое значение, равное силе тока, силе воздействия.

Чтобы увеличить предел измерения необходимо параллельно амперметру установить шунт. Резистор, определённой величины, которая рассчитана заранее. Такое устройство названо — резистор шунтирующий.

Для точных измерений с резистором в цепи необходимо придерживаться простых правил. Если в цепи действует измерительный прибор — вольтметр, то входное сопротивление необходимо делать немного больше у самого прибора. В случае работы с амперметром ситуация другая и входное сопротивление прибора следует сделать меньше. В противном случае, если не придерживаться таких правил измерение окажется неверным, и некорректными окажутся показания амперметра. Вся измерительная техника всегда была разработана с учётом неких особенностей и грамотное и правильное использование только залог успешного измерения и результата в целом.

Насколько внимательно отнесётесь к режиму работы устройств мультиметров, настолько правильными окажутся опыты и текущие измерения. Пренебрегая законами и правилами эксплуатации приборов и техники можно не только выяснить неверные результаты измерений, но и испортить устройство, вывести его из строя.

По сей день пользуются аналоговыми амперметрами тока. И это не случайно, их плюсов так много, что люди ещё не скоро смогут от них отказаться. И смогут ли отказаться вообще? Плюсы прибора под названием аналоговый амперметр:

— не нуждаются в независимом питании;

— удобны в отображении информации;

— имеется винтик, на большинстве моделей, который корректирует точность измерения.

Минус тоже есть, но он всего один и очень невзрачный:

— небольшая инертность стрелок может заставить несколько секунд ожидать результаты измерений.

Тип второй — амперметр тока цифровой. В его составе значатся:

— АЦП (аналого-цифровой преобразователь). Именно он преобразует силу тока в данные цифровые, что в дальнейшем можно видеть на дисплее устройства. Дисплей современного ЖК вида.

Огромное отличие таких видов амперметров только в том, что нет стрелки и нет инертности. Результаты измерения можно видеть сразу на дисплее. Разные виды амперметров тока выводят информацию на экран с различной скоростью. Современные виды к тому же и малогабаритны.

Имеются и минусы таких новичков:

— наличие собственного источника питания должно быть непременно.

Несомненно, изобрели и цифровые амперметры, питающиеся от собственной сети, но они слишком дорогие по цене.

Деление на этом амперметров не закончилось. Существуют также виды, которые измеряют силу тока переменного напряжения и измеряющие силу тока постоянного напряжения. Но это не значит, что при отсутствии амперметра для измерения переменного тока Вы не сможете её измерить. Измерить можно, и поможет вот такая схема:

Поможет не собирать каждый раз подобную систему мультиметр. Устройство сочетает в себе сразу несколько функций и может измерить силу тока и постоянного и переменного.

Вот схема для измерения силы тока амперметром:

И теперь чтобы верно измерить силу тока, необходимо, только узнать какая сила тока. Переменное или постоянное напряжение. Нагрузкой же может стать абсолютно любой предмет (лампочка, компьютер, сотовый телефон).

Подключение амперметра через шунт. Подбор и расчет устройства

Что же такое шунт? Это слово заимствовано из английского языка («shunt», и дословно означает «ответвление»). Физически это сопоставимо, так как через этот элемент, подключенный параллельно к измерительному прибору, проходит большая часть тока, а меньшая – ответвляется в сам прибор. В этом его принцип действия аналогичен байпасу, установленному в системах отопления.

Устройство амперметра

Чтобы осознать необходимость включения амперметра через шунт, напомним вкратце его устройство.

Внутри поля постоянного магнита находится катушка – рамка. По ее виткам протекает измеряемый ток. В зависимости от величины измеряемого параметра положение катушки относительно постоянного магнитного поля изменяется. На ее оси жестко закреплена стрелка прибора. Чем больше измеряемый ток, тем больше отклоняется стрелка.

Чтобы рамка могла поворачиваться, ее ось крепят в подпятниках, либо вывешивают на растяжках. При использовании подпятников ток рамки проходит по спиральным пружинам, если же подвижная часть прибора подвешена на растяжках, то они являются проводниками тока.

Из этой конструкции следует, что величина тока в рамке конструктивно ограничена. Пружины и растяжки не могут одновременно быть достаточно упругими и иметь большое сечение.

Подключение амперметра через трансформатор тока

Расширение пределов измерения амперметра возможно, если использовать дополнительно устройство, называемое трансформатор тока. Работает оно по принципу обычного трансформатора, но первичная обмотка содержит всего несколько витков. При прохождении по ней измеряемого тока его величина во вторичной обмотке будет меньше в несколько раз.

Но такие трансформаторы имеют соответствующие габариты и применяются только в промышленных сетях. В малогабаритных же устройствах их использование нецелесообразно.

Подключение амперметра через шунт

Если прибор включается в измерительную цепь напрямую, без трансформатора тока, его называют амперметром прямого включения.

Без шунта можно использовать приборы, рассчитанные на небольшую силу тока, порядка миллиампер. За счет шунтирования измерительной обмотки сопротивлением, большим, чем ее собственное, мы можем изменить предел измерения. Схема включения сложностью не отличается: через шунт проходит измеряемый ток, а параллельно ему подключается амперметр.

В дело здесь вступает первый закон Кирхгофа. Измеряемый ток делится на два: один протекает через рамку, второй – через шунт.

Соотноситься между собой они будут так:

Расчет сопротивления шунта

Отсюда следует, что, зная ток полного отклонения измерительной системы (Iпр) и внутреннее сопротивление рамки (Rпр), можно вычислить требуемое сопротивление шунта (Rш). И тем самым изменить предел измерения амперметра.

Но, перед тем как переделать миллиамперметр в амперметр, нужно решить две непростых задачи: узнать ток полного отклонения измерительной системы и ее сопротивление. Можно найти эти данные, зная тип миллиамперметра, который переделывается. Если это невозможно, придется провести ряд измерений. Сопротивление можно измерить мультиметром. А вот для второго параметра потребуется подать на прибор ток от постороннего источника, измеряя его величину с помощью цифрового амперметра.

Но такой расчет шунта для амперметра не будет точным. Невозможно с помощью подручных средств обеспечить требуемую точность измерений. Система измерения с шунтом имеет большую чувствительность к погрешности при определении исходных данных. Поэтому на практике проводится точная подгонка сопротивления шунта и калибровка амперметра.

Подгонка измерительной системы

Для изготовления заводских изделий используются материалы, не изменяющие своих характеристик в широком диапазоне температур. Поэтому лучший вариант – подбор готового шунта и подгонка для своих целей уменьшением сечения и длины его проводника до соответствия рассчитанному значению. Но для изготовления шунта для амперметра можно использовать и подручные материалы: медную или стальную проволоку, даже скрепки подойдут.

Теперь потребуется блок питания с регулятором напряжения, чтобы выдать требуемый ток. Для нагрузки можно использовать резистор соответствующей мощности или лампы накаливания.

Сначала добиваемся соответствия полного отклонения стрелки прибора при максимальном значении измеряемой величины. На этом этапе подбираем сопротивление нашей самоделки до максимально возможного совпадения с конечной риской на шкале.

Затем проверяем, совпадают ли промежуточные риски с соответствующими им значениями. Если нет – разбираем амперметр и перерисовываем шкалу.

И когда все получилось – устанавливаем готовый прибор на свое место.

Небольшой амперметр на ток до 5 Ампер. Обзор измерительного прибора амперметра. Внутреннее устройство и тест амперметра

Заказывался данный измеритель довольно давно и в другом магазине, но полазив по Алиэкспресс я нашел лот с внешне точно таким же прибором, а так как почти уверен что у них у всех «ноги растут» из одного подвала крупного предприятия, то прикладываю ссылку на другой магазин.
Скажу сразу, товар не понравился, отчасти потому и решил написать данный микрообзор.

Вообще тему всяких мелких измерителей я поднимал уже неоднократно, но как-то в основном в плане вольтметров и универсальных измерителей, и хотя вольтметры пользуются большим спросом, амперметры также иногда востребованы.

Пришел амперметр в небольшом пакетике, на котором были указаны основные характеристики:
1. Напряжение питания — 4.5-28 Вольт
2. Измеряемый ток — 0-5 Ампер
3. Цвет дисплея — красный (есть еще зеленый и синий)
4. Наименование модели — C20D

Амперметр представляет собой просто платку с индикатором, корпуса в комплекте нет.

Провода имеют длину около 20см, но весьма «дубовые».

Силовые провода просто запаяны в плату, питание подключено через разъем. Я купил плату с дисплеем красного цвета, размер дисплея 23х14мм, высота символов 9мм (0.36 дюйма).

Все компоненты (кроме дисплея) установлены на одной стороне платы, виден контроллер со стертой маркировкой, операционный усилитель (также со стертой маркировкой) сигнала с шунта, собственно сам шунт сопротивлением 5мОм, стабилизатор 3.3 Вольта и прочая мелочь.
Радует то, что применен низкоомный шунт, при токе в 5 Ампер падение на нем всего 25 мВ, общее сопротивление с учетом дорожек на плате — 6.5 мОм, т.е. общее падение напряжения на приборе около 32 мВ.

В характеристиках заявлено что нижняя граница питания прибора составляет 4.5 Вольта, реально у меня вышло —
1. Стартует с 2.4 Вольта
2. При напряжении в 3 Вольта работает, потребляет около 7 мА, но я бы не доверял его показаниям при таком напряжении.
3. После поднятия напряжения до 4.3 Вольта ток потребления перестает расти, стабилизатор выходит на рабочий режим.
4. Потребляемый ток в диапазоне 4.3-28 Вольт не меняется.

Первый тест проводился при питании от отдельного БП с напряжением 12 Вольт, подключение согласно схеме.

Но вот результаты тестов меня не очень порадовали, собственно потому я бы не стал советовать данный прибор.
При токах до одного ампера показания сильно занижены, особенно в диапазоне — 0-600 мА, дальше картина заметно улучшается но при токе 3.5-5 Ампер прибор начинает уже завышать.
Сама по себе неточная калибровка была бы не так страшна, на плате есть подстроечный резистор для калибровки, но проблема в том, что до 1 Ампера показания занижены, а выше 3.5 Ампера — завышены и калибровка при помощи подстроечного резистора бесполезна.

Хотя в характеристиках и указан максимальный ток в 5 Ампер, реально можно измерить и больше, вот только даже мой регулируемый блок питания имеет точность установки/измерения выше обозреваемого «показометра», увы.

Второй тест был проведен просто ради интереса, здесь и прибор и нагрузка питались от одного источника. В качестве нагрузки применялся резистор сопротивлением 10 Ом, напряжение менялось в диапазоне примерно 4.4-25 Вольт.

Результат примерно совпадает с результатами предыдущего теста.

Когда готовил обзор, то в процессе искал где еще продается данный амперметр и случайно наткнулся на сайт с антикварными приборами, не устоял чтобы показать их и здесь, больно уж понравились.

Но если предыдущие продавались примерно по 35-150 долларов, то за этот просят на два порядка больше, 3500 долларов. От цены у меня был легкий шок, даже возникла мысль, может его с Титаника подняли 🙂

Состояние прибора конечно плохое, но судя по всем в этом и есть некий смысл.

На этом у меня собственно всё, результаты тестов мне не очень понравились, реально прибор можно использовать в диапазоне 1-4 Ампера, ниже — занижает, выше — завышает, регулировка при помощи подстроечного резистора не поможет, а как сделать программную коррекцию, я не знаю.
Применять вряд ли буду, скорее всего просто кину в ящик стола, на всякий случай. Ну или для совсем уж простых применений, например индикация тока заряда в зарядном для автомобильного аккумулятора, как раз одно дома лежит, там такой точности более чем достаточно и диапазон измерения как раз подходит.

Эту страницу нашли, когда искали:
схемы амперметра с линейной шкалой, амперметр на 5 а какой у него коэффициент трансформации, схема амперметра 3631as на 5 ампер, микроамперметр с шунтом для измерения тока до 5 ма в межэлектродном пространстве, стрелочный прибор тока и напряжения 5а 20 вольт, амперметр на м.блок., переделка амперметра с двух ампер на двадцать, 50 ma переделать 5 а, шунт для амперметра из магнитофонного измерителя, амперметр из магнитофонного измерителя, индикатор постоянного тока до 5 ампер, переделка микроамперметра м265м 75 ом на вольтметр со шкалой 20 вольт, как из 50 ампер сделать 5 на амперметре, м5 2 500 ма амперметр подобрать шунт на 10 ампер, шкала амперметра 0 ÷ 5 а, амперметр подключен к трансформатору тока с коэффициентом трансформации 100. какой максимальный ток можно измерить?, амперметр с трансформатором тока своими руками, схема амперметра на 5а и 50а, амперметр с малым падением напряжения, сделать миллиамперметр, вариант внешнего вида амперметра на светодиодах в столбик, 50 ma стрелочный прибор переделать на 5 ампер, самоделний амперметр, амперметр на 5 ампер постоянный ток, амперметр сколько делений от 0 до 0,5, амперметр 5.0, амперметр тока, как измерить ток, прибор для измерения тока, тест амперметра, обзор амперметра

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Как преобразовать миллиамперметр в вольтметр и амперметр

Закон Ома позволяет нам использовать миллиамперметр в качестве вольтметра. Предположим, что у нас есть прибор с подвижной катушкой, которому требуется 5 миллиампер для полного отклонения (f.s.d.). И предположим, что сопротивление его катушки r составляет 20 Ом

В = rl

= 20 x 5 x 10 -3 = 100 x 10 -3 вольт

= 0,1 вольт.

Поскольку катушка подчиняется закону Ома, ток через нее пропорционален разности потенциалов на ней; и поскольку отклонение указателя пропорционально току, оно, следовательно, также пропорционально разности потенциалов.Таким образом, прибор можно использовать как вольтметр, дающий полное отклонение при разности потенциалов 0,1 вольт или 100 милливольт. Его масштаб может быть выгравирован, как показано ниже

Однако разность потенциалов, которую необходимо измерить в лаборатории, обычно превышает 100 милливольт. Чтобы измерить такую ​​разность потенциалов, мы вставляем резистор R последовательно с катушкой, как показано на схеме ниже. Если мы хотим измерить напряжение до 10 вольт, мы должны выбрать сопротивление R так, чтобы при подаче 10 вольт между клеммами CD через подвижную катушку протекал ток 5 миллиампер.По закону Ома

Сопротивление R называется множителем. Многие вольтметры содержат серию умножителей с разным сопротивлением, которые можно выбрать с помощью переключателя или клеммной колодки.

Преобразование миллиамперметра в амперметр

Преобразование миллиамперметра в вольтметр мы должны сначала понять, что приборы с подвижной катушкой дают отклонение на всю шкалу для токов, меньших, чем те, которые обычно встречаются в лаборатории.Если мы хотим измерить ток порядка ампера или более, мы подключаем низкое сопротивление S, называемое шунтом, к клеммам измерителя с подвижной катушкой. Шунт отводит большую часть измеряемого тока, I, от катушки — отсюда и его название. Предположим, что, как и раньше, катушка измерителя имеет сопротивление r, равное 20 Ом, и полностью отклоняется током I, равным 5 мА. И давайте предположим, что мы хотим его шунтировать, чтобы он давал f.s.d. для измерения 5 ампер. Тогда ток через шунт = 4.995amp

Это соотношение одинаково для любого тока I , потому что оно зависит только от сопротивлений S и r; читатель может легко показать, что его значение равно (S + r) / S.

Таким образом, отклонение катушки пропорционально измеренному току, как показано на диаграмме выше, и считается, что шунт имеет «мощность» 1000 при использовании с этим прибором.

Сопротивление шунтов и умножителей всегда указывается с четырехзначной точностью.Сам прибор с подвижной катушкой имеет погрешность порядка 1 процента. аналогичная ошибка шунта или умножителя, следовательно, удвоит ошибку прибора в целом. С другой стороны, ничего не получится, если погрешность шунта будет меньше примерно 0,1 процента, потому что при этом значении она перекрывается ошибкой движущейся системы.

Амперметр и миллиамперметр переведены из 11 класса физики CBSE

Подсказка: Нам нужно только применить концепцию сопротивления шунта.Это важный момент в случае гальванометра и амперметра. Здесь нам нужен закон Ома:
$ S = \ dfrac {{{I_g}}} {{I — {I_g}}} G $
Здесь $ {I_g} $ — ток через гальванометр,
$ S $ это сопротивление шунта
$ I $ — ток в цепи,

Полный пошаговый ответ
Мы уже знаем, что резистор с очень низким значением сопротивления называется шунтирующим сопротивлением.
И, $ S = \ dfrac {{{I_g}}} {{I — {I_g}}} G $
Значение $ {I_g} $ очень мало.
Итак, $ S \ приблизительно \ dfrac {{{I_g}}} {I} G $
Очевидно, что чем меньше значение диапазона, тем больше сопротивление шунта. Очевидно, что миллиамперметр
будет иметь большее сопротивление шунта и, следовательно, будет иметь более высокое сопротивление
$ \ dfrac {1} {{{R_A}}} = \ dfrac {1} {G} + \ dfrac {1} {S} $
Это означает, что чем выше значение сопротивления шунта, тем выше сопротивление гальванометра.

Дополнительная информация
Чтобы амперметр мог измерять ток устройства, он должен быть последовательно подключен к этому устройству.Это необходимо, потому что последовательно соединенные объекты испытывают одинаковый ток. Амперметр включен последовательно для измерения тока. Весь ток в этой цепи протекает через счетчик. Параллельно гальванометру следует подключить шунтирующее сопротивление, чтобы его сопротивление было низким. Такой гальванометр с низким сопротивлением (амперметр) используется последовательно со схемой для измерения силы тока в цепи.

Примечание
Гальванометр может обнаруживать только небольшие токи.Таким образом, для измерения больших токов его преобразуют в амперметр. Его можно преобразовать в амперметр, подключив параллельно гальванометру низкое сопротивление, называемое шунтирующим сопротивлением. Вольтметр — это устройство, используемое для измерения разности потенциалов между двумя точками в цепи.

От гальванометра до амперметра | IOPSpark

Амперметр

Электричество и магнетизм

От гальванометра к амперметру

Практическая деятельность
для 14-16

Практический класс

Добавление шунта параллельно гальванометру преобразует его в амперметр с более высоким диапазоном.Это метод проб и ошибок, не требующий вычислений.

Аппаратура и материалы

На каждую студенческую группу

  • Гальванометр
  • Амперметр, от 0 до 1 А, постоянный ток
  • Элемент, 1,5 В в держателе
  • Источник питания, низкое напряжение, постоянный ток
  • Лампа в патроне, 12 В, 36 Вт или 24 Вт
  • Проволока Eureka, 28 SWG или более толстая
  • Выводы, 4 мм, 6

Примечания по охране труда и технике безопасности

Прочтите наше стандартное руководство по охране труда

Процедура

Изготовление амперметра:

  1. Ваш гальванометр предназначен для измерения малых токов в несколько миллиампер.Когда указатель находится в конце шкалы, ток через маленькую катушку, которая движется вместе со стрелкой, должен быть, скажем, 0,01 А (или как там ваш гальванометр сконструирован для измерения на нем). Предположим, вы хотите использовать его для измерения гораздо больших токов, скажем 1 А, в конце его шкалы. Остальная часть этого большого тока (например, 1 А минус 0,01 А) должна проходить по альтернативному маршруту — параллельно замкнутой линии.
  2. Для этой контурной линии или шунта подсоедините короткий кусок легированной проволоки к клеммам вашего гальванометра, как показано на схеме.Заботиться! Если при настройке шунта вы пропустите весь большой ток через гальванометр, даже на мгновение, вы можете серьезно повредить гальванометр.
  3. Начните с очень короткого шунта, идущего от вывода к выводу. Сделайте очень грубый тест, подключив последовательно лампу, шунтированный гальванометр, коммерческий амперметр (для сравнения) и одну 1,5-вольтовую ячейку — только для безопасной первой попытки.
  4. Включите ток на мгновение, чтобы увидеть, слишком ли далеко перемещается указатель или слишком мало.
  5. Отрегулируйте длину шунта методом проб и ошибок. Укорачивайте или удлиняйте шунт, пока ваш самодельный амперметр не покажет примерно то, что вы хотите.
  6. Отсоедините аккумулятор от тестовой цепи и замените его источником питания, настроенным на 12 В. Отрегулируйте шунт более тщательно, пока у вас не будет хорошего амперметра.
  7. Коммерческий амперметр устроен так. Это миллиамперметр с шунтом. Иногда базовый прибор имеет несколько съемных шунтов, чтобы сделать его амперметром с возможностью выбора из нескольких диапазонов — как в случае с мультиметрами, где вы можете выбрать диапазон, поворачивая циферблат.

Учебные заметки

  • Те, кто хочет использовать свои знания о сопротивлении, могут попробовать преобразовать миллиамперметр в амперметр. Эту работу выполняет метровый шунт. Правильное сопротивление должно быть подключено параллельно миллиамперметру, чтобы он мог регистрировать ток. Он делает это, отправляя большую часть тока схемы через шунт и отбирая небольшую его часть для передачи через измеритель.
  • Коммерческий амперметр позволяет студентам настроить свой самодельный амперметр так, чтобы он считал нужным, методом проб и ошибок, а не методом, в котором рассчитывается сопротивление шунта.

Этот эксперимент прошел испытания на безопасность в октябре 2006 г.

Как использовать амперметр для измерения тока | Основные концепции и испытательное оборудование

Детали и материалы

  • Аккумулятор 6 В
  • Лампа накаливания 6 В

Предполагается, что с этого момента будут доступны основные компоненты конструкции схемы, такие как макетная плата, клеммная колодка и перемычки, при этом в разделе «Детали и материалы» останутся только компоненты и материалы, уникальные для проекта.

Дополнительная литература

Уроки электрических цепей , том 1, глава 1: «Основные концепции электричества»

Уроки электрических цепей , том 1, глава 8: «Схемы измерения постоянного тока»

Цели обучения использованию амперметра

  • Как измерить ток мультиметром
  • Как проверить внутренний предохранитель мультиметра
  • Выбор подходящего диапазона расходомера

Схема амперметра

Амперметр Рисунок

Инструкции по эксперименту

Ток — это мера скорости потока электронов в цепи.Он измеряется в амперах, называемых просто «ампер» (А).

Самый распространенный способ измерения тока в цепи — это разомкнуть цепь и вставить «амперметр» в серии (в линию) со схемой, чтобы все электроны, протекающие по цепи, также прошли через измеритель. .

Поскольку для измерения тока таким образом требуется, чтобы измеритель был частью цепи, это более сложный тип измерения, чем измерение напряжения или сопротивления.

Некоторые цифровые измерители, такие как устройство, показанное на рисунке, имеют отдельное гнездо для вставки красного штекера измерительного провода при измерении тока.

В других измерителях, как и в большинстве недорогих аналоговых измерителей, используются те же гнезда для измерения напряжения, сопротивления и тока.

Подробную информацию об измерении тока см. В руководстве пользователя конкретной модели счетчика, которым вы владеете.

Когда амперметр включен последовательно со схемой, в идеале он не падает, когда через него проходит ток.

Другими словами, он действует очень похоже на кусок провода, с очень небольшим сопротивлением от одного измерительного щупа к другому.

Следовательно, амперметр будет действовать как короткое замыкание, если он будет размещен параллельно (через выводы) значительного источника напряжения. Если это будет сделано, произойдет скачок тока, который может повредить счетчик:

Использование предохранителя в цепи

Амперметры обычно защищены от чрезмерного тока с помощью небольшого предохранителя , расположенного внутри корпуса счетчика.

Если амперметр случайно подключен к значительному источнику напряжения, возникающий в результате скачок тока «сожжет» предохранитель и сделает измеритель неспособным измерять ток до тех пор, пока предохранитель не будет заменен.

Будьте очень осторожны, чтобы избежать этого сценария! Вы можете проверить состояние предохранителя мультиметра, переключив его в режим сопротивления и измерив непрерывность через измерительные провода (и через предохранитель).

На измерителе, в котором одни и те же гнезда измерительных проводов используются для измерения сопротивления и тока, просто оставьте разъемы измерительных проводов на месте и соедините два щупа вместе.

В мультиметр, где используются разные гнезда, вот как вы вставляете штекеры тестовых проводов для проверки предохранителя:

Создайте схему с одной батареей и одной лампой, используя перемычки для подключения батареи к лампе, и убедитесь, что лампа загорается, прежде чем подключать измеритель к ней последовательно.

Затем разомкните цепь в любой точке и подключите щупы измерителя к двум точкам разрыва для измерения тока.

Как обычно, если ваш измеритель измеряется вручную, начните с выбора самого высокого диапазона для тока, затем переместите селекторный переключатель в положение меньшего диапазона, пока на дисплее измерителя не будет получена самая сильная индикация без выхода за пределы диапазона.Если индикатор глюкометра показывает «назад» (движение влево на аналоговой стрелке или отрицательное значение на цифровом дисплее), поменяйте местами подключения измерительного щупа и попробуйте снова.

Когда амперметр показывает нормальные показания (не «в обратном направлении»), электроны входят в черный измерительный провод и выходят из красного.

Так вы определяете направление тока с помощью измерителя.

Для 6-вольтовой батареи и фонарика ток в цепи будет в пределах тысячных ампер или миллиампер .

Цифровые измерители часто показывают маленькую букву «м» в правой части дисплея, чтобы указать этот метрический префикс.

Попробуйте разорвать цепь в другом месте и вместо этого вставить туда измеритель. Что вы замечаете в измеряемой величине тока? Как вы думаете, почему это так?

Восстановите схему на макетной плате следующим образом:

Подключение амперметра к схеме макетной платы: советы и хитрости

Студенты часто путаются при подключении амперметра к макетной плате.

Как можно подключить счетчик, чтобы улавливать весь ток цепи и не создавать короткого замыкания? Вот один простой метод, который гарантирует успех:

  • Определите, через какой провод или клемму компонента вы хотите измерить ток.
  • Вытяните этот провод или клемму из отверстия в макете. Оставьте его висеть в воздухе.
  • Вставьте запасной кусок провода в отверстие, из которого вы только что вытащили другой провод или клемму. Оставьте другой конец этого провода висеть в воздухе.
  • Подключите амперметр между двумя неподключенными концами провода (двумя, которые висели в воздухе). Теперь вы уверены, что измеряет ток через первоначально идентифицированный провод или клемму.

Опять же, измерьте ток через разные провода в этой цепи, следуя той же процедуре подключения, которая описана выше.

Что вы заметили в этих измерениях тока? Результаты в схеме макетной платы должны быть такими же, как результаты в схеме произвольной формы (без макета).

Результаты эксперимента

Построение той же цепи на клеммной колодке также должно дать аналогичные результаты:

Текущее значение 24,70 мА (24,70 мА), показанное на иллюстрациях, является произвольной величиной, приемлемой для небольшой лампы накаливания.

Если ток в вашей цепи имеет другое значение, это нормально, пока лампа работает при подключенном измерителе.

Если лампа не загорается, когда счетчик подключен к цепи, и счетчик регистрирует гораздо большее значение, возможно, у вас короткое замыкание в измерителе.

Если ваша лампа не загорается, когда счетчик подключен к цепи, и счетчик регистрирует нулевой ток, вы, вероятно, перегорели предохранитель внутри счетчика.

Проверьте состояние предохранителя измерителя, как описано ранее в этом разделе, и при необходимости замените предохранитель.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Как работает амперметр?

Обновлено 22 декабря 2020 г.

Автором S. Hussain Ather

Чаще всего для измерения тока используется амперметр.Поскольку единицей измерения электрического тока в системе СИ является ампер, прибор, используемый для измерения тока, называется амперметром.

Существует два типа электрического тока: постоянный ток (DC) и переменный ток (AC). Постоянный ток посылает ток в одном направлении, а переменный ток через равные промежутки времени меняет направление тока.

Амперметр Функция

Амперметры измеряют электрический ток путем измерения тока через набор катушек с очень низким сопротивлением и индуктивным сопротивлением.Это обеспечивает очень низкий импеданс, силу, противодействующую электрическому току, что позволяет амперметру точно измерять ток в цепи без помех или изменений из-за самого амперметра.

В амперметрах с подвижной катушкой движение происходит за счет фиксированных магнитов, которые настроены противодействовать току. Затем механизм вращает центрально расположенный якорь, прикрепленный к шкале индикатора. Этот циферблат расположен над градуированной шкалой, которая позволяет оператору узнать, сколько тока проходит через замкнутую цепь.

При измерении тока цепи необходимо последовательно подключить амперметр. Низкое сопротивление амперметра означает, что он не потеряет много мощности. Если амперметр был подключен параллельно, путь может стать короткозамкнутым, и весь ток будет проходить через амперметр, а не через цепь.

Основным требованием к любому измерительному прибору является то, что он не должен изменять измеряемую физическую величину. Например, амперметр не должен изменять исходный ток.Но на практике это невозможно. В электрической цепи начальный ток перед подключением амперметра составляет I 1 = E / R . Предположим, что внутреннее сопротивление ячейки равно нулю.

Амперметр и гальванометры

Гальванометры определяют силу и направление незначительных токов в цепях. Указатель, прикрепленный к катушке, перемещается по шкале. Затем шкала калибруется для считывания силы тока в амперах.

Гальванометрам требуется магнитное поле, в то время как амперметрам может работать без него.Хотя гальванометр имеет гораздо большую точность, чем амперметр, он не такой точный. Это означает, что гальванометры могут быть очень чувствительны к небольшим изменениям тока, но этот ток все еще может быть далек от фактического значения.

Гальванометры могут измерять только постоянный ток, потому что они требуют силы электрического тока в магнитном поле, в то время как амперметры могут измерять как постоянный, так и переменный ток. Амперметры постоянного тока используют принцип подвижной катушки, в то время как амперметры переменного тока измеряют изменения в том, как кусок железа движется в присутствии электромагнитной силы неподвижного провода катушки.

Сопротивление шунта

При подключении гальванометра параллельно к очень маленькому шунтирующему резистору можно перенаправить ток через шунт, и только очень небольшой ток будет проходить через гальванометр. Таким образом, гальванометр может быть адаптирован для измерения более высоких токов, чем в противном случае. Шунт защищает гальванометр от повреждений, обеспечивая альтернативный путь прохождения тока.

Пусть G будет сопротивлением гальванометра, а I g будет максимальным током, который может пройти через него для полного отклонения шкалы.Если I — это ток, который необходимо измерить, то только часть I g должна проходить через G для полного отклонения, а оставшаяся часть (I — I g ) должна проходить через шунт. .

Правильное значение сопротивления шунта S рассчитывается путем параллельного рассмотрения G и S . Следовательно,

S = \ frac {I_GG} {I-I_G}

Это уравнение дает значение сопротивления шунта.

Эффективное сопротивление амперметра определяется следующим образом:

R_ {eff} = \ frac {1} {1 / G + 1 / S} = \ frac {GS} {G + S}

Преобразовать ампер / метр [А / м] в миллиампер / метр [мА / м] • Линейный преобразователь плотности тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

Конвертер длины и расстоянияМассовый преобразовательКонвертер сухого объема и общих измерений при приготовлении пищиПреобразователь площадиПреобразователь объёма и общих измерений для приготовления пищиПреобразователь температурыДавление, Конвертер напряжения, модуля Юнга Конвертер энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный конвертер скорости и скоростиКонвертер угловой эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютЖенская одежда и размеры обувиМужская одежда и размеры обувиКонвертер угловой скорости и скорости вращения Конвертер Конвертер плотности Конвертер удельного объема преобразователь момента инерции преобразователь момента силы преобразователь крутящего момента преобразователь удельной энергии, теплоты сгорания (на единицу массы) преобразователь удельной энергии, теплоты сгорания (на объем) преобразователь интервала температуры Конвертер коэффициентовКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потокаКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКинематический преобразователь вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, паропроницаемостьПреобразователь уровня звукаКонвертер уровня звукаКонвертер уровня звука Конвертер уровня давления с выбираемым эталонным давлением Конвертер яркости rterПреобразователь яркостиЦифровой преобразователь разрешения изображенияПреобразователь частоты и длины волныПреобразователь оптической мощности (диоптрий) в фокусное расстояниеПреобразователь оптической мощности (диоптрий) в увеличение (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПоверхностный преобразователь плотности зарядаПреобразователь плотности электрического тока и плотности электрического токаПреобразователь плотности электрического тока Конвертер напряженияПреобразователь электрического сопротивленияПреобразователь удельного электрического сопротивленияПреобразователь электрической проводимостиПреобразователь электрической проводимостиПреобразователь емкостиПреобразователь радиоактивного распада Преобразователь радиационного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Типографские и цифровые единицы изображения Конвертер единиц измерения объема древесины Конвертер молярной массыПериодическая таблица

Введение

Если заряды помещаются в электростатическое поле с разностью потенциалов, заряды начинают двигаться. Это движение представляет собой электрический ток, который определяется как скорость потока заряда через любую площадь поперечного сечения проводящей среды.Величина этого тока зависит от сопротивления движению зарядов, которое, в свою очередь, зависит от площади поперечного сечения проводника.

В электротехнике, когда необходимо измерить важные физические переменные, как ампер, который является единицей электрического тока, так и кулон, который является единицей электрического заряда, связаны со счетчиком, который является единицей измерения длина. Заряд, протекающий по площади, может быть неоднородным. Он может варьироваться по количеству и направлению в зависимости от положения на территории.Поэтому было бы вполне естественно определить поток заряда в терминах тока на единицу площади или длины, который называется плотностью тока. В этой статье мы рассмотрим разницу между электрическим током и плотностью тока, а также важность достижения, поддержания и измерения надлежащей плотности тока в различных приложениях электротехники и электронной техники.

Определения

Электрический ток

Электрический ток I определяется как движение электрического заряда (электронов или ионов, или того и другого) вдоль линии (например, тонкой проволоки) по поверхности (например, лист проводящего материала) или в объеме (например, в вакуумной трубке или газоразрядной лампе).Единицей измерения электрического тока в системе СИ является ампер, который определяется как поток электрического заряда через поверхность со скоростью одного кулона в секунду.

Объемная плотность тока

Когда поток заряда происходит в трехмерной области, он описывается объемной плотностью тока , определяемой как ток на единицу площади, перпендикулярной потоку. Ее также называют плотностью космического тока или просто плотностью тока. Плотность тока представляет собой векторное поле в трехмерном проводящем пространстве.Для каждой точки этого пространства плотность тока представляет собой общий равномерный поток заряда в единицу времени (то есть ток), проходящий через единицу площади поперечного сечения. Обозначается векторным символом J . Если мы рассмотрим обычный случай проводника, по которому течет ток, амперная мера этого тока делится на площадь поперечного сечения проводника. В SI плотность объемного тока измеряется в амперах на квадратный метр (А / м²).

Например, если шина в электрической подстанции сечением 3 х 33.3 мм = 100 мм² = 0,0001 м² проходит постоянный ток 50 ампер, плотность тока через этот провод составляет 500 000 A / м².

Линейная плотность тока

Иногда электрический ток протекает через очень тонкие металлические пленки или слои переменной толщины. В таких случаях исследователей интересует ширина, а не полное поперечное сечение таких тонких проводников, и они измеряют линейную плотность тока , которая является векторным значением, равным пределу произведения плотности ток, протекающий через тонкий поверхностный слой проводника, и толщина этого слоя при приближении последнего к нулю.Линейная плотность тока измеряется в СИ в амперах на метр (А / м) и в СГС в эрстедах. В вакууме, если напряженность намагничивающего поля составляет 1 Э, то плотность магнитного потока составляет 1 Гс. Знаменателем этой дроби является ширина, перпендикулярная направлению тока в проводящей тонкой пленке или листе.

Например, если ток в 100 микроампер протекает через тонкий проводник шириной 1 мм, то линейная плотность тока составляет 0,0001 A: 0,001 м = 10 ампер на метр.Линейная плотность тока обозначена векторным символом A .

Плотность поверхностного тока

Когда заряд течет по поверхности, это обычно описывается плотностью поверхностного тока , K , которая определяется как ток на единицу ширины, перпендикулярный потоку. В различных точках поверхности K будут различаться, отражая изменения плотности поверхностного тока и скорости движущегося заряда. Другими словами, плотность поверхностного тока — это предел очень большой плотности тока, распределенной по очень тонкому слою, прилегающему к поверхности.

Скаляр в сравнении с вектором

Обратите внимание, что, в отличие от плотности тока, ток является скаляром, потому что он определяется как скорость , с которой течет заряд, и поэтому нет особого смысла добавлять направление к значению, которое выражает ставку. С другой стороны, плотность тока включает в себя объем со многими небольшими поперечными сечениями, через которые проходит заряд, поэтому имеет смысл определить плотность тока как вектор. Это также вектор, потому что мы можем определить плотность тока как произведение плотности заряда и скорости для любого места в пространстве.

Плотность тока в различных приложениях

Плотность тока является важной характеристикой, которую необходимо учитывать при проектировании электрических и электронных систем. Высокая плотность тока в проводниках имеет нежелательные последствия. Все электрические провода имеют конечное сопротивление, что приводит к нагреву и рассеиванию энергии в виде тепла. По этой причине плотность тока должна быть достаточно низкой. Это предотвращает изменение свойств проводника. Например, при нагревании сопротивление нагретой части проводника увеличивается, что приводит к большему нагреву и, как следствие, к разрушению изоляционного материала.Электрические свойства проводника могут измениться из-за нагрева. Например, может быть образован оксид, уменьшающий площадь поперечного сечения проводника, что, в свою очередь, приведет к увеличению плотности тока.

Микропроцессор Pentium P54CS содержит 3,3 миллиона транзисторов в кристалле площадью 90 квадратных миллиметров или около 40 тысяч транзисторов на каждый квадратный миллиметр

Линейная, поверхностная и объемная плотность тока широко используется при расчетах и ​​проектировании электрических и электронных систем. особенно интегральные схемы, где плотность компонентов (количество компонентов в единице объема) постоянно увеличивается.Несмотря на то, что каждый компонент потребляет очень низкий ток, плотность тока в кристалле может стать довольно высокой для достижения максимально возможного количества компонентов в одном кристалле. На заре развития микроэлектроники количество компонентов в интегральных схемах ежегодно удваивалось. Сейчас (в 2016 году) он увеличивается вдвое примерно каждые два года. Этот шаблон называется законом Мура в честь одного из основателей Intel и Fairchild Semiconductor, который в 1965 году пришел к выводу, что рост производительности вычислительных устройств будет экспоненциальным.Позже, в 1975 году, он пересмотрел свой прогноз и предсказал, что производительность микропроцессора будет удваиваться каждые два года.

Например, на кристалле 4-битного микропроцессора Intel 4004, выпущенного в 1971 году, было всего 2300 транзисторов с площадью 3х4 мм или всего 12 квадратных миллиметров, что составляет всего около 200 транзисторов на квадратный миллиметр. Для сравнения: в 12-ядерном микропроцессоре Power8, разработанном IBM и выпущенном в 2013 году или 42 года спустя, на кристалле размером 650 квадратных миллиметров размещено 4,2 миллиарда транзисторов.То есть на каждом квадратном миллиметре расположено 6,5 миллиона транзисторов. Обратите внимание, что каждый транзистор потребляет определенный, хотя и очень небольшой, ток. Поскольку они расположены в очень маленьком объеме, очевидно, что для таких микросхем требуется хорошее охлаждение.

Рамочные ферритовые антенны для радиовещания AM обычно наматывают литцевым проводом, обернутым натуральным шелком или другим волокном для уменьшения потерь на скин-эффект

Переменный ток, особенно на высоких частотах, имеет тенденцию к неравномерному распределению в проводнике, так что проводящая зона находится только в своем поверхностном слое, тем самым увеличивая плотность тока в проводах, что, в свою очередь, приводит к потерям энергии при нагревании или даже плавлении проволоки.Это явление уменьшения амплитуды электромагнитных волн по мере того, как они проникают глубже в проводник, называется скин-эффектом или поверхностным эффектом . Чтобы уменьшить потери на высоких частотах, проводники покрываются серебром или золотом — материалами с очень низким удельным сопротивлением. Для уменьшения потерь часто вместо одного толстого проводника используют несколько (от трех до тысячи и более) тонких изолированных проводов. Этот вид кабеля называется Litz wire (от нем. Litzendraht или плетеный провод).В частности, литц-проволока используется для изготовления индукторов в индукционных плитах.

При высокой плотности тока может происходить фактическое перемещение материалов в соединениях. Это называется электромиграцией . Это движение вызвано дрейфом ионов к материалу или от него в результате обмена импульсом во время столкновений между носителями проводимости и кристаллической решеткой проводника. Эффект электромиграции играет значительную роль в случаях, когда токи имеют более высокую плотность, например, в микроэлектронике, как обсуждалось выше.Чем больше плотность достигается в крупномасштабной или очень крупномасштабной интегральной схеме, тем заметнее эффект. В результате электромиграция может привести к полному разрушению проводника, либо новый проводник может появиться там, где его не должно быть, тем самым замкнув эту часть цепи. Обе ситуации, конечно, могут привести к неисправности интегральной схемы. Таким образом, повышенная плотность схемы приводит к снижению надежности интегральных схем. Однако в современных электронных устройствах интегральные схемы редко выходят из строя из-за эффектов электромиграции.Это связано с тем, что при правильном проектировании учитываются эффекты электромиграции.

Термин «плотность тока» или, более конкретно, поверхностная плотность тока в мА / см² или ток, производимый на единицу площади элемента, часто используется для описания характеристик солнечных элементов. Плотность тока короткого замыкания фотоэлектрического элемента является важным параметром, характеризующим эффективность преобразования энергии элемента. Такой подход полезен тем, что позволяет сравнивать элементы различных производителей.В то время как напряжение от фотоэлектрического модуля определяется количеством отдельных солнечных элементов, ток от модуля в основном зависит от площади поверхности элемента, подверженной солнечному свету, и эффективности солнечных элементов. Монокристаллические солнечные элементы часто имеют размер 100 × 100 мм = 100 см² и вырабатывают ток 3,5 А или плотность тока 3,5: 100 = 35 мА / см² от одного модуля. Обратите внимание, что определение плотности поверхностного тока в солнечных элементах не то же самое, что определение плотности поверхностного тока выше.

Хромированная лейка для душа; поверхность пластмассовой детали покрыта медью, затем никелем, а последний слой — хромом.

Плотность тока — одна из основных характеристик, которые определяют качество конечного продукта при хромировании и других методах гальваники. Во время хромирования на металлический или пластиковый предмет наносится тонкий слой хрома. Хромированный слой может быть декоративным, эстетичным, прочным и устойчивым к коррозии. Хромирование также используется для увеличения твердости поверхности.Твердый хром, также известный как промышленный или технический хром, используется для уменьшения трения и повышения долговечности за счет повышения износостойкости, устойчивости к истиранию и стойкости к окислению. Гальваническое покрытие твердым хромом также иногда используется для восстановления первоначальных размеров изношенных деталей.

Для использования в автомобильной промышленности сталь подвергается нескольким процессам гальваники, чтобы выдерживать изменения температуры и погодных условий, которым подвержен автомобиль на открытом воздухе и во время эксплуатации. Обычно используется процесс тройного покрытия, который включает в себя сначала покрытие медью, затем никель и хром, который наносится последним слоем.Температура и плотность тока в ванне хрома влияют на яркость и равномерность осаждения хрома.

Измерение плотности тока

Распространенным примером измерения плотности тока является гальваника, когда плотность тока измеряется в жидкой проводящей среде (электролите электролитической ванны). Это включает в себя расчет или измерение площади поверхности детали, покрытой металлом, и измерение тока, протекающего через гальваническую ванну. В продаже имеется несколько измерителей плотности тока.Они позволяют специалистам по нанесению гальванических покрытий точно знать скорость осаждения материала на заготовке. Измеритель плотности тока для электролита обычно состоит из небольшого тороидального зонда с катушкой и цифрового дисплея, который измеряет ток, протекающий через катушку, индуцированный током в электролите, протекающем внутри нее. Процессор таких измерителей рассчитывает и указывает плотность поверхностного тока в точке измерения в А / фут² или А / дм² путем измерения тока, протекающего через катушку, и с учетом площади катушки.

Другой пример измерения плотности поверхностного тока — производство солнечных батарей. Плотность тока короткого замыкания в фотоэлементе часто неоднородна. Различие в плотностях поверхностного тока может быть связано с разным временем жизни носителей заряда в разных областях ячейки, разным расстоянием до металлических контактов и другими факторами. Чтобы измерить плотность поверхностного тока через ячейку, их можно облучить сфокусированным очень узким электронным или световым лучом. Световое пятно очень маленького диаметра сканирует поверхность ячейки и точно измеряет выделенный фототок.Таким образом создается карта локальной плотности поверхностного тока короткого замыкания, которую можно использовать для оптимизации фотоэлектрического устройства.

Эту статью написал Анатолий Золотков

У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

Что такое шунт амперметра? — Определение и расчет сопротивления шунта

Определение: Шунт амперметра — это устройство, которое обеспечивает путь с низким сопротивлением для прохождения тока . Подключается параллельно с амперметром . В некоторых амперметрах шунт встроен внутри прибора, в то время как в других он подключен к цепи извне.

Почему шунт подключается параллельно с амперметром?

Конструкции амперметра для измерения слабого тока. Для измерения сильного тока шунт подключается параллельно амперметру . Значительная часть измеряемого тока проходит на шунт из-за низкого сопротивления пути, а через амперметр проходит небольшое количество тока.

Шунт подключается параллельно амперметру, из-за чего напряжение на измерителе падает, а шунт остается прежним. . Таким образом, шунт не влияет на движение стрелки.

Расчет сопротивления шунта

Рассмотрим схему, используемую для измерения тока I. Схема имеет амперметр и шунт, подключенные параллельно друг другу. Конструкции амперметра для измерения малого тока говорят: I m . Величина тока I , проходящего через счетчик, очень высока, и он сожжет счетчик.Для измерения тока I в цепи требуется шунт. Следующее выражение вычисляет значение сопротивления шунта.

Поскольку шунт подключается параллельно амперметру, между ними возникает одинаковое падение напряжения.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *