Максимальный вращающий момент: № 823. Максимальный вращающий момент, действующий на рамку площадью 1 см2, находящуюся в магнитном поле, равен 2 мкН ⋅ м. Сила тока в рамке 0,5 А. Найти индукцию магнитного поля.

Содержание

Максимальный вращающий магнитный момент | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Рис. 6.8. Вращающее действие маг­нитного поля на виток с током

Действие магнитного поля на виток с током позволяет использовать его и для определения модуля магнитной индукции. По­ворачивание витка в магнитном поле свиде­тельствует о том, что на него действуют по меньшей мере две силы. Равнодействующие этих сил будут приложены в точках A и B (рис. 6.8). Вращающий момент, действую­щий на виток, будет равен произведению одной из этих сил на радиус витка r. Этот момент не обязательно рассчитывать. Его можно измерить с помощью спиральной пружины или другого чувствительного ус­тройства для измерения механического мо­мента, соединенных с витком.

Опыты показывают, что виток с током в магнитном поле всегда поворачивается так, что направление его нормали совпадает с направлением магнитной индукции исследуемого поля B̅. Очевидно, что в этом случае вращающий момент будет равен нулю. Он будет иметь максимальное значение тогда, когда угол между магнитной индукцией и нормалью будет равен 90°.

Магнитную индукцию можно определить по силовому дей­ствию магнитного поля на ви­ток с током.




Не изменяя силы тока в проводнике, исследуем, как зависит значение максималь­ного вращающего момента от параметров витка.

Расположив виток на определенном рас­стоянии от проводника с током, измерим максимальный вращающий момент Mmax для определенного значения силы тока в витке I1. Увеличим силу тока в витке в два раза. При I2 = 2I1 максимальный ме­ханический момент будет равен Mmax2 = 2Mmax1. То же самое будем наблюдать при увеличении силы тока в 3, 4, 5 раз. Таким образом, максимальное значение вращающего момента, который действует на виток с током, будет пропорциональным силе тока в витке

Mmax ~ Iвит.

Вращающий момент, дейст­вующий на виток в магнитном поле, пропорционален силе то­ка в нем. Материал с сайта http://worldofschool.ru

Если заменить данный виток другим, с большей или меньшей площадью Sвит, то заметим соответствующее увеличение или уменьшение значения максимального вращающего момента. Таким образом,

макси­мальный вращающий момент, который дей­ствует на виток в магнитном поле, пропор­ционален его площади:

Mmax ~ Sвит.

Объединив результаты обоих этапов ис­следования, получим

Mmax ~ IвитSвит.


На этой странице материал по темам:

  • Что такое максимальный вращающий момент физика

  • Максимальный вращающий момент действующий на виток

  • Разница между максимальным вращающим моментом физика

  • Максимальный вращающий момент формула физика

  • Максимальный вращающий


Вращающий момент | Электротехника

Электромагнитный момент.

Электромагнитный момент Мэм возникает под влиянием сил, действующих на проводники ротора, которые находятся во вращающемся магнитном поле. Обозначим мгновенное значение тока ротора через i2s(рис. 3.16), магнитную индукцию в этой же точке через В и  длину  проводника  через l ( длина  пакета ротора). Тогда сила, действующая на проводник, f = В l i2s

Индукция В и ток ротора i2s в каждый данный момент времени распределены вдоль окружности ротора примерно по синусоидальному закону, т. е.

— координата, определяющая положение проводника на роторе (рис. 3.16), а ψ2 — угол сдвига фаз между ЭДС  e2s (согласно п. 3.4.1 ЭДС  e2s совпадает по фазе с индукцией В) и током ротора  i2s. Таким образом,

Средняя сила, действующая на проводник, определяется как интеграл вдоль окружности ротора от силы  f, действующей на один проводник:

Заменяя произведение синусов на разность косинусов, получаем:

Интеграл от второго слагаемого, как интеграл за два периода косинусоидальной функции, равен нулю. Тогда

Обозначим число проводников ротора через N2 . Сила, действующая на все проводники, будет F = N2fср. Вращающий момент есть произведение силы F на радиус ротора, т. е. M = FD/2. Зная, что полюсное деление и для синусоиды   , находим момент:

Обозначим постоянную

Тогда

(3. 20) В этом выражении   , где R2 — активное сопротивление, а X2s индуктивное сопротивление фазы вращающегося ротора. Формула (3.20) показывает, что вращающий момент двигателя создается за счет взаимодействия магнитного потока и тока в обмотке ротора.

Влияние скольжения s и напряжения на фазе статора на вращающий момент двигателя. В (3.20) значение тока определяется из выражения где E2s и I2s— ЭДС и ток фазы вращающегося ротора;

Подставляя значения I2s и   cos Ψ2 в (3.20), получаем:

(3.21)

Если учесть, что

,

то (3.21) можно переписать:

Постоянная

,

где w2 — число витков ротора; на одну фазу статора (число фаз равно трем).

Подставляя значения в (3.22), находим:

Используя приведенные значения активного и индуктивного сопротивлений фазы ротора, получаем:

Если пренебречь падением напряжения в обмотке статора,  формула принимает вид

(3.22а)

Погрешность в определении момента при применении формулы (3.22а) не превышает 5 %,что вполне допустимо для инженерных задач. Из (3.22а) видно, что вращающий момент пропорционален квадрату напряжения фазы статора. Изменение U1существенно сказывается на моменте. Так, если U1падает на 10 %, то момент падает на 19 %.

Формула (3.22а) может быть выведена также из формулы механической мощности двигателя:

где m— число фаз двигателя. Так как , где          — угловая скорость вращающегося поля, то

где ω1 — угловая частота тока в сети.

Учитывая формулу (3.19) и обозначая X1 + X`2, получаем:

.                                 (3.23)

3.11.3. Характеристика момент-скольжение.

Характеристика момент-скольжение M(s), построенная по (3.23) изображена на рис. 3.17. Точка s= 0, М = 0 соответствует идеальному холостому ходу двигателя, а точка Мном, sном — номинальному режиму. Участок ОН графика — рабочий участок. На этом участке зависимость M(s) практически линейная. Действительно скольжение на этом участке  s= 0 + 0,08, поэтому и в формуле (3.23) значением к)2 можно пренебречь. Тогда (3.23) принимает вид где — величина для данного двигателя постоянная.

Участок НК, графика соответствует механической перегрузке двигателя. В точке К вращающий момент достигает максимального значения и называется критическим моментом. Скольжение sк, соответствующее критическому моменту, называется критическим скольжением.

Участок ОК характеристики — участок статически устойчивой работы двигателя (под устойчивой работой понимается свойство двигателя автоматически компенсировать малые отклонения в режиме работы за счет собственных характеристик). Пусть, например, в установившемся режиме вр=М) по какой-либо причине момент сопротивления увеличится и станет равным М’>М. Тогда последует переходный процесс: частота вращения ротора п уменьшится, скольжение s увеличится, Мвр согласно характеристике M(s) возрастет и двигатель выйдет на новый установившийся режим, характеризующийся пониженной частотой вращения n и равенством моментов  М’вр = М’.

Статически устойчивый участок характеризуется положительной производной dM/ds>0. Значение критического момента Мк может быть найдено из условия dM/ds

. (3.24)

Приравнивая (3.24) нулю, получаем значение критического скольжения

(3.25)

Подставив sкв (3.23), получим

(3.26)

Отношение Мк/Мном=kм называется кратностью максимального момента. У серийных двигателейkм=1,7/3,4. .

Участок КП участок неустойчивой работы. Если по какой-либо причине Мсстанет больше Мвр , то анализ, аналогичный анализу для устойчивого участка, показывает, что Мвр не увеличится, а, наоборот, уменьшится, что приведет к увеличению скольжения и еще большему уменьшению вращающего момента – практически ротор двигателя мгновенно остановится (рис. 3.17, точка П). Участок неустойчивой работы характеризуется отрицательной производной: dM/ds<0.

В точке П скольжение sп=1 (n=0).

На участке ПТ скольжение s>1 . Это возможно, когда направление вращения ротора противоположно направлению вращения поля. Действительно, в этом случае     s= n1 — (-n)/n1 > 1. Значение скольжения s > 1 характеризует тормозной режим двигателя, подробно рассмотренный в § 3.16.

Выражение момента в о. е.(формула Клосса) Для вывода формулы момента в относительных единицах воспользуемся выражением (3.25), т. е. в (3.23) вместо 3PU12 подставим его значение 1XkMk и учтем, что R2 = skXk . В результате преобразования получим формулу Клосса:

. (3.27)

Формула максимальный вращающий момент

Максимальный вращающий магнитный момент

Рис. 6.8. Вращающее действие маг­нитного поля на виток с током

Действие магнитного поля на виток с током позволяет использовать его и для определения модуля магнитной индукции. По­ворачивание витка в магнитном поле свиде­тельствует о том, что на него действуют по меньшей мере две силы. Равнодействующие этих сил будут приложены в точках A и B (рис. 6.8). Вращающий момент, действую­щий на виток, будет равен произведению одной из этих сил F̅ на радиус витка r. Этот момент не обязательно рассчитывать. Его можно измерить с помощью спиральной пружины или другого чувствительного ус­тройства для измерения механического мо­мента, соединенных с витком.

Опыты показывают, что виток с током в магнитном поле всегда поворачивается так, что направление его нормали n̅ совпадает с направлением магнитной индукции исследуемого поля B̅. Очевидно, что в этом случае вращающий момент будет равен нулю. Он будет иметь максимальное значение тогда, когда угол между магнитной индукцией B̅ и нормалью n̅ будет равен 90°.

Магнитную индукцию можно определить по силовому дей­ствию магнитного поля на ви­ток с током.

Не изменяя силы тока в проводнике, исследуем, как зависит значение максималь­ного вращающего момента от параметров витка.

Расположив виток на определенном рас­стоянии от проводника с током, измерим максимальный вращающий момент Mmax для определенного значения силы тока в витке I1. Увеличим силу тока в витке в два раза. При I2 = 2I1 максимальный ме­ханический момент будет равен Mmax2 = 2Mmax1. То же самое будем наблюдать при увеличении силы тока в 3, 4, 5 раз. Таким образом, максимальное значение вращающего момента, который действует на виток с током, будет пропорциональным силе тока в витке

Mmax ~ Iвит.

Вращающий момент, дейст­вующий на виток в магнитном поле, пропорционален силе то­ка в нем. Материал с сайта http://worldofschool.ru

Если заменить данный виток другим, с большей или меньшей площадью Sвит, то заметим соответствующее увеличение или уменьшение значения максимального вращающего момента. Таким образом,

макси­мальный вращающий момент, который дей­ствует на виток в магнитном поле, пропор­ционален его площади:

Mmax ~ Sвит.

Объединив результаты обоих этапов ис­следования, получим

Mmax ~ Iвит • Sвит.

На этой странице материал по темам:

worldofschool.ru

максимальный момент (Мmах) асинхронной машины, запишите эту формулу?

Что такое расчетная формула момента? Запишите выражение этой формулы и поясните физический смысл еѐ. Что такое

максимальный момент (Мmах) асинхронной машины, запишите эту формулу?

Электромагнитный момент асинхронного двигателя создается взаимодействием тока в обмотке ротора с вращающимся магнитным полем. Электромагнитный момент М пропорционален электромагнитной мощности:

, (3.39) где (3.40) — угловая синхронная скорость вращения.
Подставив в (3.39) значение электромагнитной мощности (3.33), получим
, (3.41) т. е. электромагнитный момент асинхронного

двигателя пропорционален мощности электрических потерь в обмотке ротора.

Если значение тока ротора по выражению (3.28) подставить в (3.41), то получим формулу электромагнитного момента асинхронной машины (Н∙м):

(3.42)

Параметры схемы замещения асинхронной машины r1, r¢2, x1 и x¢2, входящие в выражение (3.42), являются постоянными, так как их значения при изменениях нагрузки машины остаются практически неизменными. Также постоянными можно считать напряжение на обмотке фазы статора U1 и частоту f1. В выражении момента М единственная переменная величина — скольжение s, которое для различных режимов работы асинхронной машины может принимать разные значения в диапазоне от +¥ до -¥ (см. рис. 3.5).

Рассмотрим зависимость момента от скольжения М=f(s) при U1 = const, f1=const и постоянных параметрах схемы замещения. Эту зависимость принято называть механической характеристикой асинхронной машины. Анализ выражения (3.42), представляющего собой аналитическое выражение механической характеристики М=f(s), показывает, что при значениях скольжения s=0 и s=¥ электромагнитный момент М=0. Из этого следует, что механическая характеристика М=f(s) имеет максимум. Для определения величины критического скольжения sкр, соответствующего максимальному моменту, необходимо взять первую производную от (3.42) и приравнять ее нулю:

. В результате (3.43) Подставив значение критического скольжения (по 3.43) в выражение электромагнитного момента (3.42), после ряда преобразований получим выражение максимального момента (Н∙м):

(3.44)

В (3.43) и (3.44) знак плюс соответствует двигательному, а знак минус — генераторному режиму работы асинхронной машины.

Для асинхронных машин общего назначения активное сопротивление обмотки статора r1 намного меньше суммы индуктивных сопротивлений: r1

helpiks.org

Крутящий момент: что такое, формула и в чем измеряется

Мощность двигателя – важнейший его показатель. Как в плане эксплуатации, так и в плане начисления налогов на авто. Крутящий момент нередко путают с мощностью или упускают его из виду в процессе оценки ходовых качеств авто. Многие упрощают автомобиль, считая, что большое количество лошадиных сил – главное преимущество любого мотора. Однако, вращающий момент – более важный показатель. Особенно, если автомобиль не предполагается использовать в качестве спортивного.

Что такое крутящий момент

Крутящим моментом называют единицу силы, которая необходима для поворота коленчатого вала ДВС. Эта не «лошадиная сила», которой должна обозначаться мощность.

ДВС вырабатывает кинетическую энергию, вращая таким образом коленвал. Показатель мощности двигателя (сила давления) зависит от скорости сгорания топлива. Крутящий момент – результат от действия силы на рычаг. Эта сила в физике считается в ньютонах. Длина плеча коленвала считается в метрах. Поэтому обозначение крутящего момента – ньютон-метр.

Технически, крутящий момент – это усилие, которое должно осуществляться двигателем для разгона и движения машины. При этом сила, оказывающая действие на поршень, пропорциональна объему двигателя.

Маховик – одна из важнейших деталей, которая должна через редуктор передавать вращательный момент от мотора к коробке передач, от стартера на коленвал, от коленвала на нажимной диск. Собственно, крутящий момент – итог давления на шатун.

Формула расчета крутящего момента

Показатель КМ рассчитывается так: мощность (в л. с.) равно крутящий момент (в Нм) умножить на обороты в минуту и разделить на 5,252. При меньших чем 5,252 значениях крутящий момент будет выше мощности, при больших – ниже.

В пересчете на принятую в России систему (кгм – килограмм на метр) – 1кг = 10Н, 1 см = 0,01м. Таким образом 1 кг х см = 0,1 Н х м. Посчитать вращательный момент в разных системах измерений ньютоны/килограммы и т.д. поможет конвертер – в практически неизменном виде он доступен на множестве сайтов, с его помощью можно определять данные по практически любому мотору.

График:

На графике изображена зависимость крутящего момента двигателя от его оборотов

От чего зависит крутящий момент

На КМ будут влиять:

  • Объем двигателя.
  • Давление в цилиндрах.
  • Площадь поршней.
  • Радиус кривошипа коленвала.

Основная механика образования КМ заключается в том, что чем больше двигатель по объему, тем сильней он будет нагружать поршень. То есть – будет выше значение КМ. Аналогична взаимосвязь с радиусом кривошипа коленвала, но это вторично: в современных двигателях этот радиус сильно изменить нельзя.

Давление в камере сгорания – не менее важный фактор. От него напрямую зависит сила, давящая на поршень.

Для снижения потерь крутящего момента при тряске машины во время резкого газа можно использовать компенсатор. Это специальный (собранный вручную) демпфер, компенсация которого позволит сохранить вращающий момент и повысить срок эксплуатации деталей.

На что влияет крутящий момент

Главная цель КМ – набор мощности. Часто мощные моторы обладают низким показателем КМ, поэтому не способны разогнать машину достаточно быстро. Особенно это касается бензиновых двигателей.

ВАЖНО! При выборе авто стоит рассчитать оптимальное соотношение вращательного момента с количеством оборотов, на которых чаще всего мотор будет работать. Если держать вращательный момент на соответствующем уровне, это позволит оптимально реализовать потенциал двигателя.

Высокий КМ также может влиять на управляемость машины, поэтому при резком увеличении скорости не лишним будет использование системы TSC. Она позволяет точнее направлять авто при резком разгоне.

Широко распространенный 8-клапанный двигатель ВАЗ выдает вращательный момент 120 (при 2500-2700 оборотах). Ручная коробка или АКПП стоит на машине – не принципиально. При использовании КПП немаловажен опыт водителя, на автоматической коробке плавный старт обеспечивает преобразователь.

Как увеличить крутящий момент

Увеличение рабочего объема. Чтобы повышать КМ используются разные методы: замена установленного коленвала на вал с увеличенным эксцентриситетом (редко встречающаяся запчасть, которую трудно находить) или расточка цилиндров под больший диаметр поршней. Оба способа имеют свои плюсы и минусы. Первый требует много времени на подбор деталей и снижает долговечность двигателя. Второй, увеличение диаметра цилиндров с помощью расточки, более популярен. Это может сделать практически любой автосервис. Там же можно настроить карбюратор для повышения КМ.

Изменение величины наддува. Турбированные двигатели позволяют достичь более высокого показателя КМ благодаря особенностям конструкции – возможности отключить ограничения в блоке управления компрессором, который отвечает за наддув. Манипуляции с блоком позволят повысить объем давления выше максимума, указанного производителем при сборке автомобиля. Способ можно назвать опасным, поскольку у каждого двигателя есть лимитированный запас нагрузок. Кроме того, часто требуются дополнительные усовершенствования: увеличение камеры сгорания, приведение охлаждения в соответствие повышенной мощности. Иногда требуется отрегулировать впускной клапан, иногда – сменить распредвал. Может потребоваться замена чугунного коленвала на стальной, замена поршней.

Изменение газодинамики. Редко используемый вариант, поскольку двигатель – сложная конструкция, созданием которого занимаются профессионалы. Теоретически можно придумать, как убрать ограничения, заложенные конструкторами для увеличения срока эксплуатации двигателя и его деталей. Но на практике, если убрать ограничитель, результат не гарантирован, поскольку поменяются все характеристики: например, динамика вырастет, но шина не будет цепляться за дорогу. Чтобы усовершенствовать двигатель такие образом надо быть не просто автомобильным конструктором, но и математиком, физиком и т.д.

ВАЖНО! Простой способ повысить КМ – использовать масляный фильтр. Он снизит засорение двигателя и продлит срок эксплуатации всех деталей.

Определение крутящего момента на валу

Для измерения крутящего момента на валу автомобильного двигателя применяется множество методик. Это может быть показатель подачи топлива, температуры выхлопных газов и т.д. Такие методы не гарантируют высокой точности.

Распространенный метод повышенной точности – применение тензометрического моста. На вал крепятся тензометры, электрически соединенные по мостовой схеме. Сигнал передается на считывающее устройство.

Измеритель крутящего момента

Главная сложность в измерителе крутящего момента, использующего тензометры, является точность передачи данных. Применявшиеся ранее контактные, индукционные и светотехнические устройства не гарантировали необходимой эффективности. Сейчас данные передаются по цифровым радиоканалам. Измеритель представляет собой компактный радиопередатчик, который крепится на вал и передает данные на приемник.

Сейчас такие устройства доступны по стоимости и просты в эксплуатации. Применяются в основном в СТО.

Датчик крутящего момента

Аналогичные устройства, измеряющие КМ, в автомобиле могут быть установлены не только на коленвал, но и на рулевое колесо. Он ставится на модели машин с электроусилителем руля и позволяет отслеживать работу системы управление автомобилей. При выходе датчика из строя, усилитель, как правило, отключается.

Максимальный крутящий момент

Максимальным называется крутящий момент, представляющий пик, после которого момент не растет, несмотря на количество оборотов. На малых оборотах в цилиндре скапливается большой объем остаточных газов, в результате чего показатель КМ значительно ниже пикового. На средних оборотах в цилиндры поступает больше воздуха, процент газов снижается, крутящий момент продолжает расти.

При высоких оборотах растут потери эффективности: от трения поршней, инерционных потерь в ГРМ, разогрева масла и т.д. будет зависеть работа мотора. Поэтому рост качества работы двигателя прекращается или само качество начинает снижаться. Максимальный крутящий момент достигнут и начинает снижаться.

В электродвигателях максимальный вращательный момент называется «критический».

Таблица марок автомобилей с указанием крутящего момента:

Модели автомобиля ВАЗКрутящий момент (Нм, разные марки двигателей)
210793 – 176
210879-186
210978-118
2110104-196
2112104-162
2114115-145
2121 (Нива)116-129
2115103-132
210692-116
210185-92
210585-186
Двигатели ЗМЗ
406181,5-230
409230
Других популярные в России марки автомобилей
Ауди А6500-750
БМВ 5290-760
Бугатти Вейрон1250-1500
Дэу Нексия123-150
КАМАЗ~650-2000+
Киа Рио132-151
Лада Калина127-148
Мазда 6165-420
Мицубиси Лансер143-343
УАЗ Патриот217-235
Рено Логан112-152
Рено Дастер156-240
Тойота Королла128-173
Хендай Акцент106-235
Хендай Солярис132-151
Шевроле Каптив220-400
Шевроле Круз118-200

Какому двигателю отдать предпочтение

Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.

Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.

Бензиновый двигатель

Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.

Дизельный двигатель

В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.

Электродвигатель

Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.

Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.

ВАЖНО! Что касается выбора между бензиновым и дизельным двигателями, они в первую очередь отличаются мощностью и крутящим моментом. На практике это означает, что при одинаковом объеме двигателя дизельный быстрее разгоняется, а бензиновый позволяет давать более высокую скорость.

Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.

Улучшение разгона авто за счет изменения момента вращения

Чем выше показатель крутящего момента – тем быстрее двигатель набирает мощность. Таким образом, вырастет скорость движения. На практике это означает, что, например, во время разгона крутящий момент позволит быстрее обогнать едущий впереди автомобиль.

Чтобы улучшить разгон автомобиля за счет изменения момента вращения, достаточно повысить показатели последнего. Как это сделать – описано выше.

Зависимость мощности от крутящего момента

Крутящий момент, как говорилось выше, это показатель того, с какой скоростью двигатель может набирать обороты. По сути, мощность мотора – прямая производная от КМ на коленвале. Чем больше оборотов – тем выше показатель мощности.

Зависимость мощности от вращательного момента выражается формулой: Р = М*n (Р – мощность, М – крутящий момент, n – количество оборотов коленвала/мин).

autodont.ru

Вращающий момент — это… Что такое Вращающий момент?

Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

Момент силы приложенный к гаечному ключу

Отношение между векторами силы, момента силы и импульса во вращающейся системе

Момент силы

В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:

где  — сила, действующая на частицу, а  — радиус-вектор частицы!

Предыстория

Строго говоря, вектор, обозначающий момент сил, введен искуственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.

Работа, совершаемая при действии силы на рычаг , совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок , которому соответствует бесконечно малый угол . Обозначим через вектор, который направлен вдоль бесконечно малого отрезка и равен ему по модулю. Угол между вектором силы и вектором равен , а угол и вектором силы .

Следовательно, бесконечно малая работа , совершаемая силой на бесконечно малом участке равна скалярному произведению вектора и вектора силы, то есть .

Теперь попытаемся выразить модуль вектора через радиус вектор , а проекцию вектора силы на вектор , через угол .

В первом случае, используя теорему Пифагора, можно записать следующее равенство , где в случае малого угла справедливо и следовательно

Для проекции вектора силы на вектор , видно, что угол , так как для бесконечно малого перемещения рычага , можно считать, что траектория перемещения перпендикулярна рычагу , а так как , получаем, что .

Теперь запишем бесконечно малую работу через новые равенства или .

Теперь видно, что произведение есть ни что иное как модуль векторного произведения векторов и , то есть , которое и было принято обозначить за момент силы или модуля вектора момента силы .

И теперь полная работа записывается очень просто или .

Единицы

Момент силы имеет размерность сила на расстояние, и в системе СИ единицей момента силы является «ньютон-метр». Джоуль, единица СИ для энергии и работы, тоже определяется как 1Н*м, но эта единица не используется для момента силы. Когда энергия представляется как результат «сила на расстояние», энергия скалярная, тогда как момент силы — это «сила, векторно умноженная на расстояние» и таким образом она (псевдо) векторная величина. Конечно, совпадение размерности этих величин не простое совпадение; момент силы 1Н*м, приложенный через целый оборот, требует энергии как раз 2*π джоулей. Математически

,

где Е — энергия, τ — вращающий момент, θ — угол в радианах.

Специальные случаи

Формула момента рычага

Момент рычага

Очень интересен особый случай, представляемый как определение момента силы в поле:

τ = МОМЕНТ РЫЧАГА * СИЛУ

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

= РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ

Сила под углом

Если сила F направлена под углом θ к рычагу r, то τ = r*F*sinθ, где θ это угол между рычагом и приложенной силой

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.

Момент силы как функция от времени

Момент силы — производная по времени от момент импульса,

,

где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

,

То есть если I постоянная, то

,

где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

Отношение между моментом силы и мощностью

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

= МОМЕНТ СИЛЫ * УГЛОВАЯ СКОРОСТЬ

В системе СИ мощность измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

Отношение между моментом силы и работой

= МОМЕНТ СИЛЫ * УГОЛ

В системе СИ работа измеряется в Джоулях, момент силы в Ньютон * метр, а УГОЛ в в радианах.

Обычно известна угловая скорость в радианах в секунду и время действия МОМЕНТА .

Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

= МОМЕНТ СИЛЫ * *

Момент силы относительно точки

Если имеется материальная точка , к которой приложена сила , то момент силы относительно точки равен векторному произведению радиус-вектора , соединяющий точки O и OF, на вектор силы :

.

Момент силы относительно оси

Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси относительно точки пересечения оси с этой плоскостью.

Единицы измерения

Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.

Измерение момента

На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки. В России при решении задач измерения момента в основном используется оборудование зарубежных производителей (HBM (Германия), Kyowa (Япония), Dacell (Корея) и ряда других).

См. также

  • Момент инерции
  • Момент импульса
  • Теорема Вариньона

Wikimedia Foundation. 2010.

dic.academic.ru



максимальный вращающий момент — это… Что такое максимальный вращающий момент?

максимальный вращающий момент
breakdown torque, pull-out torque

Большой англо-русский и русско-английский словарь.
2001.

  • максимальный возраст
  • максимальный выключатель

Смотреть что такое «максимальный вращающий момент» в других словарях:

  • максимальный вращающий момент — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN peak torquemaximum torqueMT …   Справочник технического переводчика

  • максимальный вращающий момент синхронной машины — — [Я. Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва] Тематики электротехника, основные понятия EN synchronous pull out torquepull out torque …   Справочник технического переводчика

  • Максимальный вращающий момент (опрокидывающий момент) двигателя переменного тока — 2.16. Максимальный вращающий момент (опрокидывающий момент) двигателя переменного тока наибольший вращающий момент, развиваемый двигателем при его рабочей температуре и номинальных значениях напряжения и частоты, без резкого снижения частоты… …   Словарь-справочник терминов нормативно-технической документации

  • максимальный (опрокидывающий) момент Tb — 3.4 максимальный (опрокидывающий) момент Tb (breakdown torque): Наибольшее значение вращающего момента в установившемся режиме, развиваемого двигателем без резкого снижения скорости при номинальных значениях напряжения и частоты. Это определение… …   Словарь-справочник терминов нормативно-технической документации

  • максимальный передаваемый (вращающий) момент электромагнитной муфты — Ммакс Значение передаваемого (вращающего) момента электромагнитной муфты при номинальном сигнале управления. [ГОСТ 18306 72] Тематики муфты …   Справочник технического переводчика

  • максимальный (опрокидывающий) вращающий момент асинхронного двигателя — 3.15 максимальный (опрокидывающий) вращающий момент асинхронного двигателя (breakdown torque of an a.c. motor): Наибольшее значение вращающего момента в установившемся режиме, развиваемого двигателем без резкого снижения частоты вращения при… …   Словарь-справочник терминов нормативно-технической документации

  • максимальный момент асинхронного вращающегося двигателя — Наибольший вращающий момент, который может развивать асинхронный вращающийся двигатель при работе с номинальными значениями напряжения и частоты питающей сети. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в целом …   Справочник технического переводчика

  • максимальный момент синхронного вращающегося двигателя — Наибольший вращающий момент, который может развивать синхронный вращающийся двигатель без выпадения из синхронизма, работая при номинальных значениях напряжения и частоты питающей сети. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в… …   Справочник технического переводчика

  • максимальный момент синхронного двигателя — 3.16 максимальный момент синхронного двигателя (pull out torque of a synchronous motor): Наибольший вращающий момент, развиваемый синхронным двигателем при синхронной частоте вращения и при номинальных значениях напряжения, частоты питания и тока …   Словарь-справочник терминов нормативно-технической документации

  • входной момент в синхронизм — Максимальный вращающий момент нагрузки, при котором синхронный двигатель, подключенный к питающей сети с номинальными напряжением и частотой может войти в синхронизм при подаче возбуждения. [ГОСТ 27471 87] Тематики машины электрические… …   Справочник технического переводчика

  • Электрический дипольный момент —     Классическая электродинамика …   Википедия

Самостоятельная работа по физике Магнитное поле 11 класс

Самостоятельная работа по физике Магнитное поле. Действие магнитного поля на проводник с током 11 класс с ответами. Представлено 5 вариантов самостоятельных работ. В каждом варианте по 2 задания.

1 вариант

1. Прямолинейный проводник длиной 0,4 м помещен в однородное магнитное поле перпендикулярно линиям магнитной индукции. Определите индукцию магнитного поля, если при силе тока 2 А на проводник действует си­ла 4 Н.

2. Рассчитайте силу тока, протекающего по плоскому контуру площадью 5 см2, находящемуся в однородном магнитном поле с индукцией 0,5 Тл, если максимальный вращающий момент, действующий на контур со стороны поля, равен 0,25 мН ⋅ м.

2 вариант

1. Какова сила тока, проходящего по прямолинейному проводнику, расположенному перпендикулярно однород­ному магнитному полю, если на активную часть провод­ника длиной 40 см действует сила в 20 Н при индукции магнитного поля 10 Тл?

2. Чему равна индукция магнитного поля, если на прямоугольную рамку, сила тока в которой 0,5 А, действует максимальный вращающий момент 10-2 Н ⋅ м? Размеры рамки 20 х 30 см2.

3 вариант

1. Прямолинейный проводник с током помещен в одно­родное магнитное поле с индукцией 2 Тл. Определите си­лу, с которой действует магнитное поле на проводник, ес­ли его длина 10 см, сила тока в проводнике 5 А и провод­ник составляет с направлением индукции магнитного поля угол 30°.

2. Рамка площадью 100 см2 помещена в однородное маг­нитное поле с индукцией 0,5 Тл. Найдите максимальный вращающий момент сил, действующих на рамку, если сила тока в ней 1 000 А.

4 вариант

1. Определите длину активной части прямолинейного проводника, помещенного в однородное магнитное поле с индукцией 400 Тл, если при силе тока 295 А на него дей­ствует сила в 100 Н. Проводник расположен под углом 30° к линиям индукции магнитного поля.

2. Какова индукция однородного магнитного поля, если на прямоугольную рамку (20 х 30 мм2), помещенную в поле, действует максимальный вращающий момент 0,003 Н ⋅ м? Рамка состоит из 100 витков, сила тока в рамке 5 А.

5 вариант

1. Под каким углом расположен прямолинейный проводник к линиям индукции магнитного поля с индукцией 15 Тл, если на каждые 10 см длины про­водника действует сила в 3 Н, когда по нему проходит ток 4 А?

2. Квадратная рамка со стороной 5 см, имеющая 10 вит­ков, находится в однородном магнитном поле с индукци­ей 0,1 Тл. Плоскость рамки составляет угол 0° с направ­лением магнитного поля. Определите вращающий момент сил, действующих на рамку, если сила тока в рамке равна 4 А.

Ответы на самостоятельную работу по физике Магнитное поле. Действие магнитного поля на проводник с током 11 класс
1 вариант
1. 5 Тл
2. 1 А
2 вариант
1. 5 А
2. 0,33 Тл
3 вариант
1. 0,5 Н
2. 5 Н ⋅ м
4 вариант
1. 0,2 м
2. 0,01 Тл
5 вариант
1. 30°
2. 0,01 Н ⋅ м

Мощность и вращающий момент электродвигателя. Что это такое?

Мощность и вращающий момент электродвигателя

Данная глава посвящена вращающему моменту: что это такое, для чего он нужен и др. Мы также разберём типы нагрузок в зависимости от моделей насосов и соответствие между электродвигателем и нагрузкой насоса.

Вы когда-нибудь пробовали провернуть вал пустого насоса руками? Теперь представьте, что вы поворачиваете его, когда насос заполнен водой. Вы почувствуете, что в этом случае, чтобы создать вращающий момент, требуется гораздо большее усилие.

А теперь представьте, что вам надо крутить вал насоса несколько часов подряд. Вы бы устали быстрее, если бы насос был заполнен водой, и почувствовали бы, что потратили намного больше сил за тот же период времени, чем при выполнении тех же манипуляций с пустым насосом. Ваши наблюдения абсолютно верны: требуется большая мощность, которая является мерой работы (потраченной энергии) в единицу времени. Как правило, мощность стандартного электродвигателя выражается в кВт.

Вращающий момент (T) — это произведение силы на плечо силы. В Европе он измеряется в Ньютонах на метр (Нм).

Как видно из формулы, вращающий момент увеличивается, если возрастает сила или плечо силы — или и то и другое. Например, если мы приложим к валу силу в 10 Н, эквивалентную 1 кг, при длине рычага (плече силы) 1 м, в результате, вращающий момент будет 10 Нм. При увеличении силы до 20 Н или 2 кг, вращающий момент будет 20 Нм. Таким же образом, вращающий момент был бы 20 Нм, если бы рычаг увеличился до 2 м, а сила составляла 10 Н. Или при вращающем моменте в 10 Нм с плечом силы 0,5 м сила должна быть 20 Н.

Работа и мощность

Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.

Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).

Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.

Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.

Приведем единицы измерения к общему виду.

Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.

Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.

Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.

Как образуется вращающий момент и частота вращения?

Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.

В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.

Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.

Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:

Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.

Потребляемая мощность электродвигателя

Ток ротора индуцируется через источник питания, к которому подсоединён электродвигатель, а магнитное поле частично создаётся напряжением. Входную мощность можно вычислить, если нам известны данные источника питания электродвигателя, т.е. напряжение, коэффициент мощности, потребляемый ток и КПД.

В Европе мощность на валу обычно измеряется в киловаттах. В США мощность на валу измеряется в лошадиных силах (л.с.).

Если вам необходимо перевести лошадиные силы в киловатты, просто умножьте соответствующую величину (в лошадиных силах) на 0,746. Например, 20 л.с. равняется (20 • 0,746) = 14,92 кВт.

И наоборот, киловатты можно перевести в лошадиные силы умножением величины в киловаттах на 1,341. Это значит, что 15 кВт равняется 20,11 л.с.

Момент электродвигателя

Мощность [кВт или л.с.] связывает вращающий момент с частотой вращения, чтобы определить общий объём работы, который должен быть выполнен за определённый промежуток времени.

Рассмотрим взаимодействие между вращающим моментом, мощностью и частотой вращения, а также их связь с электрическим напряжением на примере электродвигателей Grundfos. Электродвигатели имеют одну и ту же номинальную мощность как при 50 Гц, так и при 60 Гц.

Это влечёт за собой резкое снижение вращающего момента при 60 Гц: частота 60 Гц вызывает 20%-ное увеличение числа оборотов, что приводит к 20%-ному уменьшению вращающего момента. Большинство производителей предпочитают указывать мощность электродвигателя при 60 Гц, таким образом, при снижении частоты тока в сети до 50 Гц электродвигатели будут обеспечивать меньшую мощность на валу и вращающий момент. Электродвигатели обеспечивают одинаковую мощность при 50 и 60 Гц.

Графическое представление вращающего момента электродвигателя изображено на рисунке.

Иллюстрация представляет типичную характеристику вращающий момент/частота вращения. Ниже приведены термины, используемые для характеристики вращающего момента электродвигателя переменного тока.

Пусковой момент (Мп): Механический вращающий момент, развиваемый электродвигателем на валу при пуске, т.е. когда через электродвигатель пропускается ток при полном напряжении, при этом вал застопорен.

Минимальный пусковой момент (Ммин): Этот термин используется для обозначения самой низкой точки на кривой вращающий момент/частота вращения электродвигателя, нагрузка которого увеличивается до полной скорости вращения. Для большинства электродвигателей Grundfos величина минимального пускового момента отдельно не указывается, так как самая низкая точка находится в точке заторможенного ротора. В результате для большинства электродвигателей Grundfos минимальный пусковой момент такой же, как пусковой момент.

Блокировочный момент (Мблок): Максимальный вращающий момент — момент, который создаёт электродвигатель переменного тока с номинальным напряжением, подаваемым при номинальной частоте, без резких скачков скорости вращения. Его называют предельным перегрузочным моментом или максимальным вращающим моментом.

Вращающий момент при полной нагрузке (Мп.н.): Вращающий момент, необходимый для создания номинальной мощности при полной нагрузке.

Нагрузка насосов и типы нагрузки электродвигателя

Выделяют следующие типы нагрузок:

Постоянная мощность

Термин «постоянная мощность» используется для определённых типов нагрузки, в которых требуется меньший вращающий момент при увеличении скорости вращения, и наоборот. Нагрузки при постоянной мощности обычно применяются в металлообработке, например, сверлении, прокатке и т.п.

Постоянный вращающий момент

Как видно из названия — «постоянный вращающий момент» — подразумевается, что величина вращающего момента, необходимого для приведения в действие какого- либо механизма, постоянна, независимо от скорости вращения. Примером такого режима работы могут служить конвейеры.

Переменный вращающий момент и мощность

«Переменный вращающий момент» — эта категория представляет для нас наибольший интерес. Этот момент имеет отношение к нагрузкам, для которых требуется низкий вращающий момент при низкой частоте вращения, а при увеличении скорости вращения требуется более высокий вращающий момент. Типичным примером являются центробежные насосы.

Вся остальная часть данного раздела будет посвящена исключительно переменному вращающему моменту и мощности.

Определив, что для центробежных насосов типичным является переменный вращающий момент, мы должны проанализировать и оценить некоторые характеристики центробежного насоса. Использование приводов с переменной частотой вращения обусловлено особыми законами физики. В данном случае это законы подобия, которые описывают соотношение между разностями давления и расходами.

Во-первых, подача насоса прямо пропорциональна частоте вращения. Это означает, что если насос будет работать с частотой вращения на 25% больше, подача увеличится на 25%.

Во-вторых, напор насоса будет меняться пропорционально квадрату изменения скорости вращения. Если частота вращения увеличивается на 25%, напор возрастает на 56%.

В-третьих, что особенно интересно, мощность пропорциональна кубу изменения скорости вращения. Это означает, что если требуемая частота вращения уменьшается на 50%, это равняется 87,5%-ному уменьшению потребляемой мощности.

Итак, законы подобия объясняют, почему использование приводов с переменной частотой вращения более целесообразно в тех областях применения, где требуются переменные значения расхода и давления. Grundfos предлагает ряд электродвигателей со встроенным частотным преобразователем, который регулирует частоту вращения для достижения именно этой цели.

Так же как подача, давление и мощность, потребная величина вращающего момента зависит от скорости вращения.

На рисунке показан центробежный насос в разрезе. Требования к вращающему моменту для такого типа нагрузки почти противоположны требованиям при «постоянной мощности». Для нагрузок при переменном вращающем моменте потребный вращающий момент при низкой частоте вращения — мал, а потребный вращающий момент при высокой частоте вращения — велик. В математическом выражении вращающий момент пропорционален квадрату скорости вращения, а мощность — кубу скорости вращения.

Это можно проиллюстрировать на примере характеристики вращающий момент/частота вращения, которую мы использовали ранее, когда рассказывали о вращающем моменте электродвигателя:

Когда электродвигатель набирает скорость от нуля до номинальной скорости, вращающий момент может значительно меняться. Величина вращающего момента, необходимая при определённой нагрузке, также изменяется с частотой вращения. Чтобы электродвигатель подходил для определённой нагрузки, необходимо чтобы величина вращающего момента электродвигателя всегда превышала вращающий момент, необходимый для данной нагрузки.

В примере, центробежный насос при номинальной нагрузке имеет вращающий момент, равный 70 Нм, что соответствует 22 кВт при номинальной частоте вращения 3000 мин-1. В данном случае насосу при пуске требуется 20% вращающего момента при номинальной нагрузке, т.е. приблизительно 14 Нм. После пуска вращающий момент немного падает, а затем, по мере того, как насос набирает скорость, увеличивается до величины полной нагрузки.

Очевидно, что нам необходим насос, который будет обеспечивать требуемые значения расход/напор (Q/H). Это значит, что нельзя допускать остановок электродвигателя, кроме того, электродвигатель должен постоянно ускоряться до тех пор, пока не достигнет номинальной скорости. Следовательно, необходимо, чтобы характеристика вращающего момента совпадала или превышала характеристику нагрузки на всём диапазоне от 0% до 100% скорости вращения. Любой «избыточный» момент, т.е. разница между кривой нагрузки и кривой электродвигателя, используется как ускорение вращения.

Соответствие электродвигателя нагрузке

Если нужно определить, отвечает ли вращающий момент определённого электродвигателя требованиям нагрузки, Вы можете сравнить характеристики скорости вращения/вращающего момента электродвигателя с характеристикой скорости вращения/ вращающего момента нагрузки. Вращающий момент, создаваемый электродвигателем, должен превышать потребный для нагрузки вращающий момент, включая периоды ускорения и полной скорости вращения.

Характеристика зависимости вращающего момента от скорости вращения стандартного электродвигателя и центробежного насоса.

Если мы посмотрим на характеристику , то увидим, что при ускорении электродвигателя его пуск производится при токе, соответствующем 550% тока полной нагрузки.

Когда двигатель приближается к своему номинальному значению скорости вращения, ток снижается. Как и следовало ожидать, во время начального периода пуска потери на электродвигателе высоки, поэтому этот период не должен быть продолжительным, чтобы не допустить перегрева.

Очень важно, чтобы максимальная скорость вращения достигалась как можно точнее. Это связано с потребляемой мощностью: например, увеличение скорости вращения на 1% по сравнению со стандартным максимумом приводит к 3%-ному увеличению потребляемой мощности.

Потребляемая мощность пропорциональна диаметру рабочего колеса насоса в четвертой степени.

Уменьшение диаметра рабочего колеса насоса на 10% приводит к уменьшению потребляемой мощности на (1- (0.9 * 0.9 * 0.9 * 0.9)) * 100 = 34%, что равно 66% номинальной мощности. Эта зависимость определяется исключительно на практике, так как зависит от типа насоса, конструкции рабочего колеса и от того, насколько вы уменьшаете диаметр рабочего колеса.

Время пуска электрдвигателя

Если нам необходимо подобрать типоразмер электродвигателя для определённой нагрузки, например для центробежных насосов, основная наша задача состоит в том, чтобы обеспечить соответствующий вращающий момент и мощность в номинальной рабочей точке, потому что пусковой момент для центробежных насосов довольно низкий. Время пуска достаточно ограниченно, так как вращающий момент довольно высокий.

Нередко для сложных систем защиты и контроля электродвигателей требуется некоторое время для их пуска, чтобы они могли замерить пусковой ток электродвигателя. Время пуска электродвигателя и насоса рассчитывается с помощью следующей формулы:

tпуск = время, необходимое электродвигателю насоса, чтобы достичь частоты вращения при полной нагрузке

n = частота вращения электродвигателя при полной нагрузке

Iобщ = инерция, которая требует ускорения, т.е. инерция вала электродвигателя, ротора, вала насоса и рабочих колёс.

Момент инерции для насосов и электродвигателей можно найти в соответствующих технических данных.

Мизб = избыточный момент, ускоряющий вращение. Избыточный момент равен вращающему моменту электродвигателя минус вращающий момент насоса при различных частотах вращения.

Мизб можно рассчитать по следующим формулам:

Как видно из приведённых вычислений, выполненных для данного примера с электродвигателем мощностью 4 кВт насоса CR, время пуска составляет 0,11 секунды.

Число пусков электродвигателя в час

Современные сложные системы управления электродвигателями могут контролировать число пусков в час каждого конкретного насоса и электродвигателя. Необходимость контроля этого параметра состоит в том, что каждый раз, когда осуществляется пуск электродвигателя с последующим ускорением, отмечается высокое потребление пускового тока. Пусковой ток нагревает электродвигатель. Если электродвигатель не остывает, продолжительная нагрузка от пускового тока значительно нагревает обмотки статора электродвигателя, что приводит к выходу из строя электродвигателя или сокращению срока службы изоляции.

Обычно за количество пусков, которое может выполнить электродвигатель в час, отвечает поставщик электродвигателя. Например, Grundfos указывает максимальное число пусков в час в технических данных на насос, так как максимальное количество пусков зависит от момента инерции насоса.

Мощность и КПД (eta) электродвигателя

Существует прямая связь между мощностью, потребляемой электродвигателем от сети, мощностью на валу электродвигателя и гидравлической мощностью, развиваемой насосом.

При производстве насосов используются следующие обозначения этих трёх различных типов мощности.

P1 (кВт) Входная электрическая мощность насосов — это мощность, которую электродвигатель насоса получает от источника электрического питания. Мощность P! равна мощности P2, разделённой на КПД электродвигателя.

P2 (кВт) Мощность на валу электродвигателя — это мощность, которую электродвигатель передает на вал насоса.

Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию.

Р4 (кВт) Гидравлическая мощность насоса.

Момент вращающий максимальный — Энциклопедия по машиностроению XXL







Момент вращающий максимальный 34, 51 —номинальный 23, 41, 57, 59, 61, 64  [c.233]

При полном открытии заслонки вращающий момент будет максимальным, так что  [c.117]

Электродвигатели параллельного возбуждения допускают регулировку числа оборотов в пределах 2 1 ослаблением поля нормальной обмотки. При этом максимальный вращающий момент при максимальных оборотах не должен превышать 0,8 номинального вращающего момента для электродвигателей 220 в и 0,64 номинального вращающего момента для электродвигателей 440 в.  [c.356]












Электродвигатели 220 в переменного возбуждения, за исключением соединенных последовательно, допускают увеличение числа оборотов в пределах 2 1 повышением приложенного напряжения при этом максимальный вращающий момент при максимальных оборотах не должен превышать 1,5-кратного номинального вращающего момента.  [c.356]

Для обеспечения нормальной работы привода выбранный двигатель должен иметь номинальную мощность при заданной ПВ не меньше величины, определенной по формуле (50). Максимальный момент выбранного двигателя должен быть не менее пускового момента, определенного для самого тяжелого случая работы механизма с номинальным грузом и включающего в себя как момент статического сопротивления, так и инерционные моменты вращающихся и поступательно движущихся масс механизма и груза.  [c.204]

Коленчатый вал I (рис. 12) воспринимает от шатунно-кривошипных механизмов вращающие моменты и передает сумму этих моментов на генератор 30. Вращающие моменты от отдельных цилиндров суммируются по мере перемещения к тяговому генератору, а амплитуды крутильных колебаний сглаживаются маховым моментом вращающихся тяжелых масс ротора генератора. Часть мощности отводится на вертикальную передачу через шестерни 38 и 33 для вращения вспомогательных электроагрегатов, привода кулачковых валов и привода вентилятора охлаждения тягового генератора. С левой стороны к коленчатому валу подсоединен вал II коробки привода водяных 8 и 15 и масляных 2п6 насосов, а также регулятора 16. Вал II соединен с коленчатым валом прн помощи зубчатой муфты, рядом с которой на конце коленчатого вала установлен антивибратор крутильных колебаний 42 маятникового типа. Антивибратор смонтирован в точке максимальных амплитуд крутильных колебаний и настраивается с учетом всех приведенных масс, в том числе и коробки привода агрегатов. Таким образом, на одном конце коленчатого вала дизеля (слева) установлены зубчатая муфта и антивибратор, а на другом (справа) — эластичная муфта.  [c.25]

Начальный пусковой ток асинхронных двигателей с к. а. р. допускает отклонение -4-15%, начальный пусковой вращающий момент 20%, максимальный момент для тех же двигателей 10%, минимальный момент при пуске 20%. Момент инерции может иметь отклонения от номинальных значений 10%.  [c.123]












За расчетный вращающий момент принимают максимальный, определяемый при испытаниях опытных образцов. Коэффициент 1,15 — 1,35 введен для учета неравномерности распределения нагрузки в многорядной цепи. Коэффициент условий эксплуатации задается в виде произведения  [c.308]

Наибольшие потери наблюдаются для вынужденного вихря (я = 1), в этом случае кинетическая энергия вращающегося потока минимальна. Максимальна кинетическая энергия для потенциального вихря (и = — I). С ростом п возрастает часть момента количества движения, сконцентрированного в зоне, примыкающей к внешней границе потока. Для этих режимов значения v превышают значения при и = 1, но незначительно, как видно из сравнения с кривой для и = 3.  [c.25]

По этой формуле можно построить график изменения вращающего момента в зависимости от угла ф поворота кулачка и определить среднее и максимальное значения момента, по которым следует выбрать двигатель.  [c.295]

Задача 13-4. Вычислить максимальное касательное напряжение, возникающее в вале (рис. 13-4) при торможении, если вал, вращающийся со скоростью 1000 об мин, после включения тормоза останавливается, сделав 5 оборотов. Момент инерции маховика /=5 кГм-сек . При расчете считать силу торможения постоянной и движение вала равнозамедленным. Момент инерции вала не учитывать.  [c.326]

Как показали исследования [24], максимальные крутящие моменты для каждого типоразмера трубы требуется прикладывать при неполном обороте водила ключа — при раскреплении и креплении резьбовых соединений. Необходимые вращающие моменты для свинчивания — развинчивания этих соединений по сравнению с указанными весьма незначительны.  [c.93]

Регулирование осуществляется или частичным заполнением, или поворотом рабочих элементов, или введением гладких перегородок между рабочими органами, или другими способами, уменьшающими взаимодействие между вращающимся и неподвижным элементами. Из ранее приведенных характеристик гидромуфт следует, что в зависимости от заполнения, поворота лопастей или перекрытия канала меняется величина момента. При неподвижной турбине изменение момента определяется также вышеуказанными условиями. Работа гидротормоза будет происходить от минимального момента (при опорожненной или перекрытой проточной части) до максимального момента (при полностью заполненной или открытой проточной  [c.290]

А. Ведущий шкив установлен в сечении С максимальный вращающий мо мент 1500 Н-м. Б. Ведущий шкив установлен в сечении С максимальный вращающий момент 2000 Н-м.  [c.89]

Пример. Определить максимальный вращающий момент, который может передать червячное колесо (рис. 31.8), венец — из брон-  [c.498]

Максимальный вращающий момент  [c.500]

Муфты фрикционные сцепные. В отличие от кулачковых обеспечивают плавное сцепление валов под нагрузкой на ходу при любой разности окружных скоростей. Все фрикционные муфты в зависимости от формы поверхности трения делятся на дисковые, конусные и цилиндрические. Наибольшее распространение имеют дисковые муфты (плоская поверхность трения). На рис. 17.14 показана схема простейшей дисковой муфты с одной парой поверхностей трения. Полумуфта I укреплена на валу неподвижно, а полумуфта 3 подвижна в осевом направлении. Между полумуфтами размещена фрикционная накладка 2. Для сцепления валов к подвижной полумуфте прикладывают силу нажатия F. Передача вращающего момента осуществляется силами трения между трущимися поверхностями деталей муфты. В процессе включения муфта пробуксовывает (поверхности трения муфты проскальзывают) и разгон ведомого вала происходит плавно, без удара. При установившемся движении пробуксовка отсутствует, муфта замыкается и оба вала вращаются с одинаковой частотой вращения. Фрикционная муфта регулируется на передачу максимального момента, безопасного для прочности деталей машины, т. е. муфта ограничивает  [c.347]

Магнитный момент. Единицу магнитного момента можно определить двояким образом, используя либо выражение для механического момента, испытываемого контуром с током в магнитном поле, либо непосредственное выражение для магнитного момента контура. Согласно первому определению единицей магнитного момента является момент контура, который в поле с индукцией один тесла испытывает максимальный вращающий момент, равный одному ньютон-метру, а согласно второму — момент плоского контура с площадью один квадратный метр, обтекаемого током один ампер.  [c.271]



Виды повреждений катков. Рабочие поверхности металлических катков, работающих в масле при жидкостном трении, разрушаются из-за усталостного выкрашивания под действием переменных (от вращения) радиальных напряжений сжатия (У в контактирующих точках (рис. 19.5). Существенно, что усилие прижатия вызывает неоднородную деформацию контактирующих точек по ширине площадки контакта и, как следствие, концентрацию контактных напряжений на линии центров катков. При действии вращающего момента T максимальное контактное напряжение Окти смещается от оси центров на величину коэффициента трения /. Экспериментально установлено, что долговечность катков (число циклов нагружений до появления повреждений) пропорциональна максимальному напряжению  [c.313]

Кроме того, должно быть соблюдено соотношение МпомКм > Мщах где Км — кратность максимального момента двигателя, приводимая для асинхронных двигателей в паспорте, а для двигателей постоянного тока, определяемая по искусственным характеристикам Мном номинальный момент двигателя Л/щах максимальный фактический момент сопротивления в механизме, определенный при работе с номинальным грузом и включающий в себя момент сопротивления, инерционные моменты вращающихся и поступательно движущихся масс механизма и груза.  [c.295]

Максимальный момент выбранного двигателя должен быть не меньше пускового (включающего как момент статического сопротивлени я, так и инерционные моменты вращающихся и поступательно движу  [c.18]

На сварном основании, двух направляющих колоннах и верхней неподвижной траверсе монтируются все остальные узлы пресса. На основании установлены прессующий поршень с цилиндром, жестко соединенным с нижней подвижной траверсой, которая при прессовании может перемещаться по колоннам. На верхней неподвин -ной траверсе установлен малый гидроцилиндр, предназначенный для подъема и опускания верхней подвижной траверсы с верхними штемпелями, а также второй гидроцилиндр, поршень и шток которого соединены системой траверс и тяг с нижними прессующими штемпелями. Последние не только прессуют, но и выталкивают плитки из гнезд матрицы. Для разгрузки малого гидроцилиндра в момент прессования предусмотрено запирающее клиновое устройство, которое жестко соединяет обе верхние траверсы (подвижную и неподвижную) к моменту приложения максимального давления. Для подачи пресс-порошка в пресс-формы имеется загрузочное устройство, состоящее из каретки, гидродвигателя, цилиндрической зубчатой передачи и кривошипа с роликом. На передней стороне каретки установлена вращающаяся щетка для очистки верхних штемпелей, приводимая от электродвигателя через клиноременную передачу.  [c.205]

Здесь Timax Р — максимальный из длительно действующих (номинальный) вращающий момент на ведущей щестерне, Н м d — делительный диаметр ведущей щестерни, мм.  [c.224]

Примечания. 1. Отношение максимального вращающего момента к номинальному Тат/Т= 2,2 для отмеченных анаками —Т Т= 2,7 —Т Т= 2.9 Ттах/Т= 2,4 Т Т= 2,5 Т Т= 2,6.  [c.417]

Указание. На рис. 5.39, б для первого варианта конструкции показано приведение силы Р к центру тяжести стыка и направления сил трения, уравновешивающих сдвигающую снлу и вращающий момент. То же для второго варианта конструкции дано на рис. 5.40, 6 кроме того, на рис. 5.40, в показано суммирование сил трения для болта, затяжка которого должна быть максимальной.  [c.83]

Пример 4. Определить допускаемое напряжение для вращающейся оси вагонетки (изгиб по симметричному циклу) диаметром d = 50 мм, изготовленной из стали 40ХН (а , = 1000 Н/мм , a ip = 530 Н/мм ). Обработка оси — тонкое шлифование. В зоне действия максимального момента посажено колесо по прессовой посадке без передачи усилия (рис. 1.10, а). Частота вращения оси п = = 200 об/мин, срок службы L = 10 лет, коэффициент использования в течение года =0,75, коэффициент использования в течение суток К . =0,33, режим нагружения — тяжелый (см. рис. 1.8, б). Коэффициент безопасности [s] = 2. Решение. 1. Допускаемое напряжение по формуле (1.15)  [c.19]

Максимальный или критический момент Мщах асинхронного двигателя — наибольшая величина вращающего момента на валу, которую может развивать двигатель при подключении статора К сети с номинальными параметрами. Длительная работа при Л1шах  [c.119]

На вал диаметром d=60 мм насажен маховик с моментом инерции =4 кГм сек , вращающийся со скоростью п=Ь00об1мин. После включения тормоза маховик останавливается, сделав 10 оборотов. Определить максимальное касательное напряжение, возникающее в вале при торможении, считая силу торможения постоянной.  [c.227]

А. Неправильно. 20да Н-м — это вращающий момент на ведущем шкиве, Т. е. внешний момент, а вал рассчитывают на прочность по максимальному крутящему моменту, возникающему в поперечных сечениях вала, т. е. по внутреннему моменту.  [c.276]

Б. Неправильно. Если ведущий шкив расположен на коние вала, кан показано на рис. 79, а. максимальная величина крутящего момента будет равна вращающему моменту на ведущем шкиве, т. е. максимальный крутящий момент будет больше, чем при расположении ведущего шкива между ведомыми шкивами (см. рис. 78, а).  [c.276]

Центробежные муфты используют для автоматического соединения и разъе.тинения валов при достижении определенной частоты вращения. Они представляют собой сцепные фрикционные муфты (колодочные, дисковые и др.), в которых нормальное усилие создается центробежными силами. На рис. 25.16, а показана центробежная фрикционная четырехколодочная муфта, встроенная в шкив 1 плоскоременной передачи. Радиально перемещающиеся колодки 2 с.монти-рованы на направляющем кресте 3. В неподвижной муфте положение колодок в кресте фиксируется с по.мощью плоских пружин 4 и винтов 5. При некоторых частотах вращения, составляющих 70 — 80% от максимальных, колодки 2 под действием сил инерции, преодолевая усилия пружин 4, вплотную подойдут к внутренней поверхности шкива. Но вращающий момент при этом передаваться не будет. При последующем увеличении частоты вращения колодки прижмутся к шкиву и за счет сил трения последний начнет передавать вращающий момент.  [c.432]












Решение. Максимальный вращающий момент, передаваемый колесом, может быть ограничен условиями неподвижности (взаимной несмещаемости венца и центра).  [c.499]

Величина силы Ру изменяется в зависимости от угла поворота кулачка, достигая максимального значения в мгновение действия наибольшей силы инерции, прижимаюш,ей толкатель к кулачку. Для преодоления силы Ру к налу кулачка надо приложить вращающий момент который создаст  [c.123]


Крутящий момент в токовой петле: двигатели и счетчики

Цели обучения

К концу этого раздела вы сможете:

  • Опишите, как работают двигатели и измерители с точки зрения крутящего момента в токовой петле.
  • Рассчитайте крутящий момент токоведущей петли в магнитном поле.

Двигатели — это наиболее распространенное приложение магнитной силы к токоведущим проводам. Двигатели имеют проволочные петли в магнитном поле.Когда ток проходит через петли, магнитное поле оказывает на петли крутящий момент, который вращает вал. При этом электрическая энергия преобразуется в механическую работу. (См. Рисунок 1.)

Рисунок 1. Крутящий момент в токовой петле. Токопроводящая петля, прикрепленная к вертикально вращающемуся валу, испытывает магнитные силы, которые создают вращающий момент по часовой стрелке, если смотреть сверху.

Давайте исследуем силу на каждом сегменте петли на рисунке 1, чтобы найти крутящие моменты, возникающие вокруг оси вертикального вала.(Это приведет к полезному уравнению для крутящего момента на петле.) Мы считаем магнитное поле однородным по прямоугольной петле, которая имеет ширину × и высоту × . Во-первых, отметим, что силы на верхнем и нижнем сегментах вертикальны и, следовательно, параллельны валу, не создавая крутящего момента. Эти вертикальные силы равны по величине и противоположны по направлению, так что они также не создают результирующей силы на петле. На рис. 2 показаны виды петли сверху. Крутящий момент определяется как τ = rF sin θ , где F — сила, r — расстояние от оси, на которую прикладывается сила, а θ — угол между r и F .Как видно на рисунке 2 (а), правило правой руки 1 дает силам по бокам равными по величине и противоположными по направлению, так что результирующая сила снова равна нулю. Однако каждая сила производит вращающий момент по часовой стрелке. Поскольку r = w /2, крутящий момент на каждом вертикальном сегменте равен ( w /2) F sin θ , и эти два суммируются, чтобы получить общий крутящий момент.

[латекс] \ tau = \ frac {w} {2} F \ sin \ theta + \ frac {w} {2} F \ sin \ theta = wF \ sin \ theta \\ [/ latex]

Рисунок 2.Вид сверху токоведущей петли в магнитном поле. (a) Уравнение для крутящего момента выводится с использованием этого представления. Обратите внимание, что перпендикуляр к петле образует угол θ с полем, которое совпадает с углом между w / 2 и F. (b) Максимальный крутящий момент возникает, когда θ является прямым углом, а sin θ = 1. (c) Нулевой (минимальный) крутящий момент возникает, когда θ равно нулю и sin θ = 0. (d) Крутящий момент меняется на противоположный, когда контур вращается дальше θ = 0.

Теперь каждый вертикальный сегмент имеет длину l , которая перпендикулярна B , так что сила на каждом из них составляет [латекс] F = IlB \ [/ латекс].Ввод F в выражение для крутящего момента дает

[латекс] \ тау = wIlB \ sin \ theta \\ [/ латекс].

Если у нас есть многократный контур из Н, витков, мы получаем Н, в раз превышающие крутящий момент одного контура. Наконец, обратите внимание, что площадь петли составляет A = wl ; выражение для крутящего момента становится

[латекс] \ тау = НИАБ \ грех \ тета \\ [/ латекс].

Это крутящий момент на токоведущей петле в однородном магнитном поле. Можно показать, что это уравнение справедливо для петли любой формы.Петля несет ток I , имеет N витков, каждый из которых имеет площадь A, , а перпендикуляр к петле составляет угол θ с полем B . Чистая сила на петле равна нулю.

Пример 1. Расчет крутящего момента на токопроводящей петле в сильном магнитном поле

Найдите максимальный крутящий момент на 100-витковой квадратной петле провода длиной 10,0 см на стороне, по которой проходит ток 15,0 А в поле 2,00 Тл.

Стратегия

Крутящий момент на петле можно найти с помощью [latex] \ tau = NIAB \ sin \ theta \\ [/ latex].{2} \ right) \ left (2.00 \ text {T} \ right) \\ & = & 30.0 \ text {N} \ cdot \ text {m} \ end {array} \\ [/ latex].

Обсуждение

Этот крутящий момент достаточно велик, чтобы его можно было использовать в двигателе.

Крутящий момент, указанный в предыдущем примере, является максимальным. По мере вращения катушки крутящий момент уменьшается до нуля при θ = 0. Затем крутящий момент меняет направление на , когда катушка вращается дальше θ = 0. (См. Рисунок 2 (d)). Это означает, что, если только мы что-то делаем, катушка будет колебаться взад и вперед относительно равновесия при θ = 0.Чтобы катушка продолжала вращаться в том же направлении, мы можем обратить ток, когда он проходит через θ = 0, с помощью автоматических переключателей, называемых щетками . (См. Рисунок 3.)

Рис. 3. (a) Поскольку угловой момент катушки передает его через θ = 0, щетки меняют направление тока, чтобы поддерживать крутящий момент по часовой стрелке. (b) Катушка будет непрерывно вращаться по часовой стрелке, при этом ток будет реверсировать каждую половину оборота, чтобы поддерживать вращающий момент по часовой стрелке.

Измерители , такие как аналоговые датчики уровня топлива в автомобиле, являются еще одним распространенным приложением магнитного момента к токоведущей петле. На рисунке 4 показано, что счетчик по конструкции очень похож на двигатель. Измеритель на рисунке имеет форму магнитов для ограничения эффекта θ , сделав B перпендикулярно петле в большом диапазоне углов. Таким образом, крутящий момент пропорционален I , а не θ . Линейная пружина создает противодействующий крутящий момент, который уравновешивает текущий крутящий момент.Это делает отклонение иглы пропорциональным I . Если точная пропорциональность не может быть достигнута, показания манометра можно откалибровать. Чтобы создать гальванометр для использования в аналоговых вольтметрах и амперметрах, которые имеют низкое сопротивление и реагируют на небольшие токи, мы используем большую площадь контура A , сильное магнитное поле B и катушки с низким сопротивлением.

Рис. 4. Счетчики очень похожи на двигатели, но вращаются только на часть оборота. Магнитные полюса этого измерителя имеют такую ​​форму, чтобы компонент B был перпендикулярен контуру, так что крутящий момент не зависит от θ , а отклонение от возвратной пружины пропорционально только току I .

Сводка раздела

  • Крутящий момент τ на токоведущей петле любой формы в однородном магнитном поле. является

    [латекс] \ tau = NIAB \ sin \ theta \\ [/ latex],

    , где N — количество витков, I — ток, A — площадь контура, B — напряженность магнитного поля, а θ — угол между перпендикуляром к контуру. и магнитное поле.

Концептуальные вопросы

1.Нарисуйте диаграмму и используйте RHR-1, чтобы показать, что силы на верхнем и нижнем сегментах токовой петли двигателя на Рисунке 1 являются вертикальными и не создают крутящего момента вокруг оси вращения.

Задачи и упражнения

1. (a) На сколько процентов уменьшается крутящий момент двигателя, если его постоянные магниты теряют 5,0% своей силы? (b) На сколько процентов необходимо увеличить ток, чтобы вернуть крутящий момент к исходным значениям?

2. (a) Каков максимальный крутящий момент на прямоугольной петле на 150 витков провода 18.0 см на стороне, по которой проходит ток 50,0 А в поле 1,60 Тл? (b) Каков крутящий момент, когда θ составляет 10,9º?

3. Найдите ток через петлю, необходимый для создания максимального крутящего момента 9,00 Н. Петля имеет 50 квадратных витков со стороной 15,0 см и находится в однородном магнитном поле 0,800 Тл.

4. Рассчитайте напряженность магнитного поля, необходимую для квадратного контура на 200 витков со стороной 20,0 см, чтобы создать максимальный крутящий момент 300 Н · м, если контур выдерживает 25,0 А.

5.Поскольку уравнение для крутящего момента в токоведущей петле имеет вид [латекс] \ tau = NIAB \ sin \ theta \\ [/ latex], единицы N ⋅ m должны равняться единицам A ⋅ m 2 T. Проверьте это .

6. (a) При каком угле θ крутящий момент в токовой петле составляет 90,0% от максимума? (b) 50,0% от максимума? (c) 10,0% от максимума?

7. Протон имеет магнитное поле из-за его спина на оси. Поле аналогично полю, создаваемому круговой токовой петлей радиусом 0,650 × 10 −15 м с током 1.05 × 10 4 А (без шуток). Найдите максимальный крутящий момент на протоне в поле 2,50 Тл. (Это значительный крутящий момент для маленькой частицы.)

8. (a) Круговая петля из 200 витков радиусом 50,0 см является вертикальной с осью на линии восток-запад. Ток в 100 А циркулирует в контуре по часовой стрелке, если смотреть с востока. Поле Земли здесь направлено на север, параллельно земле, с напряженностью 3,00 × 10 −5 Т. Каковы направление и величина крутящего момента на петле? (б) Имеет ли это устройство какое-либо практическое применение в качестве двигателя?

Глоссарий

двигатель:
петля из проволоки в магнитном поле; когда ток проходит через петли, магнитное поле оказывает на петли крутящий момент, который вращает вал; в процессе электрическая энергия преобразуется в механическую работу
метр:
обычное приложение магнитного момента к токоведущей петле, которая по конструкции очень похожа на двигатель; по конструкции крутящий момент пропорционален I , а не θ , поэтому отклонение иглы пропорционально току

Упражнения

1.{2} \ left (\ frac {\ text {N}} {\ text {A} \ cdot \ text {m}} \ right) = \ text {N} \ cdot \ text {m} \\ [/ latex ]

7. 3,48 × 10 −26 Н м

максимальный крутящий момент — Французский перевод — Linguee

Этот диапазон скоростей должен включать скорости вращения, на которых двигатель производит свой

[…]
максимальная мощность и i t s максимальный крутящий момент .

eur-lex.europa.eu

Cette plage de rgimes doit inclure les vitesses de rotation auxquelles le moteur donne sa

[…]
puissanc e максимальный e e t son couple max im al .

eur-lex.europa.eu

Родительский двигатель семейства

[…]

должно быть выбрано с использованием основных критериев максимальной подачи топлива за такт при

.
[…]
декларация ar e d максимальный крутящий момент s p ee d.

eur-lex.europa.eu

Le moteur parent de la famille

[…]

doit tre slectionn selon le critre primaire du dbit de carburant le plus lev par

.
[…]
Cours e au r gim e d u пара максимальная .

eur-lex.europa.eu

Дополнительно давление и усилие предварительного напряжения при соединении и

[…]
в рабочем состоянии n a t максимальный крутящий момент a r e также рассчитывается.

kisssoft.ch

Outre le dlai, la force de prcontrainte lors de l’assemblage et pendant le

[…]
fonctionn em ent p our le couple max imum sera es time.

kisssoft.ch

Расчет n o f максимальный крутящий момент f o r посадка без скольжения.

kisssoft.ch

C alc ul d u максимальная пара po ur un aj us tage […]

без блеска.

kisssoft.ch

Двигатель AMG V8 объемом 6208 куб. См с его

[…]
мощность 510 л.с. a n d максимальный крутящий момент o f 6 30Nm, делает […]

ML63 AMG необыкновенное явление.

prestigecarhire.co.uk

Двигатель L’AMG V8 6208cc, до

[…]
production de 5 10 ch et un пара max imal de 630 Nm , rend […]

le ML63 AMG un phnomne extraordinaire.

prestigecarhire.be

Управляется по положению или по скорости

[…]
с настройкой ab l e максимальный крутящий момент a n d освобождается, […]

, благодаря своей конструкции, от корректоров с обратной связью.

midi-ingenierie.fr

Il se pilote en position

[…]
ou en v itess e couple max param t rable […]

et s’affranchit, de par sa concept, de correcteurs d’asservissement.

midi-ingenierie.fr

Оснащен полностью электронной системой управления двигателем

[…]
системы и fe r s максимальный крутящий момент s t ab способность даже при […]

экстремальные нагрузки двигателя, что предотвращает перерывы в работе.

wirtgen.de

Il offre une

[…]
t r s grande s tab ilit de пара mot eur, m me en […]

cas de forage du moteur, permettant ainsi d’viter des interruptions de travail.

wirtgen.de

а. Ток и крутящий момент

[…]
регулировка предела для ограничения максимального выходного тока привода и t h e максимальный крутящий момент p r od вызванный двигателем

ittwww.ca

а. L`ajustement de limite du

[…]
courant et du couple pou r limiter le courant de sortie de dispositif d’entraine me nt et le couple du moteu r .

ittwww.ca

Двигатель engi ne s максимальный крутящий момент r a ti нг из 300 […]

фут-фунта обеспечивает сильное ускорение на крутых подъемах и почти без усилий тягу.

autoheckford.com

L и пара ma xi мама de 30 0 livres-pied du moteur […]

assure de fortes acclrations lors de la monte d’une pente, ainsi que des

[…]

перформанса без усилий.

autoheckford.com

Высокопрочная зубчатая передача позволяет достичь t h e максимальный крутящий момент o f 2 20kN.м.

dstgmachine.com

Les engrenages d’entranement de haute rsistance aident r alis er un couple ma x d e 220 kN .m.

dstgmachine.fr

для деталей, для которых не указан диапазон крутящего момента, затяните болты

.
[…]
постепенно до t h e максимальный крутящий момент a n d проверка между […]

исправно надежная посадка компонента.

media.canyon.com

Quant aux composants pour lesquels aucune marge de couples de serrage n’est

[…]

Fournie, Serrez les Vis par лент

[…]
progressiv es jusq u’a u couple m aximal aut or is en […]

contrlant chaque fois leur bon serrage.

media.canyon.com

Определяет t h e максимальный крутящий момент w i th , который находится под напряжением […]
Двигатель

можно нагружать, не вызывая непрерывного вращательного движения.

saia-motors.com

D f ini t l e couple m aximal avec leq ue l un moteur […]

aliment peut tre charg sans donner lieu un mouvement de Rotation Continuous.

saia-motors.com

Двух- или трехколесные автотранспортные средства Поскольку он не смог одобрить все поправки Европейского парламента, Совет отметил, что он не может

[…]

на данном этапе принимает

[…]
Директива по максимальной конструкции sp ee d , максимальный крутящий момент a n d максимальная n мощность n двигатель n двух- или трехколесного […]

автомашины.

europa.eu

Vhicules moteur deux ou trois roues Le Conseil, n’tant pas en mesure d’approuver tous les amendements du Parlement europen, a constat qu’il ne pouvait pas arrter, ce stade,

[…]

la относительная директива

[…]
la vi te sse maximale par c onstruction, a insi qu ‘ au пара ma ce xim al et et an la puiss maximale ne tt e du moteur […]

des vhicules moteur deux ou trois roues.

europa.eu

Кроме того, двигатель fe r s максимальный крутящий момент s t ab ility даже при экстремальных […]

нагрузки двигателя, что предотвращает перерывы в работе.

wirtgen.de

En outre, mme quand il est soumis des charge extrmes, ce

[…]
moteur f ourni t u n пара d ‘un e tr s grande st abili t , ce qui […]

permet d’viter les interruptions de travail.

wirtgen.de

Качество и точность

[…]
зуборезные a ll o w максимальный крутящий момент w i th минимальный уровень шума

leroy-somer.com

La qualit et la prcision de

[…]
l’engrnement p ermet ten t u n couple m aximum av ec un n iveau […]

минимум

leroy-somer.com

Полный крутящий момент муфты для кратковременной вибрации при прохождении основных критических нагрузок при разгоне,

[…]
публикуется как t h e максимальный крутящий момент .

renold.es

Общая пара конденсаторов с учетом вибраций

[…]

transitoires bien que passant par des points критические анализы Важные моменты Монте-де-Витесс

[…]
есть d на ne comm e le couple ma ximum .

renold.com

T h e максимальный крутящий момент w h ic h шаговый […]
Двигатель

без инерции внешней массы может работать без ступенчатых потерь.

saia-motors.com

L e couple m axi mum q u’un mo teur pas […]

pas sans inertie de masse externe peut dvelopper sans perte de pas.

saia-motors.com

T h e максимальный крутящий момент l i mi t 100% было достигнуто в течение […]

15 секунд и вертикальный набор высоты прекратился.

tsb-bst.gc.ca

La limi te maximale d e couple d e 1 00 % a t atteinte […]

dans les 15secondes, et la monte verticale s’est arrte.

tsb-bst.gc.ca

Maxity Electric — это автомобиль с нулевым уровнем выбросов и шума, которым можно управлять.

[…]

с водительскими правами категории B. Его топ

[…]
скорость составляет 90 км / ч с th a максимальный крутящий момент f r om ноль и полезная нагрузка […]

до 2 тонн.

press.edf.com

Le Maxity lectrique est un vhicule zro mission et zro nuisance sonore qui se pipe avec un

[…]

разрешение B. Sa vitesse de pointe est

[…]
de 90 km / h av ec un пара максимальная d s l e dm ar rage et […]

Utile Pouvant atteindre 2 тонны.

СМИ.edf.com

Разработан с оптимизацией

[…]
спираль поршня to pro vi d e максимальный крутящий момент o u tp ut.

tycoflowcontrol.be

Conu avec une rampe

[…]
hlicodale o ffran t u n пара максимальная de so rtie .

tycoflowcontrol.be

5,5-литровый двигатель V8 AMG с наддувом в SL55 AMG

[…]
обеспечивает 517 л.с. при nd a максимальный крутящий момент o f 7 20 Нм.

prestigecarhire.co.uk

Дополнительный двигатель V8 L’AMG 5,5 литров в SL55

[…]
AMG offr e 517hp et un пара max imum de 72 0Нм.

prestigecarhire.be

МАКСИМАЛЬНАЯ КОНСТРУКЦИЯ SP EE D , МАКСИМАЛЬНЫЙ МОМЕНТ A N D ДВИГАТЕЛЬ E 9027 OF2 9027 ТРЕХКОЛЕСНЫЙ […]

АВТОТРАНСПОРТ После обмена

[…]

мнений относительно предела максимальной мощности для двух- или трехколесных автотранспортных средств Совет согласился поручить Комитету постоянных представителей пересмотреть этот вопрос и представить этот пункт для принятия Советом на его заседании в июне.

europa.eu

VIT ES SE MAXIMALE PAR CONSTRUCTI ON, СОЕДИНИТЕЛЬ MAX IMA LE, P UI S SA NCE2 MAXIM DALE 9027 DALE 9027 SA 9027 NET … .]

DES VHICULES DEUX OU TROIS ROUES

[…]

A l’issue d’un change de vues sur la question de la limit maximale de la puissance des vhicules moteur deux ou trois roues, le Conseil est meeting de charge le Comit des Reprsentants permanents de репрезентатив l’examen de cette question et de суть точки для принятия на заседании совета.

europa.eu

Специально разработанные ручки идеально подходят по размеру в соответствии с длиной лезвия для

.
[…]
отличное сцепление a n d максимальный крутящий момент .

katun.com

Les Manches spcialement conus

[…]

sont parfaitement sizes par rapport la longueur de la lame pour obtenir une

[…]
приз exc el одолжил e et u n пара m ax imum .

katun.com

Разрыв до w n Крутящий момент : Th e максимальный крутящий момент двигатель может развиваться при h без […]

глохнет или резкое падение скорости.

oee.nrcan-rncan.gc.ca

Проводник: t или t matriau q ui prsente une faible rsistance a u проход куранта l ec trique, […]

par instance, le cuivre.

oee.nrcan-rncan.gc.ca

высокодинамичный, цифровой

[…]
сопряженный электродвигатель переменного тока f o r максимальный крутящий момент .

index-werke.de

Moteur Courant Triphas Couplage numrique

[…]
extrmement dyna mi que p наш un пара max imum .

index-werke.de

Он также имеет broa de s t максимальный крутящий момент o p er Диапазон измерения в […]

своей категории (450 оборотов).

renault-trucks.co.uk

Утилизировать в

[…]
outre de l a pla ge de пара maximale la plus l arge de […]

в категории (450 туров).

renault-trucks.fr

Трансмиссия оснащена более прочными шестернями, чтобы выдерживать дополнительный крутящий момент,

[…]

и измененные передаточные числа позволяют лучше использовать дополнительные 1000 об / мин и помогают сохранить

[…]
двигатель в пределах i t s максимальный крутящий момент r a ng e.

gregoiresport.com

La Bote reoit des pignons plus solides pour Supporter l’augmentation de couple, et unnouvel tagement des

[…]

раппорта для более эффективного использования 1000 трлн. Дополнений и помощников по ремонту

[…]
toujours d и s sa pla ge de couple max im al .

gregoiresport.com

Пробовали запустить машину несколько

[…]

разных способа, в том числе

[…]
обороты двигателя при 4000 об / мин f o r максимальный крутящий момент b e fo перезапуск, но когда мы начали […]

почувствовав запах тостов, мы остановились.

fortieroccasion.com

Nous avons tent de lancer la voiture de plusieurs faons,

[…]

для часов

[…]
4 00 0 тр / мин в среднем и t de dcoller для получения прибыли er du maximu m de пара, mai s no us avons […]

senti une odeur de brl, alors nous avons arrt.

fortieroccasion.com

Как электромобили мгновенно развивают максимальный крутящий момент?

Большинство электромобилей обычно не ассоциируются с производительностью, но они способны достичь того, чего не могут автомобили с бензиновым двигателем: пикового крутящего момента при нулевых оборотах.

Его часто бросают, и многие прокомментируют, насколько быстро электромобиль чувствует себя в городе благодаря мгновенному максимальному крутящему моменту. Если сомневаетесь, просто прокатитесь на Tesla Model S и попросите водителя уронить молот.

Но как этого добиться в электромобиле? Джейсон Фенске из Engineering Explained вернулся, чтобы разобраться в происходящем. Прежде всего, важно понимать, что под капотом электромобиля нет двигателя . Вместо этого есть мотор-генератор и аккумулятор для питания. Когда электрический ток проходит через двигатель в магнитном поле, он создает силу. Чем больше приложен ток, тем сильнее будет вращаться двигатель.

Генератор делает нечто подобное, но направление электрического потока меняется на противоположное: вместо того, чтобы принимать ток для вращения якоря, якорь раскручивается через поле за счет замедления транспортного средства.Это производит электричество, которое используется для подзарядки аккумулятора, и двигатель может переключаться между питанием автомобиля и регенерацией электричества так быстро, как водитель может ускориться и оторваться.

Однако по мере увеличения оборотов двигателя он также создает так называемую «обратную электродвижущую силу» или «обратную ЭДС». Чем быстрее вращается двигатель, тем больше создается обратная ЭДС, что снижает эффективное напряжение, которое он может выдать.

Но при нулевых оборотах в минуту все электричество, создаваемое двигателем с момента подачи электроэнергии, становится мгновенным крутящим моментом — без какой-либо обратной ЭДС для снижения его выходной мощности.Чем выше обороты, тем больше противо-ЭДС, а это означает, что эффект мгновенного крутящего момента уменьшается.

Именно этот эффект дает, например, довольно приземленному Chevrolet Bolt EV возможность быстро ускользнуть от светофора. Это не ошеломляющий крутящий момент, но максимальная выходная мощность при нулевых оборотах действительно создает более увлекательный драйв. Получите всю информацию об электродвигателях из видео выше.

Мощность

против крутящего момента — x-engineer.org

В этой статье мы собираемся понять, как создается крутящий момент двигателя , как рассчитывается мощность двигателя и что такое крутящий момент и кривая мощности .Кроме того, мы собираемся взглянуть на карты крутящего момента и мощности двигателя (поверхности).

К концу статьи читатель сможет понять разницу между крутящим моментом и мощностью, как они влияют на продольную динамику автомобиля и как интерпретировать кривые крутящего момента и мощности при полной нагрузке.

Определение крутящего момента

Крутящий момент можно рассматривать как силу поворота , приложенную к объекту. Крутящий момент (вектор) — это произведение между силой (вектором) и расстоянием (скаляр).Расстояние, также называемое плечом рычага , измеряется между силой и точкой поворота. Подобно силе, крутящий момент является вектором и определяется амплитудой и направлением вращения.

Изображение: Момент затяжки на колесном болте

Представьте, что вы хотите затянуть / ослабить болты колеса. Нажатие или вытягивание рукоятки гаечного ключа, соединенного с гайкой или болтом, создает крутящий момент (усилие поворота), который ослабляет или затягивает гайку или болт.

Крутящий момент T [Нм] является произведением силы F [Н] и длины плеча a [м] рычага.

\ [\ bbox [# FFFF9D] {T = F \ cdot a} \]

Чтобы увеличить величину крутящего момента, мы можем либо увеличить силу, либо длину плеча рычага, либо и то, и другое.

Пример : Рассчитайте крутящий момент, полученный на болте, если плечо ключа имеет 0,25 м и приложенное усилие 100 Н (что приблизительно эквивалентно толкающей силе 10 кг )

\ [T = 100 \ cdot 0,25 = 25 \ text {Нм} \]

Такой же крутящий момент может быть получен, если плечо рычага составляет 1 м , а усилие только 25 Н . 2} {4} = \ frac {\ pi \ cdot 0.2 \]

Во-вторых, мы рассчитаем силу, приложенную к поршню. Чтобы получить силу в Н, (Ньютон), мы будем использовать давление, преобразованное в Па (Паскаль).

\ [F = p \ cdot A_p = 120000 \ cdot 0,0056745 = 680.

\ text {N} \]

Предполагая, что вся сила в поршне передается на шатун, крутящий момент рассчитывается как:

\ [T = F \ cdot a = 680.

\ cdot 0.062 = 42.218293 \ text {Нм} \]

Стандартная единица измерения крутящего момента — Н · м (Ньютон-метр).В частности, в США единицей измерения крутящего момента двигателя является фунт-сила · фут (фут-фунт). Преобразование между Н · м и фунт-сила · фут :

\ [\ begin {split}
1 \ text {lbf} \ cdot \ text {ft} & = 1.355818 \ text {N} \ cdot \ text {m} \\
1 \ text {N} \ cdot \ text {m} & = 0.7375621 \ text {lbf} \ cdot \ text {ft}
\ end {split} \]

Для нашего конкретного примера крутящий момент в имперских единицах (США):

\ [T = 42.218293 \ cdot 0.7375621 = 31.138615 \ text {lbf} \ cdot \ text {ft} \]

Крутящий момент T [N] также может быть выражен как функция среднее эффективное давление двигателя.

\ [T = \ frac {p_ {me} V_d} {2 \ pi n_r} \]

где:
p me [Па] — среднее эффективное давление
V d [m 3 ] — рабочий объем двигателя (объем)
n r [-] — количество оборотов коленчатого вала за полный цикл двигателя (для четырехтактного двигателя n r = 2 )

Определение мощности

В физике степень — это работа, выполненная во времени, или, другими словами, скорость выполнения работы .В системах вращения мощность P [Вт] является произведением крутящего момента T [Нм] и угловой скорости ω [рад / с] .

\ [\ bbox [# FFFF9D] {P = T \ cdot \ omega} \]

Стандартная единица измерения мощности — Вт, (ватт) и скорости вращения — рад / с, (радиан в секунду) . Большинство производителей автомобилей предоставляют мощность двигателя в л.с., (мощность торможения) и скорость вращения в об / мин, (оборотов в минуту).Поэтому мы будем использовать формулы преобразования как для скорости вращения, так и для мощности.

Чтобы преобразовать об / мин в рад / с , мы используем:

\ [\ omega \ text {[rad / s]} = N \ text {[rpm]} \ cdot \ frac {\ pi} { 30} \]

Чтобы преобразовать рад / с в об / мин , мы используем:

\ [N \ text {[rpm]} = \ omega \ text {[rad / s]} \ cdot \ frac {30 } {\ pi} \]

Мощность двигателя также может быть измерена в кВт вместо Вт для более компактного значения.Чтобы преобразовать кВт в л.с. и обратно, мы используем:

\ [\ begin {split}
P \ text {[bhp]} & = 1.36 \ cdot P \ text {[кВт]} \\
P \ text {[кВт]} & = \ frac {P \ text {[bhp]}} {1.36}
\ end {split} \]

В некоторых случаях вы можете найти л.с., (мощность в лошадиных силах) вместо л.с. как единица измерения мощности.

Имея скорость вращения, измеренную в об / мин и крутящий момент в Нм , формула для расчета мощности следующая:

\ [\ begin {split}
P \ text {[кВт]} & = \ frac {\ pi \ cdot N \ text {[об / мин]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000} \\
P \ text {[HP]} & = \ frac {1.36 \ cdot \ pi \ cdot N \ text {[rpm]} \ cdot T \ text {[Nm]}} {30 \ cdot 1000}
\ end {split} \]

Пример . Рассчитайте мощность двигателя как в кВт, , так и в л.с. , если крутящий момент двигателя составляет 150 Нм, и частота вращения двигателя 2800 об / мин .

\ [\ begin {split}
P & = \ frac {\ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 44 \ text {kW} \\
P & = \ frac {1.36 \ cdot \ pi \ cdot 2800 \ cdot 150} {30 \ cdot 1000} = 59,8 \ text {HP}
\ end {split} \]

Динамометр двигателя

Скорость двигателя измеряется с помощью датчика на коленчатом валу (маховике).В идеале, чтобы рассчитать мощность, мы должны также измерить крутящий момент на коленчатом валу с помощью датчика. Технически это возможно, но не применяется в автомобильной промышленности. Из-за условий эксплуатации коленчатого вала (температуры, вибрации) измерение крутящего момента двигателя с помощью датчика не является надежным методом. Также довольно высока стоимость датчика крутящего момента. Следовательно, крутящий момент двигателя измеряется во всем диапазоне скорости и нагрузки с помощью динамометра (испытательный стенд) и отображается (сохраняется) в блоке управления двигателем.

Изображение: Схема динамометра двигателя

Динамометр — это в основном тормоз (механический, гидравлический или электрический), который поглощает мощность, производимую двигателем. Самый используемый и лучший тип динамометра — это электрический динамометр . На самом деле это электрическая машина , которая может работать как генератор или двигатель . Изменяя крутящий момент нагрузки генератора, двигатель может быть переведен в любую рабочую точку (скорость и крутящий момент).Кроме того, при отключенном двигателе (без впрыска топлива) генератор может работать как электродвигатель для раскрутки двигателя. Таким образом можно измерить трение двигателя и потери крутящего момента насоса.

В электрическом динамометре ротор соединен с коленчатым валом. Связь между ротором и статором электромагнитная. Статор закреплен через плечо рычага на датчике нагрузки . Чтобы уравновесить ротор, статор будет давить на датчик нагрузки. Крутящий момент T вычисляется путем умножения силы F , измеренной в датчике нагрузки, на длину плеча a рычага.

\ [T = F \ cdot a \]

Параметры двигателя: тормозной момент, тормозная мощность (л.с.) или удельный расход топлива при торможении (BSFC) содержат ключевое слово «тормоз», потому что для их измерения используется динамометр (тормоз). .

Результатом динамометрического испытания двигателя являются карты крутящего момента (поверхности), которые дают значение крутящего момента двигателя при определенных оборотах двигателя и нагрузке (стационарные рабочие точки). Нагрузка двигателя эквивалентна положению педали акселератора.

Пример карты крутящего момента для бензинового двигателя с искровым зажиганием (SI) :

0

920 мин.

67 902 902

3
Двигатель
крутящий момент
[Нм]
Положение педали акселератора [%]

5

10

20 30 40 50 60 100
45 90 107 109 110 111 114 116
1300 60 105 13268 132 9028 138 141
1800 35 89 133 141 1 42 144 145 149
2300 19 70 133 147 148 150 151 150 901 3 55133 153 159 161 163 165
3300 0 41 41 9028 171
3800 0 33 116 150 160 167 170 175
155 169 176 180 184
4800 9028 3

0 18106 155 174 179 185 190
5300 03 122 175

181 187
5800 0 4 84 136 161 170 175 183

72120145 153 159 171

Пример карты мощности для бензинового двигателя с искровым зажиганием (SI) :


Мощность двигателя

67

67

67

Л.с.] Положение педали акселератора [%]
5 10 20 9 0283

30 40 50 60 100
Двигатель
скорость
[об / мин]
2

22 902 12 13 13 13 13
1300 11 19 24 25 25 25 1800 9 23 34 36 36 37 37 38
2300 62

49 49 51
2800 1 22 53 61 63 64 65 66
3300 0 19 59 71 76 78 902

0 18 63 81 87 90 92 95
4300 0 16

110

113
4800 0 12 72 106 119 122 126 130
130
130
72 111 126 132 137 141
5800 0 90 283

3 69 112 133 140 145 151
6300 0 0 108 652

153

Электронный блок управления (ЕСМ) ДВС имеет карту крутящего момента, хранящуюся в памяти.Он вычисляет (интерполирует) функцию крутящего момента двигателя от текущих оборотов двигателя и нагрузки. В ECM нагрузка выражается как давление во впускном коллекторе для бензиновых двигателей (искровое зажигание, SI) и время впрыска или масса топлива для дизельных двигателей (воспламенение от сжатия, CI). Стратегия расчета крутящего момента двигателя имеет поправки на основе температуры и давления всасываемого воздуха.

График данных крутящего момента и мощности, функции частоты вращения и нагрузки двигателя дает следующие поверхности:

Изображение: Поверхность крутящего момента двигателя SI

Изображение: Поверхность мощности двигателя SI

Для Для лучшей интерпретации карт крутящего момента и мощности можно построить двухмерную линию крутящего момента для фиксированного значения положения педали акселератора.

Изображение: кривые крутящего момента двигателя SI

Изображение: кривые мощности двигателя SI

Крутящий момент и мощность двигателя при полной нагрузке

Как вы видели, крутящий момент и мощность внутреннего сгорания двигатель зависит как от частоты вращения двигателя, так и от нагрузки. Обычно производители двигателей публикуют характеристики крутящего момента и кривых (кривые) при полной нагрузке (100% положение педали акселератора). Кривые крутящего момента и мощности при полной нагрузке подчеркивают максимальный крутящий момент и распределение мощности во всем диапазоне оборотов двигателя.

Изображение: параметры крутящего момента и мощности двигателя при полной нагрузке

Форма приведенных выше кривых крутящего момента и мощности не соответствует реальному двигателю, их цель — объяснить основные параметры. Тем не менее, формы аналогичны реальным характеристикам искрового зажигания (бензин), левого впрыска, атмосферного двигателя.

Частота вращения двигателя N e [об / мин] характеризуется четырьмя основными моментами:

N min — минимальная стабильная частота вращения двигателя при полной нагрузке
N Tmax — частота вращения двигателя при максимальном крутящем моменте двигателя
N Pmax — частота вращения двигателя при максимальной мощности двигателя; также называется номинальная частота вращения двигателя
N max — максимальная стабильная частота вращения двигателя

На минимальной частоте вращения двигатель должен работать плавно, без колебаний и остановок.Двигатель также должен позволять работать на максимальной скорости без каких-либо повреждений конструкции.

Крутящий момент двигателя при полной нагрузке кривая T e [Нм] характеризуется четырьмя точками:

T 0 — крутящий момент двигателя при минимальных оборотах двигателя
T max — максимальный двигатель крутящий момент (максимальный крутящий момент или номинальный крутящий момент )
T P — крутящий момент двигателя при максимальной мощности двигателя
T M — крутящий момент двигателя при максимальной частоте вращения двигателя

В зависимости от типа всасываемого воздуха (атмосферный или с турбонаддувом) максимальный крутящий момент может быть точечным или линейным.Для двигателей с турбонаддувом или наддувом максимальный крутящий момент может поддерживаться постоянным между двумя значениями частоты вращения двигателя.

Мощность двигателя при полной нагрузке Кривая P e [л.с.] характеризуется четырьмя точками:

P 0 — мощность двигателя при минимальных оборотах двигателя
P max — максимальная мощность двигателя мощность (пиковая мощность или номинальная мощность )
P T — мощность двигателя при максимальном крутящем моменте двигателя
P M — мощность двигателя при максимальной частоте вращения двигателя

Область между минимальными оборотами двигателя N мин и максимальная частота вращения двигателя N Tmax называется зоной нижнего конца крутящего момента.Чем выше крутящий момент в этой области, тем лучше возможности запуска / ускорения транспортного средства. Когда двигатель работает в этой области при полной нагрузке, если сопротивление дороги увеличивается, частота вращения двигателя будет уменьшаться, что приведет к падению крутящего момента двигателя и остановке двигателя . По этой причине эта область также называется областью нестабильного крутящего момента .

Область между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N Pmax называется диапазоном мощности .Во время разгона автомобиля для достижения наилучших характеристик переключение передач (вверх) следует выполнять на максимальной мощности двигателя. В зависимости от передаточных чисел коробки передач после переключения на выбранной передаче частота вращения двигателя снижается до максимального крутящего момента, что обеспечивает оптимальное ускорение. Переключение передач на максимальной мощности двигателя позволит удерживать частоту вращения двигателя в пределах диапазона мощности.

Область между максимальной частотой вращения двигателя N Pmax и максимальной частотой вращения двигателя N max называется зоной верхнего конца крутящего момента.Более высокий крутящий момент приводит к более высокой выходной мощности, что приводит к более высокой максимальной скорости автомобиля и лучшему ускорению на высокой скорости.

Когда частота вращения двигателя поддерживается между максимальной частотой вращения двигателя N Tmax и максимальной частотой вращения двигателя N max , если сопротивление транспортного средства увеличивается, частота вращения двигателя падает, а выходной крутящий момент увеличивается, таким образом компенсация увеличения дорожной нагрузки. По этой причине эта область называется областью стабильного крутящего момента .

Ниже вы можете найти несколько примеров кривых крутящего момента и мощности при полной нагрузке для различных типов двигателей. Обратите внимание на форму кривых в зависимости от типа двигателя (с искровым зажиганием или с компрессионным зажиганием) и типа воздухозаборника (атмосферный или с турбонаддувом).

Крутящий момент и мощность двигателя Honda 2.0 при полной нагрузке

9026 7

Архитектура цилиндров 4-рядный

Изображение: Двигатель Honda 2.0 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
Впрыск топлива порт клапана
268 Воздухозаборник 9028

Синхронизация клапана переменная
T макс. [Нм] 190
N Tmax [об / мин] 45004 45004 Л.с.] 155
N Pmax [об / мин] 6000
N макс. [об / мин] 6800

Saab 2.Крутящий момент и мощность двигателя 0T при полной нагрузке

воздухозаборник

3

Архитектура цилиндров 4-рядный

Изображение: Двигатель Saab 2.0T SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1998
впрыск топлива порт клапана

турбонаддув Выбор фаз газораспределения

фиксированный
T макс. [Нм] 265
N Tmax [об / мин] 2500

918 P

макс. 175
N Pmax [об / мин] 5500
N 9184 4 макс. [об / мин] 6300

Audi 2.0 Крутящий момент и мощность двигателя TFSI при полной нагрузке

2 Синхронизация клапана

945

макс. Л.с.] 9 0268 N макс. [об / мин]
Архитектура цилиндров 4-рядный

Изображение: Двигатель Audi 2.0 TFSI SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин (SI)
Объем двигателя [см 3 ] 1994
впрыск топлива прямой
8 фиксированная
T макс. [Нм] 280
N Tmax [об / мин] 1800-5000

200
N Pmax [об / мин] 5100 — 6000
6500

Toyota 2.0 Крутящий момент и мощность двигателя D-4D при полной нагрузке

Архитектура цилиндров 4-рядный

Изображение: Двигатель Toyota 2.0 CI — кривые крутящего момента и мощности при полной нагрузке

Топливо дизель (CI)
Объем двигателя [см 3 ] 1998
впрыск топлива прямой
9028 9028 9028 с турбонаддувом Распределение фаз клапана фиксированное
T макс. [Нм] 300
N Tmax [об / мин] 3

[об / мин]

9018 9304 макс. [Л.с.] 126
N Pmax [об / мин] 3600
N макс. [об / мин] 5200

Mercedes-Benz 1.8 Крутящий момент и мощность двигателя Kompressor при полной нагрузке

впускной воздухозаборник синхронизация

90 304

Архитектура цилиндров 4-рядный

Изображение: Двигатель Mercedes Benz 1.8 Kompressor SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 1796
впрыск топлива патрубок клапана
фиксированная
T макс. [Нм] 230
N Tmax [об / мин] 2800-4600 945 макс. ] 156
N Pmax [об / мин] 5200
N макс. [об / мин] 6250

BMW 3.0 Крутящий момент и мощность двигателя TwinTurbo при полной нагрузке

Архитектура цилиндров 6-рядный

Изображение: Двигатель BMW 3.0 TwinTurbo SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин
Объем двигателя [см 3 ] 2979
Впрыск топлива прямой

с двойным турбонагнетателем Синхронизация клапана регулируемая
T макс. [Нм] 400
N Tmax [об / мин] 9018 [об / мин] макс. [Л.с.] 306
N Pmax [об / мин] 5800
N макс. [об / мин] 7000

Mazda 2.6 крутящий момент и мощность при полной нагрузке

902

9018 9304 макс.

Архитектура цилиндров 2 Ванкель

Изображение: Двигатель Mazda 2.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо
Объем двигателя [см 3 ] 1308 (2616)
впрыск топлива порт клапана
впуск воздуха 2 фиксированный
T макс. [Нм] 211
N Tmax [об / мин] 5500 231
N Pmax [об / мин] 8200
N макс. [об / мин] 9500

Porsche 3.6 крутящий момент и мощность двигателя при полной нагрузке

Архитектура цилиндров 6 плоских

Изображение: Двигатель Porsche 3.6 SI — кривые крутящего момента и мощности при полной нагрузке

Топливо бензин

Объем двигателя [см 3 ] 3600
Впрыск топлива порт клапана
Воздухозаборник 4
T макс. [Нм] 405
N Tmax [об / мин] 5500
3 макс.

N Pmax [об / мин] 7600
N макс. [об / мин] 8400

Ключевые утверждения, которые следует учитывать в отношении мощности и крутящего момента двигателя:

крутящий момент

  • крутящий момент является составляющей мощности
  • крутящий момент может быть увеличен путем увеличения среднего эффективного давление двигателя или за счет снижения потерь крутящего момента (трение, накачивание)
  • с более низким максимальным крутящим моментом, распределенным в диапазоне скоростей двигателя, с точки зрения тяги лучше, чем с более высокой точкой максимального крутящего момента
  • крутящий момент на нижнем конце очень важно для пусковых возможностей автомобилей
  • высокий крутящий момент полезен в условиях бездорожья, когда автомобиль эксплуатируется на больших уклонах дороги, но на низкой скорости

Мощность

  • Мощность двигателя зависит как от крутящего момента, так и от скорости
  • мощность может быть увеличена за счет увеличения крутящего момента или частоты вращения двигателя
  • высокая мощность важна для высоких скоростей автомобиля eds: чем выше максимальная мощность, тем выше максимальная скорость транспортного средства.
  • Распределение мощности двигателя при полной нагрузке в диапазоне оборотов двигателя влияет на способность автомобиля к ускорению на высоких скоростях.
  • для достижения наилучших характеристик ускорения, транспортное средство должно работать в диапазоне мощности, между максимальным крутящим моментом двигателя и мощностью

По любым вопросам или наблюдениям относительно этого руководства, пожалуйста, используйте форму комментариев ниже.

Не забывайте ставить лайки, делиться и подписываться!

Throwback Thursday: Что делает крутящий момент в машине? | Итан Сигель | Начинается с ура!

« Недостаточная поворачиваемость — это когда вы ударяетесь о стену передней частью автомобиля.
Избыточная поворачиваемость — это когда вы ударяетесь о стену задней частью автомобиля.
Лошадиная сила — это скорость, с которой вы попадаете в стену.
Крутящий момент — это расстояние, на которое вы унесете стену после удара
». -Старый гоночный кредо

Вы видели это множество раз, когда читали спецификации нового автомобиля: количество крутящего момента в фунтах-футах, которое он выдает.До автосалона в Нью-Йорке 2014 года еще пара месяцев, но всегда есть интересные новые концептуальные автомобили, которые демонстрируются на подобных мероприятиях. Время от времени один из них будет попадаться мне на глаза, как этот «Мерседес» несколько лет назад.

Изображение предоставлено: концептуальный автомобиль Mercedes-Benz E250, через http://www.carmk.net/thread-89968-1-5.html.

И в описании его характеристик, наряду с размером и мощностью двигателя, идет следующее: 369 фут-фунтов крутящего момента. (Это 500 Ньютон-метров, для вас, ребята из МКС / СИ.) Но что такое крутящий момент , и для чего он нужен?

Крутящий момент — это имеющаяся у вас «сила поворота», как при повороте гаечного ключа.

369 фут-фунтов означает, что если у вас есть гаечный ключ длиной 1 фут, и вы приложите усилие в 369 фунтов перпендикулярно этому гаечному ключу, вы получите 369 фут-фунтов крутящего момента. Вы можете приложить большее усилие к более короткому плечу рычага или меньшее усилие к более длинному плечу рычага, но продукт этих двух элементов — под прямым углом друг к другу — и есть то, что создает крутящий момент.

Изображение предоставлено Кэролайн из http://www.bluepoof.com/motorcycles/0401/041501.html.

Но что может сделать крутящий момент внутри вашей машины? Ответ: заставь его разогнаться! Спецификация крутящего момента, которую они дают, — это максимальный крутящий момент двигателя внутреннего сгорания , который обычно является более высоким значением, чем фактический крутящий момент на колесах. (Это известно как крутящий момент машины.) Максимальное значение крутящего момента возникает в ограниченном диапазоне оборотов двигателя (оборотов в минуту), обычно достигая максимума, когда двигатель вращается со скоростью несколько тысяч оборотов в минуту.

Изображение предоставлено: кривая крутящего момента мотоцикла BMW K 1200 R 2005 года, предоставлено пользователем Никогуаро на Wikimedia Commons.

Как перейти от крутящего момента двигателя к его мощности? Умножьте его крутящий момент на скорость вращения оси, и (после преобразования единиц) вы получите количество лошадиных сил двигателя! В этом есть смысл: получите большой крутящий момент, работающий на этой быстро вращающейся оси двигателя, и у вас есть все виды мощности, чтобы заставить ваш автомобиль двигаться.

Все, что вам нужно сделать сейчас, это передать эту мощность на колеса, а это значит, что вам нужно подключить двигатель к колесам и осям.

Изображение предоставлено: пользователь Wikimedia Commons IP83.

Вот для чего нужен приводной вал! Подключите свой мощный двигатель с высоким крутящим моментом к ведущему валу колес и осей, и они заставят ваши колеса вращаться, приводя в движение ваш автомобиль! Вы можете беспокоиться о том, что такой чрезвычайно переменный крутящий момент при разных оборотах двигателя означает, что вы получаете большое ускорение только в очень определенных точках, но именно поэтому в вашем автомобиле есть разные передачи , для компенсации! В общем, это показатель крутящего момента, который может многое сказать о том, насколько быстро автомобиль может разгоняться.2 или (чаще) он может разгоняться от 0 до 60 миль в час примерно за 6,3 секунды.

Хотите автомобиль, который может разгоняться быстрее? Вот вещи, которые могут помочь:

  • больше крутящего момента (да),
  • более легкий автомобиль,
  • более низкий центр масс (ближе к оси колеса по высоте),
  • колеса и шины большего диаметра,
  • и двигатель, который может выдавать этот максимальный крутящий момент в более широком диапазоне частот вращения двигателя.

Текущий рекордсмен по производству уличных автомобилей?

Изображение предоставлено: получено с http: // www.thesupercars.org/fastest-cars/fastest-cars-by-acceleration-top-10-list/.

Bugatti Veyron Super Sport, автомобиль, разгоняющийся от 0 до 60 всего за 2,4 секунды ! По крайней мере, так обстоит дело с , если вы ограничиваетесь стандартными автомобилями.

Хотите верьте, хотите нет, но настоящий рекорд ускорения принадлежит автоэнтузиасту Энди Фросту, чей изготовленный на заказ (уличный) автомобиль Red Victor 1 (в его первоначальном воплощении) может разгоняться от 0 до 60 за меньше. чем второй ! Да, и вы можете посмотреть это в действии прямо сейчас .

http://www.youtube.com/watch?v=PBwK9Lbfx5Q

Это очень хорошо для связи между тем, что большинство из нас испытывает ежедневно — вождением автомобиля — и реальной физикой в ​​действии! Теперь, в следующий раз, когда кто-то хвастается перед вами крутящим моментом его машины, вы, , действительно будете знать , о чем они говорят, и, возможно, даже сможете научить их кое-чему!

максимальный крутящий момент в предложении

Эти примеры взяты из корпусов и из источников в Интернете.Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.

Активными ограничениями являются максимальный крутящий момент крутящий момент для всех шарниров.

Каждый тип продукта, доступный на рынке, обычно имеет большую разницу в отношении номинального / максимального крутящего момента и размеров.

Каждый привод имеет ограничение на его максимальную мощность, а также на максимальный крутящий момент , который он может проявить.

Усечение до 5% приводит к незначительным ошибкам, за исключением соединения 2, которое показывает ошибку максимального крутящего момента , равную 23% от пикового крутящего момента.

Первый — это проект директивы о максимальной мощности, максимальной расчетной скорости и максимальном крутящем моменте .

Этот двигатель развивает максимальную мощность при 4000 об / мин, максимальный крутящий момент при 2000 об / мин.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Двигатель развивает максимальную мощность при 4000 об / мин, максимальный крутящий момент об / мин, крутящего момента при 1750 об / мин.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Максимальный крутящий момент , , , меньше, но на этот раз максимальная мощность не снижается.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Вторая граница составляет 30 процентов от максимального крутящего момента .

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Максимальный крутящий момент был при 2000 об / мин, что делало это идеальным тягачом.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Постоянный источник питания идеален, если требуется точный или максимальный крутящий момент от муфты.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Следовательно, максимальный крутящий момент и лошадиных сил были увеличены для двигателей, продаваемых на всех рынках.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Он генерировал 305 л.с. при 5600 об / мин с максимальным крутящим моментом 368 фут-фунт при 3000 об / мин.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Обычно двигатели создаются для достижения максимального крутящего момента при высоких скоростях вращения, обычно 1500 или 3000 об / мин.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Этот двигатель развивает максимальную мощность при 5500 об / мин, максимальный крутящий момент при об / мин.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Как только крутящий момент достигает установленного значения максимального крутящего момента , выбранного конструктором, машина останавливается.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Он развивал 170 л.с. при 5700 об / мин и максимального крутящего момента при 4400 об / мин.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Максимальный крутящий момент получается, если ток подается на обмотки, когда магниты ротора находятся в определенном диапазоне положений относительно обмоток статора.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Если сопротивление, подключенное к ротору, увеличивается за пределами точки, где максимальный крутящий момент возникает при нулевой скорости, крутящий момент будет дополнительно уменьшен.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Это подходит для больших инерционных нагрузок, поскольку двигатель разгоняется от до максимального крутящего момента , крутящий момент постепенно уменьшается по мере увеличения нагрузки.

Из

Википедия

Этот пример взят из Википедии и может быть повторно использован по лицензии CC BY-SA.

Эти примеры взяты из корпусов и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или его лицензиаров.

Каков максимальный крутящий момент асинхронного двигателя

В статье под названием Уравнение крутящего момента асинхронного двигателя мы видели развиваемый крутящий момент и его уравнение. Здесь обсуждается условие максимального крутящего момента асинхронного двигателя . Крутящий момент, создаваемый асинхронным двигателем, в основном зависит от следующих трех факторов. Это сила тока ротора; магнитный поток взаимодействует между ротором двигателя и коэффициентом мощности ротора.Значение крутящего момента при работающем двигателе определяется уравнением, приведенным ниже.

Полный импеданс RC-цепи всегда находится в пределах от 0 ° до 90 °. Импеданс — это сопротивление, предлагаемое элементом электронной схемы протеканию тока. Если предполагается, что импеданс обмотки статора пренебрежимо мал. Таким образом, для заданного напряжения питания V 1 , E 20 остается постоянным.

Развиваемый крутящий момент будет максимальным, когда правая часть уравнения (4) будет максимальной.Это условие возможно, когда значение знаменателя, показанного ниже, равно нулю.

Лет,

Следовательно. Развиваемый крутящий момент является максимальным, когда сопротивление ротора на фазу равно реактивному сопротивлению ротора на фазу в рабочих условиях. Помещая значение sX 20 = R 2 в уравнение (1), мы получаем уравнение для максимального крутящего момента .

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *