Расчет конденсатора для пуска двигателя, схема подключения
Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.
Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.
Коротенько про трехфазные асинхронные электродвигатели
Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.
Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).
Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.
Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.
работа трехфазного электродвигателя без одной фазы при постоянной нагрузке
Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.
А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.
почему для пуска от однофазной сети используют именно конденсаторы
Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.
На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.
Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.
А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.
Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.
как подключить электродвигатель через конденсатор
Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.
Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.
конденсаторы для запуска электродвигателя
Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.
Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:
схема “звезда”:
Рабочая емкость = 2800*Iном. эд/Uсети
схема “треугольник”:
Рабочая емкость = 4800*Iном/Uсети
Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.
В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(~127, ~220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:
Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.
Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.
Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.
Самое популярное
Однофазный асинхронный двигатель: 6 схем работы
Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.
Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.
В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.
Содержание статьи
С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем
Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.
На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.
Важное предупреждение
Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.
Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.
В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).
Как состояние подшипников влияет на работу двигателя
Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.
Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.
Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.
Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.
Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.
Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.
Что надо учитывать в конструкции статорных обмоток и как их подготовить
Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.
Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.
Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.
Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.
Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.
Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.
Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.
Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.
Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.
Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.
Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.
Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:
- у трехфазных двигателей из статора могут выводиться:
- три жилы при внутренней сборке схемы треугольника;
- или четыре — для звезды;
- однофазный электродвигатель может иметь:
- три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
- или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.
Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.
Техническое состояние изоляции обмоток
Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.
В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.
Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.
Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице
Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.
Как видите, промышленностью массово выпущены модели с:
- повышенным сопротивлением пусковой обмотки;
- пусковым конденсатором;
- рабочим конденсатором;
- пусковым и рабочим конденсатором;
- экранированными полюсами.
А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:
- значительное снижение реактивной мощности;
- повышение КПД;
- уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.
Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.
Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.
Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.
Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки
Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.
Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.
Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.
Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.
Помечаем эти 3 конца уже понятной нам маркировкой:
- О — общий;
- П — пусковой;
- Р — рабочий.
Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.
Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.
Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.
Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.
С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.
При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.
Тогда кнопку запуска отпускают:
- пусковая обмотка отключается самовозвратом среднего контакта;
- главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.
Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.
Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.
Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.
Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.
С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.
Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии
Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.
Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.
Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.
2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.
Конденсатор подключают к выводам пусковой и рабочей обмоток.
В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.
Здесь получается, что:
- главная обмотка работает напрямую от 220 В;
- вспомогательная — только через емкость конденсатора.
Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.
Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.
Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.
Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.
Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.
Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.
При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.
В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.
Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.
Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.
Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.
Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.
Где взять номиналы главного и вспомогательного конденсаторов?
Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.
Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.
Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.
Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.
Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы
Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.
Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.
Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.
В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.
Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.
Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.
Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.
Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.
Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.
Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.
Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.
Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.
Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.
Подключение однофазного двигателя через конденсатор — 3 схемы
На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.
В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.
Конструкция и принцип работы
Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.
Конструкция асинхронного однофазного электродвигателя
Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.
Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:
- статор с основной и дополнительной обмоткой пуска;
- короткозамкнутый ротор;
- борно с группой контактов на панели;
- конденсаторы;
- центробежный выключатель и многие другие элементы, показанные выше на рисунке.
Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.
Схемы подключения
Варианты подключения двигателя через конденсатор:
- схема подключения однофазного двигателя с использованием пускового конденсатора;
- подключение электродвигателя с использованием конденсатора в рабочем режиме;
- подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.
Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.
Схема с пусковым конденсатором
Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.
Схема подключения пускового конденсатора
Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.
Соединения, центробежный выключатель на валу ротора
Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.
Некоторые элементы
Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.
Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.
Варианты схемы подключения конденсаторов
В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.
Схема с рабочим конденсатором
Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.
Комбинированная схема с двумя конденсаторами
Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.
Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно
Установка и подбор компонентов
Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).
Пример размещения конденсатора на внешней стороне корпуса электродвигателя
В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.
Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:
- для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
- для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя
Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.
Похожие статьи:
Подключение асинхронного двигателя к однофазной сети (видео, схема)
После своего изобретения трехфазные двигатели успешно используются до сих пор без каких-либо существенных изменений. Подключение асинхронного двигателя к однофазной сети было лишь делом времени, так как они намного проще в эксплуатации и обслуживании, чем их коллекторные собратья. А ведь в домашних условиях используется именно однофазная сеть, а хороший двигатель нужен не только на производстве. Какие электрические машины можно использовать дома или на даче, и как правильно их запустить в работу от обычных 220 В?
Одна фаза вместо трех
Самый распространенный вариант – трехфазный асинхронный двигатель. В пазах неподвижного статора уложены три обмотки со сдвигом 120 электрических градусов. Для пуска необходимо через них пропустить трехфазный ток, который, проходя по каждой обмотке в разное время, создает вращающий момент, раскручивающий ротор. При подключении однофазной сети такого не происходит. Поэтому здесь необходимы дополнительные элементы, такие как фазосдвигающий конденсатор. Это самый простой способ.
На скорость вращения ротора это не повлияет, а вот мощность такой электрической машины упадет. В зависимости от нагрузки на валу, емкости конденсатора, схемы подключения, потери составляют 30–50 %.
Стоит сразу отметить, что аппараты не всех марок работают по однофазной схеме. Но все-таки большинство позволяет проводить с собой подобные манипуляции. Всегда стоит обращать внимание на прикрепленные таблички. Там есть все характеристики, глядя на которые можно увидеть, какая это модель и где она будет работать.
Из первой картинки (А) можно сделать вывод, что данный двигатель рассчитан на два напряжения – 220 и 380 В. Включение обмоток – треугольник и звезда. От обычной домашней сети его запустить можно (есть соответствующее напряжение), и желательно треугольником.
Вторая (Б) показывает: электрическая машина рассчитана на 380 В, включение звездой. Теоретически, на меньшее напряжение переключиться возможно, но для этого нужно разбирать корпус, искать соединение обмоток и переключать их на треугольник. Можно, конечно, ничего не переключать просто поставив конденсатор. Однако потери мощности будут колоссальными.
Если на табличке написано: Δ/Ỵ 127/220, то к сети 220 В такой аппарат можно включать только звездой, иначе он сгорит!
Подключение фазосдвигающего конденсатора
Оптимальный вариант подключения трехфазной машины в работу от 220 вольт, это треугольником. Так потери составят около 30%. Два конца в борне идут непосредственно к сети, а между третьим концом и любым из этих двух включают конденсатор.
Такой пуск возможен если нет никакой серьезной нагрузки: например, при подключении вентилятора. Если будет нагрузка, то ротор либо не будет крутиться вообще, либо запуск будет происходить очень долго. В этом случае стоит добавить пусковой конденсатор.
При этом будет хорошо использовать выключатель, у которого один контакт замыкался бы и фиксировался, пока его не отключишь, а другой отключался, когда его отпускают. Так можно на непродолжительное время подсоединять в работу пусковой конденсатор. Направление вращения изменяется переключением конденсатора в схеме на другую фазу.
На практике это может выглядеть так:
Схема для пуска в работу трехфазного двигателя к однофазной цепи звездой тоже несложная. Потери будут больше, но иногда другого выхода просто нет.
Расчет конденсатора
Вполне естественный вопрос о том, конденсатор с какими параметрами нужно использовать для запуска и работы такого аппарата. Все зависит от того, звездой или треугольником соединены обмотки на трехфазной машине.
- Для звезды существует такой расчет: Cр = 2800•I/U.
- Треугольник:Cр = 4800•I/U.
Cр– емкость рабочего конденсатора в микрофарадах, I – ток в амперах, U – напряжение сети в вольтах.
- Ток можно посчитать таким образом: I = P/(1.73•U•n•cos ф).
Р – это мощность асинхронного аппарата, написанная на его бирке,n – его КПД. Он указан там же, рядом написан и cos ф.
Есть и упрощенный вариант расчета. Он выглядит таким образом: C = 70•Pн, где Pн – это номинальная мощность, кВт (на бирке). Из этой формулы можно сделать вывод, что на каждые 100 Вт должно быть около 7 мкФ емкости.
При завышенной емкости конденсатора обмотки будут сильно греться, при заниженной ротор будет тяжело раскручиваться. Поэтому идеальным вариантом является, когда после всех расчетов делается своеобразная «подгонка»: замеряется ток при помощи клещей и добавляются или убираются дополнительные конденсаторы.
Если нужен пусковой конденсатор, то необходимо подобрать его так, чтобы общая емкость (Ср+Сп) в 2–3 раза превышала рабочую(Ср).
Постепенный разгон
Как можно осуществить плавный пуск асинхронного двигателя в однофазной сети? Стоит сразу оговориться, что для домашнего использования это обойдется дорого. Сама схема очень сложна и пробовать собрать ее самостоятельно не имеет смысла. Существуют специальные устройства плавного пуска, которые успешно используются для этой цели. Суть их заключается в том, что первые секунды включения напряжение питания подается заниженным, вследствие чего занижен пусковой момент.
Но так как частота вращения роторатаких аппаратов зависит от частоты питающего напряжения, а не от его величины, то такой вариант подходит только тогда, когда нет значительной нагрузки на валу: насосы, вентиляторы. Если есть нагрузка, тогда лучше всего использовать частотный преобразователь. Он также обеспечит плавный запуск, а также много других замечательных возможностей. Правда, стоит он дороже. Из этого следует вывод: такие устройства больше подходят для использования на производстве, пусть даже небольшом. Для дома это дорого.
Как видно, этот частотник можно питать как трехфазным напряжением, так и одной фазой.
Одна фаза
Для того чтобы выполнить подключение однофазного асинхронного двигателя, достаточно двух кнопок: одна с фиксатором, другая без него. Стандартная схема: две обмотки, включенные последовательно (хотя, в зависимости от модели, могут быть варианты). Та, у которой большее сопротивление – пусковая, другая – рабочая.
Каждая модель электрической машины имеет свои характеристики, а значит, и варианты подключения могут различаться. У некоторых для запуска используется два конденсатора, у других – один.
Следовательно, начинать необходимо с выяснения модели и ее технических характеристик.
Как видно, запуск короткозамкнутых электрических машин возможен по-разному. Подключение возможно как в домашних условиях, так и на производстве, что сделало их такими популярными. И, по большому счету, более чем за сто лет не было придумано ничего лучше.
Запуск трехфазных электродвигателей с помощью конденсаторов
Существует масса разнообразных электрических двигателей, но все они имеют две характеристики, основанные на напряжении сети, к которой привязаны они и их мощность. Многие не имеют представления, как подключить двигатель 380 на 220В. Статья раскроет эту тему.
Как подключить электродвигатель 380 на 220?
Существует две схемы такого подсоединения. Каждая имеет свои особенности.
- Звезда-треугольник;
- Конденсаторы.
В хозяйстве иногда возникает потребность подключения к однофазной электросети электрический двигатель, который рассчитан на работу в трехфазной сети. Этот случай считается исключительным, и к нему стоит прибегать только, если нет возможности подключиться к трехфазной электросети, так как в ней сразу создается магнитное вращающееся поле, которое создает условия для вращения ротора в статоре. Ко всему прочему в этом режиме достигается максимальная мощность и эффективность работы электродвигателя.
Если вы подключаете к бытовой однофазной электрической сети, то совершайте три обмотки по схеме «треугольник» для того, чтобы получить наибольшую выходную мощность асинхронного электромотора ( это будет максимум 70%, если сравнивать с трехфазным подключением). Если подключаете схемой «звезда», то максимальная мощность будет достигать 50% от возможной.
Однофазное подключение на два выхода дает возможность подключить фазу и ноль, третьей фазы нет, но она восполняется конденсатором.
Направление вращения электрического двигателя будет зависеть от того, как будет сформирован третий контакт: через фазу или ноль. В режиме одной фазы частота вращения будет идентичной трехфазному режиму. Как подключить двигатель 380 на 220? Какова схема подключения электрического двигателя 380 на 220 В с конденсатором?
Подключение электродвигателя с конденсатором
При подключении маломощных асинхронных электрических двигателей до 1,5 кВт, запускающихся без нагрузки, необходимо иметь только рабочий конденсатор. К нулю подключаем один его конец, другой же к третьему выходу треугольника. Чтобы изменить направление вращения мотора подключение конденсатора ведем не от нуля , а от фазы.
В случае работы двигателя сразу при запуске под нагрузкой или когда его мощность более 1,5 кВт, то для успешного запуска нужно внести в схему пусковой конденсатор, который будет включаться в работу параллельно рабочему. Он нужен для увеличения пускового толчка при старте, он станет включаться всего на несколько секунд.
Обычно пусковой конденсатор имеет кнопочное подключение, остальная же схема подключается от электрической сети через тумблер либо же через кнопку с двумя фиксирующимися положениями. Чтобы произвести запуск требуется подключить питание через тумблер или двухпозиционную кнопку, затем произвести нажатие на пусковую кнопку и удерживать ее до тех пор, пока не запустится электрический двигатель. Как только запуск произошел, отпускаем кнопку, при этом ее пружина разомкнет контакты и произведет отключение пусковой емкости.
Если необходим реверсивный запуск трехфазного двигателя в сети 220 вольт, тогда нужно будет занести в схему тумблер переключения. Он нужен для подключения одного конца рабочего конденсатора к фазе и к нулю.
В случае, если двигатель не желает запускаться либо очень медленно набирает скорость оборотов, то необходимо внести в схему пусковой конденсатор, который подключен через кнопку «Пуск». Для подключения этой кнопки на реверсивной схеме для обозначения проводов используется фиолетовый цвет. Если в реверсе нет необходимости, то со схемы выпадает кнопка вместе с проводами и пусковой правый конденсатор.
Подключение электродвигателя без конденсаторов
Как ни крути, но работать трехфазный электродвигатель будет в однофазной сети на 220 В только с конденсаторами. Они не нужны для запуска электромоторов, которые рассчитаны на работу с напряжением сети в 220 вольт.
Собрать самостоятельно схему подключения не так и сложно. Сложность будет заключаться в подборе необходимой емкости рабочего конденсатора, дополнительные хлопоты возникнут, если потребуется пусковой.
Выбор конденсаторов для электродвигателей
Как подобрать нужные модели? На корпусе находятся обозначения и величина емкости. Заострите внимание только на моделях типа МБГЧ, МБПГ, МБГО, БГТ с рабочим напряжением, которое обозначает (U раб), не менее 300 вольт.
Как рассчитать емкость конденсаторов для электродвигателей?
- Чтобы рассчитать рабочую емкость конденсатора для схемы подключения звездой, необходимо использовать формулу Cраб=2800х(I/U). В случае подключения обмоток треугольником, тогда по такой формуле: Сраб=4800х(I/U).
- Для получения результатов по величине в мкФ емкости рабочего конденсатора Сраб, нужно потребляемый двигателем ток (по паспорту) разделить на напряжение сети U, которое равняется 220 вольт, полученные данные умножаются на 4800, если задействован треугольник, или 2800, если работа производилась со звездой.
Экспериментальным способом подбирается емкость пусковых. Обычно их емкость превосходит емкость рабочих в 2-3 раза.
К примеру, есть электродвигатель обмотки, провода которого имеют соединение треугольником, величина потребляемого тока равна 3 амперам. Эти данные подставляем в формулу Сраб= 4800 x (3 / 220)≈ 65 мкФ. При этом пусковой будет иметь пределы в 130-160 мкФ. Но такая емкость редко встречается у конденсаторов, что приводит к параллельному подключению для рабочего, к примеру, шесть по десять плюс один на 5 мкФ.
Учтите то, что расчет составляется на номинальную мощность. Работая в половину силы, электрический двигатель станет нагреваться, поэтому следует уменьшить емкость рабочего конденсатора, чтобы уменьшить ток в обмотке.
При не достающей до требуемой емкости, мощность, развиваемая электрическим двигателем, будет низкой.
Профессионалы рекомендуют начинать подбирать конденсатор для трехфазного двигателя с наименьшего допустимого значения емкости, постепенно увеличивая показатель до оптимального значения.
Помните о том, что если электрический двигатель, переделанный с 380 на 220 вольт, будет долго работать без нагрузки, он сгорит.
Обратите внимание! После отключения конденсаторы на своих выводах достаточно долго сохраняют напряжение опасной величины . Не забывайте следить за соблюдением мер по безопасности: всегда их ограждайте, чтобы исключить случайное прикосновение. Перед эксплуатацией конденсаторов каждый раз не забывайте производить их разрядку.
Всегда помните о том, что не следует подключать трехфазный двигатель, у которого мощность более 3 кВт, к обычной электросети дома на 220В. Это приводит к тому, что начинает происходить выбивание пробок, плавиться изоляция проводов, если неправильно подобрана защита.
Но прежде чем приступать непосредственно к подключению, давайте разберем, какое электрооборудование нам для этого необходимо. Прежде всего, это автоматический выключатель, номинальный ток которого соответствует, либо немного выше номинального тока электродвигателя. | |
Следующим коммутационным аппаратом является уже упоминавшийся нами пускатель. В зависимости он номинального тока пускатели разделяются на изделия 1, 2 и т. д. до 8-ой величины. Для нас важно, чтобы номинальный ток пускателя был не меньше, чем номинальный ток электродвигателя. | |
Пускатель управляется при помощи кнопочного поста. Он может быть двух видов. С кнопками «Пуск» и «Стоп» и с кнопками «Вперед», «Стоп» и «Назад». Если у нас не используется реверс, то нам необходим кнопочный пост на две кнопки и наоборот. | |
Кроме указанных аппаратов нам потребуется кабель соответствующего сечения. Так же желательно, но не обязательно, установка амперметра хотя бы на одну фазу, для контроля тока двигателя. |
Подключение трехфазного двигателя к однофазной сети
Здравствуйте, дорогие читатели и гости сайта «Заметки электрика».
Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.
А в наличии имеется только источник однофазного напряжения.
Как быть в данной ситуации?
Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.
Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.
Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.
Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье.
Выбор емкости конденсаторов
1. Выбор емкости рабочего конденсатора
Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:
Полученное значение емкости рабочего конденсатора получается в (мкФ).
Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.
Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.
При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.
2. Выбор емкости пускового конденсатора
Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.
Что случится, если забыть отключить пусковые конденсаторы?
Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.
Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.
В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.
Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.
Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.
Выбор типа конденсаторов
Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.
Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.
Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.
Кое-что я нашел у себя в запасе.
Практически все они имеют прямоугольную форму.
На самом корпусе можно увидеть их параметры:
- емкость (мкФ)
- рабочее напряжение (В)
Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».
Также вместо бумажных конденсаторов можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.
Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!
У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).
Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.
Вот например, СВВ60 в круглом корпусе.
Или СВВ61 в прямоугольном корпусе.
В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.
Выбор напряжения конденсаторов
Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.
Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.
Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).
Принято выбирать рабочее напряжение конденсаторов для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).
Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.
Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).
Пример подключения трехфазного двигателя к однофазной сети
Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.
Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).
Данные двигателя АОЛ 22-4:
Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.
Определим емкость рабочего конденсатора:
Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).
Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.
Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.
Теперь нам необходимо, применив навыки электротехники
, собрать из этих конденсаторов необходимую нам емкость.
Емкость одного конденсатора составляет 10 (мкФ).
При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.
Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.
Дальнейшие итоги нашего эксперимента смотрите на видео.
Эксперимент завершился УДАЧНО!!!
И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!
При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора практически равна номинальной.
Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.
Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.
Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.
P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Схема подключения однофазного двигателя 220 В через конденсатор
Бывают случаи, когда нужно подключить мотор на 220 вольт — это случается при попытке подключить оборудование под свои нужды, но схема не соответствует техническим характеристикам, указанным в паспорте такого оборудования. Мы постараемся в этой статье разобрать основные методы решения проблемы и представить несколько альтернативных схем подключения однофазного двигателя с конденсатом на 220 вольт.
Почему это происходит? Например, в гараже необходимо подключить асинхронный двигатель на 220 вольт, который рассчитан на три фазы. Таким образом, необходимо поддерживать КПД (КПД), если альтернативы (в виде двигателя) просто не существует, потому что в цепи из трех фаз легко образуется вращающееся магнитное поле. , что обеспечивает создание условий для вращения ротора в статоре. Без этого КПД будет меньше по сравнению с трехфазной схемой подключения.
Когда в однофазных двигателях всего одна катушка, мы видим картину, когда поле внутри статора не вращается, а пульсирует, то есть толчок для запуска не происходит, пока сам не раскрутит вал. Чтобы вращение могло происходить самостоятельно, добавили вспомогательную пусковую обмотку. Это вторая фаза, она смещена на 90 градусов и толкает ротор при повороте. Этот двигатель по-прежнему включен в сеть с одной фазой, поэтому название остается однофазным. Такие однофазные синхронные двигатели имеют пусковую обмотку и рабочую.Разница в том, что лаунчер работает только при включении заводского ротора, работает всего три секунды. Вторая обмотка подключена постоянно. Чтобы определить, что есть что, вы можете использовать тестер. На картинке вы можете увидеть соотношение их схемы в целом.
Подключаем мотор на 220 вольт: мотор запускается от подачи 220 вольт на рабочую и пусковую обмотку, после чего выставляем нужную скорость вручную, нужно отключать пусковые установки. Для фазового сдвига необходимо омическое сопротивление, которое конденсаторы обеспечивают индуктивностью.Встречается сопротивление в виде отдельного резистора и пусковой обмотки, которое выполнено по бифилярной технике. Работает это так: индуктивность катушки сохраняется, а сопротивление становится больше из-за удлиненного медного провода. Такую схему можно увидеть на рисунке 1: подключение электродвигателя 220 вольт.
Рисунок 1. Схема подключения двигателя 220 В с конденсатором
Есть также двигатели, у которых обе обмотки постоянно подключены к сети, они называются двухфазными, потому что поле внутри вращается, а конденсатор предназначен для сдвига фазы.Для такой схемы обе обмотки имеют провод равного сечения.
Где можно встретиться в повседневной жизни?
Электродрели, некоторые стиральные машины, дрели и болгарки являются синхронным коллектором двигателя. Он умеет работать в сетях с одной фазой даже без триггеров. Схема следующая: перемычкой соединяются концы 1 и 2, первый берет начало в якоре, второй — в статоре. Два наконечника, которые необходимо было подключить к источнику питания 220 вольт.
Подключение электродвигателя 220 вольт с пусковой обмоткой
Внимание!
- Эта схема исключает электронику, и, следовательно, двигатель сразу после запуска будет работать на полную мощность на максимальной скорости, когда вы начинаете буквально подпрыгивать с силой тока стартера, которая вызывает искру в коллекторе;
- есть электродвигатели с двумя скоростями. Их можно определить по трем концам статора, выходящим из обмоток.В этом случае частота вращения вала при подключении уменьшается, а риск деформации изоляции при пуске увеличивается;
- направление вращения можно изменить, для этого следует поменять местами концевые соединения в статоре или якоре.
Есть еще одно соединение для питания двигателя на 380 В, которое приводится в движение без нагрузки. Также требуется конденсатор в рабочем состоянии.
Один конец соединен с нулем, а второй с выходом треугольника с цифрой три.Чтобы изменить направление вращения электродвигателя, нужно подключить его к фазе, а не к нулю.
Схема подключения двигателя 220 В переменного тока через конденсаторы
В том случае, когда мощность двигателя более 1,5 кВт или это при запуске работы напрямую с нагрузкой, при параллельном включении конденсатора необходимо установить и запустить. Он служит для увеличения пускового момента и включается только на несколько секунд во время пуска. Для удобства он соединен с кнопкой, а все устройство от блока питания через тумблер или кнопку с двумя положениями, имеющую два фиксированных положения.Чтобы запустить такой мотор, необходимо подключить кнопку (тумблер) и удерживать кнопку пуска до его запуска. При запуске — достаточно отпустить кнопку и пружина размыкает контакты, отключая стартер
Специфика заключается в том, что асинхронные двигатели изначально предназначались для подключения к сети с тремя фазами 380 В или 220 В.
Важно! Для подключения однофазного электродвигателя к однофазной сети необходимо иметь данные двигателя на бирке и знать следующее:
P = 1,73 * 220 * 2,0 * 0,67 = 510 (Вт) расчет для 220V
R = 1,73 * 380 * 1,16 * 0,67 = 510,9 (Вт) расчет на 380 В
По формуле становится понятно, что электрическая мощность превышает механическую.Это необходимый резерв для компенсации потерь мощности при запуске — создания вращающего момента магнитного поля.
Есть два типа обмоток — звезда и треугольник. По информации на бирке мотора можно определить, какую систему он использует.
Красные стрелки — распределение напряжения в обмотках двигателя, говорит о том, что на одной обмотке распределяется однофазное напряжение 220 В, а на двух — линейное напряжение 380 В. Этот двигатель можно адаптировать для однофазной сети по Рекомендации по метке: узнайте, какие напряжения создаются при намотке, вы можете соединить их в звезду или треугольник.
Схема намотки треугольника проще. Лучше его использовать, так как двигатель будет терять мощность в меньшем количестве, а напряжение на обмотках везде равно 220 В.
Данная схема подключения конденсаторного асинхронного двигателя в однофазной сети. Включает в себя рабочий и пусковой конденсаторы.
Пример:
- конденсаторы б / у на напряжение не менее 300 или 400;
- рабочая емкость конденсаторов набрана при параллельном включении;
- рассчитано так: каждые 100 ватт все равно 7мкФ, при том, что 1 кВтч равен 70 микрофарадам;
- это пример параллельного включения конденсаторов
- для запуска должна в три раза превышать емкость рабочего конденсатора.
Емкость
Важно! Если на старте вовремя не отключать пусковые конденсаторы при достижении двигателем нормативного для него количества импульса, они приведут к большому току смещения во всех обмотках, который просто закончится перегревом электродвигателя.
Прочитав статью, обратите внимание на подключение трехфазных электродвигателей к однофазной сети:
Связанные с контентом
Трехфазный двигатель, работающий от однофазного источника питания
Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации.Трехфазный двигатель переменного тока использует трехфазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. Д.), Но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. Д.). .), особенно в бытовой технике. В случае, если трехфазные машины работают от однофазных источников питания, есть 3 способа сделать это:
- Перемотка мотора
- Купить GoHz VFD
- Купить преобразователь частота / фаза
I: Перемотка двигателя
Необходимо проделать некоторые работы для преобразования работы трехфазного двигателя в однофазное питание.Здесь вы узнаете, как преобразовать трехфазный двигатель 380 В для работы от однофазного источника питания 220 В.
Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120 ° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, переводимого для работы от однофазного источника питания, мы должны пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, поскольку однофазный двигатель может быть запущен только после установления вращающегося магнитного поля. .Причина, по которой у него нет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он фиксирован относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может генерировать крутящий момент, потому что нет вращающегося магнитного поля, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный угол наклона. Если он пытается произвести ток другой фазы, двухфазный ток имеет определенную разность фаз во времени, чтобы создать вращающееся магнитное поле.Таким образом, статор однофазного двигателя должен иметь не только рабочую обмотку, но и пусковую. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сдвинуть одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через разный ток, чтобы установить вращающееся магнитное поле, чтобы управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазный источник питания, мощность составляет только 2/3 от исходной.
Метод перемотки
Чтобы использовать трехфазный двигатель на однофазном источнике питания, мы можем последовательно соединить любые двухфазные катушки обмотки, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотки подключены к одному источнику питания, поэтому ток одинаковый. Поэтому последовательно подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке, чтобы ток имел разность фаз.Для увеличения пускового момента соединения можно использовать автотрансформатор для увеличения напряжения однофазного источника питания с 220 В до 380 В, как показано на Рисунке 1.
Малогабаритные двигатели общего назначения имеют Y-образное соединение. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к клемме пуска автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.
Если вы не хотите повышать напряжение, источник питания 220 В также может использовать это.Поскольку исходная трехфазная обмотка напряжения питания 380 В теперь используется для источника питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.
Рисунок 3 Слишком низкий крутящий момент проводки. Если вы хотите увеличить крутящий момент, вы можете подключить конденсатор фазовой синхронизации к двухфазной обмотке в катушке и использовать ее в качестве пусковой обмотки. Одна катушка, напрямую подключенная к источнику питания 220 В, см. Рисунок 4.
На рисунках 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление начальной или рабочей обмотки. .
Магнитный момент после того, как две обмотки соединены последовательно (одна из которых является обратной струной), складывается из двух углов магнитного момента 60 ° (Рисунок 5). Магнитный момент намного выше, чем магнитный момент 120 ° (показан на Рисунке 6), поэтому пусковой момент проводки на Рисунке 5 больше, чем на Рисунке 6.
Значение резистора доступа R (рисунок 7) на обмотке пускателя должно быть замкнуто на сопротивление фазы обмотки статора и должно выдерживать пусковой ток, равный 0.1-0,12 пускового момента.
Выбор конденсатора фазового сдвига
Рабочий конденсатор c = 1950 × Ie / Ue × cosφ (микрозакон), Ie, ue, cosφ — это исходный номинальный ток двигателя, номинальное напряжение и значения мощности.
Обычный рабочий конденсатор, используемый в однофазном источнике питания на трехфазном асинхронном двигателе (220 В): на каждые 100 Вт используются 4-6 микроконденсаторы. Пусковой конденсатор может быть выбран в соответствии с пусковой нагрузкой, обычно в 1–4 раза превышающей рабочий конденсатор.Когда двигатель достигает 75% ~ 80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель перегорит.
Емкость конденсатора должна быть выбрана правильно, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, то есть 11 = 12 = Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. При нормальном запуске отключите пусковой конденсатор.
Есть много преимуществ в использовании трехфазного двигателя от однофазного источника питания, работа перемотки проста.Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применить только к двигателю мощностью 1 кВт или менее.
II: Купите GoHz VFD
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим с регулируемой скоростью. Однофазный преобразователь частоты в трехфазный — лучший вариант для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устраняет пусковой ток во время запуска двигателя, заставляя двигатель работать от нулевой скорости до полной. скорость плавная, плюс цена абсолютно доступная.Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 до 7,5 л.с., более мощные частотно-регулируемые приводы могут быть настроены в соответствии с конкретными двигателями.
Видео с подключением однофазного и трехфазного частотно-регулируемого привода с частотой ГГц
Преимущества использования частотно-регулируемого привода с частотой дискретизации 1 ГГц для трехфазного двигателя:
- Плавный пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено в несколько секунд или даже десятки.
- Функция бесступенчатого регулирования скорости для обеспечения наилучшей работы двигателя.
- Переведите двигатель с индуктивной нагрузкой на емкостную нагрузку, которая может увеличить коэффициент мощности.
- имеет функцию самодиагностики, а также функции защиты от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций.
- Может быть легко запрограммирован с клавиатуры для автоматического управления.
ЧРП
III: Купите преобразователь частоты / фазы
Преобразователь частоты GoHz или преобразователь фазы также можно использовать для таких ситуаций, он может преобразовывать однофазный (110 В, 120 В, 220 В, 230 В, 240 В) в трехфазный (0- 520 В) с чистым синусоидальным выходом, который лучше для характеристик двигателя, чем форма волны ШИМ VFD, они предназначены для лабораторных испытаний, самолетов, военных и других приложений, где требуются высококачественные источники питания, это очень дорого.
Статья по теме: Влияние двигателя 60 Гц (50 Гц) на источник питания 50 Гц (60 Гц)
Show & Tell: асинхронные двигатели переменного тока
Двигатели переменного тока просты в управлении, надежны и экономичны для общего применения. По этим причинам они являются наиболее популярным типом электродвигателей в различных отраслях промышленности. В этом посте мы кратко представим асинхронные двигатели и продемонстрируем, как ими управлять.
Немного истории
Термин «индукция» в асинхронных двигателях (также известных как асинхронные двигатели) относится к электромагнитной индукции, которая является основной теорией работы асинхронных двигателей.Я объясню это в следующем разделе. Согласно Википедии, с изобретением асинхронного двигателя переменного тока связано несколько имен. В 1824 году французский физик Франсуа Араго открыл вращающиеся магнитные поля и ввел термин «Вращения Араго» (или «Диск Араго»). В 1831 году Майкл Фарадей смог объяснить эффекты, представив теорию электромагнитной индукции. В 1879 году Уолтер Бейли продемонстрировал первый примитивный асинхронный двигатель, включив и выключив его вручную.Первые трехфазные асинхронные двигатели без коммутатора переменного тока были независимо изобретены Галилео Феррарисом в 1885 году и Николой Тесла в 1887 году. Оба опубликовали статьи в 1888 году, чтобы объяснить эти технологии. Тесла подал заявку на патенты в США в 1887 году и получил некоторые из этих патентов в 1888 году. Джордж Вестингауз, который в то время разрабатывал систему переменного тока, лицензировал патенты Теслы в 1888 году и приобрел опцион на патент США на концепцию асинхронного двигателя Феррариса, чтобы развивать технологию дальше.General Electric (GE) начала разработку трехфазных асинхронных двигателей в 1891 году. К 1896 году General Electric и Westinghouse подписали соглашение о взаимном лицензировании на конструкцию ротора со стержневой обмоткой, позже названного ротором с короткозамкнутым ротором. Та же концепция используется и сегодня.
Асинхронные двигатели идеально подходят для приложений, требующих непрерывной работы в одном направлении , таких как конвейеры, миксеры и вращающиеся знаки. Они рассчитаны на продолжительный режим работы и обычно служат долгое время из-за своей простой конструкции. |
Конструкция и теория эксплуатации
На этом изображении показана структура асинхронного двигателя переменного тока, который является основным типом двигателей переменного тока с постоянными разделенными конденсаторами. Вращающийся элемент, ротор, поддерживается в корпусе двигателя двумя шарикоподшипниками для длительного срока службы. Статор расположен вокруг ротора с тонким воздушным зазором. Выходной вал соединен с ротором. Подводящие провода подключаются к обмоткам статора.Фланцевый кронштейн запрессован в корпус двигателя для обеспечения качества. |
Поскольку переменный ток подается на медные обмотки статора, вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока. Согласно правилу левой руки Флеминга, движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводнике) в стальном роторе, который генерирует свои собственные противоположные магнитные поля (закон Ленца). Магнитные поля от ротора затем взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.
Теория работы асинхронного двигателя переменного тока может быть объяснена с помощью диска Arago , который представляет собой наблюдаемое явление, включающее правило правой руки Флеминга и правило левой руки Флеминга. Хотите узнать больше о теории работы двигателей переменного тока? |
Однофазные асинхронные двигатели
Однофазные асинхронные двигатели предлагаются с разным напряжением и частотой для разных регионов мира.Для США однофазные двигатели обычно предлагаются на 110/115 вольт или 220/230 вольт, которые легко доступны. 60 Гц — типичная частота источника питания.
Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.
Хотя принцип работы должен быть одинаковым для всех однофазных двигателей переменного тока с постоянным разделенным конденсатором, представленных на рынке, цвета выводных проводов могут быть разными для разных производителей.
Для стандартного 3-проводного двигателя цвета проводов обычно белый, красный и черный. Черный всегда связан с нейтралью (N). И белый, и черный подключены к 2 клеммам специального конденсатора. Когда ток (L) подключен к черному или красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Для двигателей с клеммной коробкой принцип работы такой же. Однако клеммы обозначены Z2, U2 и U1.
Подключение конденсатора
Для однофазных двигателей конденсатор важен для запуска.Без пускового момента, обеспечиваемого конденсатором, вам пришлось бы помогать запускать двигатель, вручную вращая вал. Это как старые пропеллеры старинного самолета. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером службы поддержки.
Вот пример подключения 4-контактного конденсатора и однофазного двигателя.
Количество клемм на конденсаторе вас не смущает.На схеме внутренней проводки ниже показано, что две ближайшие клеммы имеют внутреннее соединение. В электрическом отношении это то же самое, что и у традиционных конденсаторов с двумя выводами, которые имеют только по одному выводу с каждой стороны. |
Мы также сняли видео, чтобы продемонстрировать правильный способ подключения этих двигателей, включая автоматические выключатели, переключатели и конденсатор.
Трехфазные асинхронные двигатели
Трехфазные асинхронные двигатели обычно предлагаются в США на 220/230 В и 50/60 Гц.В некоторых случаях предлагается 460 вольт. Трехфазные двигатели могут работать либо с постоянной скоростью, либо с инвертором / частотно-регулируемым приводом для приложений с регулируемой скоростью.
Вот действующие схемы подключения этих стандартных 3-проводных двигателей. FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.
Для трехпроводного трехфазного двигателя у нас такие же цвета проводов. Три фазы от источника питания обозначены L1 (R), L2 (S) и L3 (T).Подключите красный к L1 (R), белый к L2 (S) и черный к L3 (T). Для двигателей с клеммной коробкой клеммы имеют маркировку U, V и W. Принцип работы такой же. Чтобы переключить направление вращения, переключите любое из 2 соединений между R, S и T.
При перегрузке или блокировке вала рекомендуется использовать либо электромагнитный переключатель, либо электронную тепловую функцию инвертора, чтобы предотвратить перегорание двигателя.
Вы наверное обратили внимание, что на схеме подключения нет конденсатора .Для однофазных двигателей требуется конденсатор для создания многофазного источника питания. Для трехфазных двигателей конденсатор не требуется. Мы также сняли видео, чтобы продемонстрировать правильную проводку.
И последнее, но не менее важное. Не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать удара или травм со стороны персонала. |
Это все, что касается подключения однофазных и трехфазных асинхронных двигателей.Следите за новостями в следующем посте, где я расскажу о подключении других типов двигателей переменного тока, таких как реверсивные двигатели и двигатели с электромагнитным тормозом.
Не забудьте подписаться!
Узнайте о серии KII и KIIS Вот видео, которое кратко объясняет историю развития двигателей переменного тока Oriental Motor с 1966 года, когда серия K считалась фактическим стандартом для всех двигателей переменного тока, до введения серий KII и KIIS, которые являются новейшим стандартом одно- и трехфазные двигатели сегодня. |
Однофазные двигатели переменного тока (часть 2)
(продолжение части 1)
ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ РАЗДЕЛЕННОЙ ФАЗЫ
==
FGR. 26 Определение направления вращения для двигателя с расщепленной фазой.
==
FGR. 27 А конденсаторный двигатель с конденсаторным запуском.
==
FGR.28 Конденсаторный пуск Конденсаторный двигатель с дополнительным пуском
конденсатор.
==
FGR. 29 Потенциальные пусковые реле.
==
FGR. 30 Подключение реле потенциала.
==
Направление вращения однофазного двигателя в целом можно определить
когда мотор подключен.
Направление вращения определяется обращением к задней или задней части
мотор.FGR. 26 показана схема подключения для вращения. Если по часовой стрелке
вращение желательно, T5 должен быть соединен с T1. Если вращение против часовой стрелки
желательно, T8 (или T6) должен быть подключен к T1. Эта схема подключения
Предполагается, что двигатель содержит два набора рабочих и два набора пусковых обмоток.
Тип используемого двигателя будет определять фактическое подключение.
Например, FGR. 24 показано подключение двигателя с двумя рабочими обмотками.
и только один запуск намотки.Если бы этот двигатель был подключен по часовой стрелке
вращения, клемма T5 должна быть подключена к T1, а клемма T8
должен быть подключен к T2 и T3. Если вращение против часовой стрелки
желательно, клемма T8 должна быть подключена к T1, а клемма T5
должен быть подключен к T2 и T3.
КОНДЕНСАТОРНО-ПУСКОВЫЕ МОТОРЫ КОНДЕНСАТОРА
Хотя двигатель с конденсаторным пуском работает от конденсатора и является двигателем с расщепленной фазой,
он работает по другому принципу, чем индукционный запуск с сопротивлением.
двигатель или асинхронный двигатель с конденсаторным пуском.Конденсатор-пуск, конденсатор-бег
двигатель сконструирован таким образом, что его пусковая обмотка остается под напряжением
всегда. Конденсатор включен последовательно с обмоткой для обеспечения
постоянный ведущий ток в пусковой обмотке (FGR.27). Поскольку
пусковая обмотка все время находится под напряжением, центробежный переключатель не
необходимо для отключения пусковой обмотки при приближении двигателя к полной скорости.
Конденсатор, используемый в этом типе двигателя, обычно заполнен маслом.
типа, так как он предназначен для постоянного использования.Исключение из этого общего
Правило — это небольшие двигатели с дробной мощностью, используемые в реверсивном потолке
поклонники. Эти вентиляторы имеют низкое потребление тока и используют электролитический конденсатор переменного тока.
чтобы сэкономить место.
Конденсаторный двигатель с конденсаторным пуском в действительности работает по принципу
вращающегося магнитного поля в статоре. Поскольку и запускающие, и пусковые обмотки
остаются под напряжением все время, магнитное поле статора продолжает вращаться
и двигатель работает как двухфазный двигатель.У этого мотора отличный запуск
и рабочий крутящий момент. Он тих в работе и имеет высокий КПД.
Поскольку конденсатор все время остается подключенным к цепи,
коэффициент мощности двигателя близок к единице.
Хотя конденсаторный двигатель с конденсаторным пуском не требует центробежного
выключатель для отключения конденсатора от пусковой обмотки, некоторые двигатели
используйте второй конденсатор во время пускового периода, чтобы улучшить пуск
крутящий момент (FGR.28).
Хороший пример этого можно найти на компрессоре системы кондиционирования.
Блок кондиционирования предназначен для работы от однофазной сети. Если
двигатель не герметичен, для отключения используется центробежный выключатель
пусковой конденсатор из цепи, когда двигатель достигает примерно
75% номинальной скорости. Однако для герметичных двигателей необходимо использовать некоторые
тип внешнего переключателя для отключения пускового конденсатора от цепи.
Двигатель с конденсаторным пуском, работающий от конденсатора, или постоянный разделенный конденсатор
двигатель, как его обычно называют в системах кондиционирования и охлаждения
промышленность, как правило, использует потенциальное пусковое реле для отключения
пусковой конденсатор, когда нельзя использовать центробежный выключатель.Потенциал
пусковое реле, FGR. 29A и B, работает, обнаруживая увеличение
напряжение, возникающее в пусковой обмотке при работе двигателя. Схема
Схема потенциальной цепи пускового реле приведена на FGR. 30. Внутри схемы
реле потенциала используется для отключения пускового конденсатора от цепи
когда двигатель достигает 75% своей полной скорости. Пусковое реле
Катушка SR подключена параллельно пусковой обмотке двигателя.Нормально замкнутый контакт SR включен последовательно с пусковым конденсатором.
Когда контакт термостата замыкается, питание подается как на рабочий, так и на рабочий цикл.
пусковые обмотки. На этом этапе подключены как пусковой, так и рабочий конденсаторы.
в цепи.
Когда ротор начинает вращаться, его магнитное поле индуцирует напряжение в
пусковая обмотка, создавая более высокое напряжение на пусковой обмотке
чем приложенное напряжение. Когда двигатель разогнался примерно до 75% от
на полной скорости, напряжение на пусковой обмотке достаточно высокое, чтобы
подать напряжение на катушку реле потенциала.Это вызывает нормально закрытый
Контакт SR для размыкания и отключения пускового конденсатора от цепи.
Поскольку пусковая обмотка этого двигателя никогда не отключается от
линия питания, катушка потенциального пускового реле остается под напряжением
пока двигатель работает.
===
FGR. 31 Затененный полюс.
FGR. 32 Затеняющая катушка противодействует изменению магнитного потока при увеличении тока.
FGR.34 Затеняющая катушка препятствует изменению магнитного потока при уменьшении тока.
FGR. 33 Существует противодействие магнитному потоку, когда ток не
меняется.
====
ИНДУКЦИОННЫЕ ДВИГАТЕЛИ С ТЕНЕННЫМИ ПОЛЮСАМИ
Асинхронный двигатель с экранированными полюсами популярен благодаря своей простоте.
и долгая жизнь. Этот двигатель не содержит пусковых обмоток или центробежного переключателя.
Он содержит ротор с короткозамкнутым ротором и работает по принципу вращающегося
магнитное поле, создаваемое затеняющей катушкой, намотанной с одной стороны каждого полюса
кусок.
Двигатели с расщепленными полюсами обычно представляют собой двигатели с дробной мощностью, используемые для
приложения с низким крутящим моментом, такие как рабочие вентиляторы и воздуходувки.
ШЕЙДИНГ
Затеняющая катушка намотана на один конец полюсного наконечника (FGR. 31).
На самом деле это большая петля из медной проволоки или медной ленты. Два конца
соединены, чтобы сформировать полную цепь. Затеняющая катушка действует как
трансформатор с закороченной вторичной обмоткой.Когда ток переменного тока
форма волны увеличивается от нуля к своему положительному пику, магнитное поле
создается в полюсе. Когда магнитные линии потока прорезают
затеняющая катушка, в катушке индуцируется напряжение. Поскольку катушка низкая
сопротивление короткому замыканию, в контуре протекает большое количество тока.
Этот ток вызывает сопротивление изменению магнитного потока (FGR.
32). Пока в затеняющей катушке наведено напряжение, будет
противодействие изменению магнитного потока.
Когда переменный ток достигает своего пикового значения, он больше не меняется,
и никакое напряжение не индуцируется в затеняющей катушке. Поскольку нет
протекает ток в затеняющей катушке, нет противодействия магнитному
поток. Магнитный поток полюсного наконечника теперь однороден по полюсу.
лицо (ЛГР. 33).
Когда переменный ток начинает уменьшаться от пикового значения обратно в сторону
нуля магнитное поле полюсного наконечника начинает схлопываться.Напряжение
снова вводится в затеняющую катушку. Это индуцированное напряжение создает
ток, противодействующий изменению магнитного потока (FGR. 34). Это вызывает
магнитный поток, который должен быть сосредоточен в заштрихованной части полюса
кусок.
Когда переменный ток проходит через ноль и начинает увеличиваться
отрицательное направление, происходит тот же набор событий, за исключением того, что полярность
магнитного поля обратное. Если бы эти события были просмотрены в
быстрый порядок, магнитное поле будет видно, чтобы вращаться поперек лица
полюса.
==
FGR. 35 Четырехполюсный асинхронный двигатель с расщепленными полюсами.
==
FGR. 36 Обмотка статора и ротор асинхронного двигателя с экранированными полюсами ..
===
СКОРОСТЬ
Скорость асинхронного двигателя с расщепленными полюсами определяется тем же
Факторы, определяющие синхронную скорость других асинхронных двигателей:
частота и количество полюсов статора.
Двигатели с расщепленными полюсами обычно имеют четырех- или шестиполюсные двигатели.FGR.
35 показан чертеж четырехполюсного асинхронного двигателя с расщепленными полюсами.
ОБЩИЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ
Двигатель с расщепленными полюсами содержит стандартный ротор с короткозамкнутым ротором. Количество
крутящего момента определяется силой магнитного поля
статора, напряженности магнитного поля ротора и
разность фазовых углов между магнитным потоком ротора и статора. Индукция заштрихованного полюса
двигатель имеет низкий пусковой и рабочий крутящий момент.
Направление вращения определяется направлением, в котором
вращающееся магнитное поле движется по лицевой стороне полюса. Ротор поворачивается
направление показано стрелкой на FGR. 35.
Направление можно изменить, сняв обмотку статора и повернув
это вокруг. Однако это не обычная практика. Как правило,
Асинхронный двигатель с расщепленными полюсами считается нереверсивным. FGR. 36
показаны обмотка статора и ротор асинхронного двигателя с экранированными полюсами.
==
FGR. 37 Трехскоростной мотор.
==
МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ
Есть два основных типа многоскоростных однофазных двигателей. Один из них
последовательный тип полюса, а другой — запуск конденсатора со специальной обмоткой.
конденсаторный двигатель или асинхронный двигатель с экранированными полюсами. Последующий полюс
однофазный двигатель работает, реверсируя ток через переменный
полюсов и увеличение или уменьшение общего количества полюсов статора.В
последующий полюсный двигатель используется там, где необходимо поддерживать высокий крутящий момент.
на разных скоростях; например, в двухскоростных компрессорах для центрального
кондиционеры.
МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ ВЕНТИЛЯТОРА
Многоскоростные двигатели вентиляторов используются уже много лет. Они вообще
намотать от двух до пяти ступеней скорости и задействовать вентиляторы и беличью клетку
воздуходувки. Схематический чертеж трехскоростного двигателя показан на FGR. 37.
Обратите внимание, что обмотка хода была выбрана для получения низкого, среднего и
высокоскоростной.Пусковая обмотка подключена параллельно ходовой обмотке.
раздел. Другой конец провода пусковой обмотки подсоединяется к внешнему
маслонаполненный конденсатор. Этот двигатель изменяет скорость, добавляя индуктивность
последовательно с ходовой обмоткой. Фактическая рабочая обмотка для этого двигателя
между выводами отмечены высокий и общий. Обмотка, показанная между
высокий и средний соединены последовательно с обмоткой главного хода.
Когда поворотный переключатель установлен в положение средней скорости,
индуктивное сопротивление этой катушки ограничивает количество тока, протекающего через
ходовая обмотка.При уменьшении тока обмотки хода сила
его магнитного поля уменьшается, и двигатель производит меньший крутящий момент. Этот
вызывает большее скольжение, и скорость двигателя снижается.
Если поворотный переключатель установлен в нижнее положение, индуктивность увеличивается.
вставлены последовательно с ходовой обмоткой. Это приводит к меньшему току
через обмотку хода и еще одно снижение крутящего момента. Когда крутящий момент
уменьшается, скорость двигателя снова уменьшается.
Обычные скорости для четырехполюсного двигателя этого типа: 1625, 1500 и 1350.
Об / мин. Обратите внимание, что этот двигатель не имеет широких диапазонов между скоростями, поскольку
было бы в случае с последующим полюсным двигателем. Большинство асинхронных двигателей
перегрев и повреждение обмотки двигателя, если скорость была снижена до этого
степень. Однако этот тип двигателя имеет гораздо более высокое сопротивление обмоток.
чем у большинства моторов. Ходовые обмотки большинства двигателей с расщепленной фазой имеют провод
сопротивление от 1 до 4 Ом.Этот двигатель обычно имеет сопротивление
От 10 до 15 Ом в обмотке. Это высокий импеданс обмоток
что позволяет двигателю работать таким образом без повреждений.
Поскольку этот двигатель предназначен для замедления при добавлении нагрузки, он не работает.
используется для работы с нагрузками с высоким крутящим моментом — только с нагрузками с низким крутящим моментом, такими как вентиляторы и
воздуходувки.
ОДНОФАЗНЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ
Однофазные синхронные двигатели малы и развивают только дробную часть
Лошадиные силы.Они работают по принципу вращающегося магнитного поля.
разработан статором с расщепленными полюсами. Хотя они будут работать синхронно
скорости, они не требуют постоянного тока возбуждения. Они используются там, где постоянная
требуется скорость, например, в часовых двигателях, таймерах и записывающих приборах,
и как движущая сила для маленьких вентиляторов, потому что они маленькие и недорогие.
для производства. Есть два основных типа синхронных двигателей: Уоррен,
или двигатель General Electric, и двигатель Holtz.Эти двигатели также упоминаются
как гистерезисные двигатели.
==
FGR. 38 Мотор Уоррена.
==
FGR. 39 Мотор Holtz.
==
FGR. 40 Якорь и щетки универсального двигателя.
==
FGR. 41 Компенсирующая обмотка включена последовательно с
обмотка возбуждения.
==
WARREN MOTORS
Двигатель Уоррена состоит из ламинированного сердечника статора и одного
катушка.Катушка обычно наматывается для работы на переменном токе 120 В. Ядро содержит
две опоры, каждая из которых разделена на две секции.
Половина каждого полюсного наконечника содержит затеняющую катушку для вращения
магнитное поле (FGR. 38). Поскольку статор разделен на два полюса,
скорость синхронного поля составляет 3600 об / мин при подключении к 60 Гц.
Разница между двигателями Уоррена и Хольца заключается в типе ротора.
использовал. Ротор двигателя Уоррена построен путем укладки закаленных
стальные пластины на валу ротора.Эти диски имеют высокий гистерезис.
потеря. Пластины образуют две поперечины для ротора. Когда питание подключено
к двигателю вращающееся магнитное поле индуцирует напряжение в роторе,
и создается сильный пусковой крутящий момент, заставляющий ротор ускоряться
до почти синхронной скорости. Как только двигатель разгонится до почти синхронного
скорости, поток вращающегося магнитного поля следует по пути минимума
реактивное сопротивление (магнитное сопротивление) через две поперечины.Это вызывает
ротор блокируется синхронно с вращающимся магнитным полем, а двигатель
работает со скоростью 3600 об / мин. Эти двигатели часто используются с небольшими зубчатыми передачами.
снизить скорость до желаемого уровня.
ДВИГАТЕЛИ HOLTZ
В двигателе Holtz используется ротор другого типа (FGR. 39). Этот ротор
вырезан таким образом, чтобы образовалось шесть прорезей. Эти слоты образуют шесть
выступающие (выступающие или выступающие) полюса ротора. Обмотка типа «беличья клетка»
создается путем вставки металлической планки в нижнюю часть каждого слота.Когда
питание подключено к двигателю, обмотка с короткозамкнутым ротором обеспечивает
крутящий момент, необходимый для начала вращения ротора. Когда ротор приближается
синхронная скорость, выступающие полюса будут синхронизироваться с полюсами поля
каждый полупериод. Это обеспечивает скорость ротора 1200 об / мин (одна треть от
синхронная скорость) для двигателя.
УНИВЕРСАЛЬНЫЕ ДВИГАТЕЛИ
Универсальный двигатель часто называют двигателем переменного тока. это
очень похож на двигатель серии постоянного тока по своей конструкции в том, что он содержит
раневая арматура и кисти (FGR.40). Однако универсальный двигатель имеет
добавление компенсирующей обмотки. Если был подключен двигатель постоянного тока
к переменному току двигатель будет плохо работать по нескольким причинам.
Обмотки якоря будут иметь большое индуктивное сопротивление.
при подключении к переменному току. Кроме того, полевые столбы
большинство машин постоянного тока содержат цельнометаллические полюсные наконечники. Если бы поле было подключено
к переменному току большое количество энергии будет потеряно из-за индукции вихревых токов
в полюсах.Универсальные двигатели содержат ламинированный сердечник для предотвращения
Эта проблема. Компенсирующая обмотка намотана на статор и функционирует
для противодействия индуктивному сопротивлению обмотки якоря.
Универсальный двигатель назван так потому, что он может работать от переменного или постоянного тока.
Напряжение. При работе от постоянного тока компенсирующая обмотка
включен последовательно с последовательной обмоткой возбуждения (FGR. 41).
==
FGR.42 Компенсация проводимости.
==
FGR. 43 Индуктивная компенсация.
==
FGR. 44 Использование поля серии для установки кистей в нейтральной плоскости
должность.
==
ПОДКЛЮЧЕНИЕ КОМПЕНСАЦИОННОЙ ОБМОТКИ ПЕРЕМЕННОГО ТОКА
Когда универсальный двигатель работает от сети переменного тока, компенсирующий
обмотку можно подключить двумя способами. Если он подключен последовательно с
якорь, как показано на FGR.42, это называется компенсацией проводимости.
Компенсирующая обмотка также может быть подключена путем короткого замыкания ее выводов вместе.
как показано в FGR. 43. При таком подключении обмотка действует как
закороченная вторичная обмотка трансформатора. Наведенный ток позволяет
обмотка должна работать при таком подключении. Эта связь известна
как индуктивная компенсация. Индуктивная компенсация не может использоваться, когда
двигатель подключен к постоянному току.
НЕЙТРАЛЬНАЯ ПЛОСКОСТЬ
Так как универсальный двигатель содержит намотанный якорь, коллектор и
щетки, щетки должны быть установлены в положение нейтральной плоскости. Этот
может быть выполнено в универсальном двигателе аналогично настройке
нейтральная плоскость машины постоянного тока. При установке щеток на нейтраль
положение плоскости в универсальном двигателе, последовательное или компенсирующее
можно использовать обмотку. Чтобы установить кисти в нейтральную плоскость, используйте
последовательная обмотка (FGR.44), переменный ток подключен к якорю.
ведет. К последовательной обмотке подключают вольтметр. Напряжение тогда
наносится на арматуру. Затем положение щетки перемещается, пока вольтметр не
подключенное к серии поле достигает нулевой позиции. (Нулевая позиция
достигается, когда вольтметр достигает своей нижней точки.)
===
FGR. 45: Использование компенсирующей обмотки для установки щеток в нейтральную плоскость
должность.
===
Если компенсирующая обмотка используется для установки нейтральной плоскости, то попеременно
на якорь снова подключается ток и подключается вольтметр
к компенсационной обмотке (FGR. 45). Затем применяется переменный ток.
к якорю, а щетки перемещают до тех пор, пока вольтметр не покажет
его максимальное или пиковое напряжение.
РЕГУЛИРОВКА СКОРОСТИ
Регулировка скорости универсального двигателя очень плохая.Поскольку это
у серийного двигателя такая же плохая регулировка скорости, как у серийного двигателя постоянного тока.
Если универсальный двигатель подключен к малой нагрузке или без нагрузки, его скорость
практически неограничен. Этот двигатель нередко эксплуатируется при
несколько тысяч оборотов в минуту. Универсальные двигатели используются в
количество переносных устройств, отличающихся высокой мощностью и малым весом.
необходимо, например, буровые электродвигатели, пилы для профессионального использования и пылесосы. Универсальный
двигатель способен производить большую мощность для своего размера и веса, потому что
его высокой рабочей скорости.
ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ
Направление вращения универсального двигателя можно изменить в
таким же образом, как и изменение направления вращения двигателя постоянного тока.
Чтобы изменить направление вращения, измените выводы якоря относительно
к полю ведет.
РЕЗЮМЕ
• Не все однофазные двигатели работают по принципу вращающегося магнитного
поле.
• Двигатели с разделенной фазой запускаются как двухфазные двигатели, создавая противофазу.
условие тока в обмотке хода и тока в пуске
обмотка.
• Сопротивление провода в пусковой обмотке пускового резистора.
Асинхронный двигатель используется для создания разности фаз между
ток в пусковой обмотке и ток в пусковой обмотке.
• В асинхронном двигателе с конденсаторным пуском используется электролитический конденсатор переменного тока.
для увеличения разности фаз между пусковым и рабочим током.
Это вызывает увеличение пускового момента.
• Максимальный пусковой крутящий момент для двигателя с расщепленной фазой достигается, когда
Пусковой ток обмотки и ток рабочей обмотки сдвинуты по фазе на 90 ° с
друг с другом.
• Большинство асинхронных двигателей с резистивным пуском и индукционных двигателей с конденсаторным пуском.
двигатели используют центробежный переключатель для отключения пусковых обмоток, когда
двигатель достигает примерно 75% скорости при полной нагрузке.
• Конденсаторный двигатель с конденсаторным пуском работает как двухфазный двигатель.
потому что и пусковая, и пусковая обмотки остаются под напряжением во время работы двигателя.
• В большинстве двигателей с конденсаторным пуском используется масляный конденсатор переменного тока.
соединены последовательно с пусковой обмоткой.
• Конденсатор конденсаторного пускового конденсаторного двигателя помогает исправить
коэффициент мощности.
• Асинхронные двигатели с расщепленными полюсами работают по принципу вращающегося
магнитное поле.
• Вращающееся магнитное поле асинхронного двигателя с экранированными полюсами создается.
разместив затемняющие петли или катушки на одной стороне полюсного наконечника.
• Синхронная скорость возбуждения однофазного двигателя определяется
количество полюсов статора и частота приложенного напряжения.
• Последовательные полюсные двигатели используются, когда требуется изменение скорости двигателя.
и должен поддерживаться высокий крутящий момент.
• Двигатели многоскоростных вентиляторов состоят из последовательного соединения обмоток.
с обмоткой главного хода.
• Двигатели многоскоростных вентиляторов имеют обмотки статора с высоким сопротивлением для предотвращения
их от перегрева при уменьшении их скорости.
• Направление вращения двигателей с расщепленной фазой изменяется реверсированием.
пусковая обмотка по отношению к ходовой обмотке.
• Двигатели с расщепленными полюсами обычно считаются нереверсивными.
• Существует два типа однофазных синхронных двигателей: Уоррена и
Holtz.
• Однофазные синхронные двигатели иногда называют двигателями с гистерезисом.
• Двигатель Уоррена работает со скоростью 3600 об / мин.
• Двигатель Holtz работает со скоростью 1200 об / мин.
• Универсальные двигатели работают от постоянного или переменного тока.
• Универсальные двигатели содержат намотанный якорь и щетки.
• Универсальные двигатели также называются двигателями серии переменного тока.
• Универсальные двигатели имеют компенсирующую обмотку, которая помогает преодолевать индукционные помехи.
реактивное сопротивление.
• Направление вращения универсального двигателя можно изменить реверсированием.
якорь ведет относительно проводов возбуждения.
ВИКТОРИНА
1. Какие три основных типа двигателей с расщепленной фазой?
2.Напряжения в двухфазной системе на сколько градусов не совпадают по фазе.
друг с другом?
3. Как подключены пусковая и рабочая обмотки двигателя с расщепленной фазой?
по отношению друг к другу?
4. Для обеспечения максимального пускового момента в двигателе с расщепленной фазой,
на сколько градусов не совпадает по фазе должны запускаться и запускаться токи обмотки
быть друг с другом?
5. В чем преимущество асинхронного двигателя с конденсаторным пуском перед
индукционный двигатель с резистивным пуском?
6.В среднем, на сколько градусов не совпадают по фазе друг с другом
пусковые и управляющие токи обмотки в асинхронном двигателе с резистивным пуском?
7. Какое устройство используется для отключения пусковых обмоток цепи?
в большинстве негерметичных асинхронных двигателей с конденсаторным пуском?
8. Почему двигатель с расщепленной фазой продолжает работать после пусковых обмоток
были отключены от цепи?
9. Как можно изменить направление вращения двигателя с расщепленной фазой?
10.Если двигатель с двойным напряжением и расщепленной фазой должен работать от высокого напряжения,
как связаны друг с другом ходовые обмотки?
11. При определении направления вращения двигателя с расщепленной фазой,
следует ли смотреть на двигатель спереди или сзади?
12. Какой тип двигателя с расщепленной фазой обычно не содержит центробежного
выключатель?
13. Каков принцип работы конденсаторно-пускового конденсатора.
запустить мотор?
14.Что заставляет магнитное поле вращаться по индукции с заштрихованными полюсами
мотор?
15. Как изменить направление вращения асинхронного двигателя с экранированными полюсами?
быть изменен?
16. Как изменяется скорость последующего полюсного двигателя?
17. Почему многоскоростной вентиляторный двигатель может работать на более низкой скорости, чем большинство других?
асинхронные двигатели без вреда для обмоток двигателя?
18. Какова скорость работы мотора Уоррена?
19.Какая скорость работы мотора Хольца?
20. Почему электродвигатель серии переменного тока часто называют универсальным электродвигателем?
21. Какова функция компенсирующей обмотки?
22. Как изменить направление вращения универсального двигателя?
23. Когда двигатель подключен к постоянному напряжению, как должна компенсировать
обмотку подключать? 24. Объясните, как установить положение нейтральной плоскости.
кистей, используя поле серии.
25. Объясните, как установить положение нейтральной плоскости с помощью компенсирующего
обмотка.
ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ:
Вы — подрядчик по электрике, и вас вызвали на дом.
установить скважинный насос. Домовладелец купил насос, но делает
не знаю как его подключить. Вы открываете крышку клеммной коробки и
обнаружите, что двигатель имеет 8 клеммных выводов, помеченных с T1 по T8.
Двигатель должен быть подключен к напряжению 240 В.В настоящее время Т-выводы подключены
следующим образом: T1, T3, T5 и T7 соединены вместе; и T2, T4, T6 и
Т8 соединены вместе. Линия L1 подключена к группе клемм
с T1, а линия L2 подключена к группе клемм с T2. Является
нужно ли поменять провода для работы от 240 В? Если да, то как
они связаны?
Асинхронный двигатель с конденсаторным пуском
— его векторная диаграмма, характеристика и применение
A Двигатели с конденсаторным запуском — это однофазные асинхронные двигатели, в которых в цепи вспомогательной обмотки используется конденсатор для увеличения разности фаз между током в основной и вспомогательной обмотках.Само название «конденсатор запускает» показывает, что в двигателе для запуска используется конденсатор. На рисунке ниже показана схема подключения двигателя с конденсаторным пуском.
Состав:
Конденсаторный пусковой двигатель имеет ротор с сепаратором и две обмотки на статоре. Они известны как основная обмотка и вспомогательная или пусковая обмотка. Две обмотки разнесены на 90 градусов. Конденсатор C S включен последовательно с пусковой обмоткой.В цепь также включен центробежный выключатель S C .
Диаграмма фазора двигателя конденсаторного пуска показана ниже.
I M — это ток в основной обмотке, который отстает от вспомогательного тока I A на 90 градусов, как показано на векторной диаграмме выше. Таким образом, однофазный питающий ток разделяется на две фазы. Две обмотки электрически смещены друг от друга на 90 градусов, а их MMF равны по величине, но разнесены по фазе на 90 градусов.
Двигатель действует как сбалансированный двухфазный двигатель. Когда двигатель приближается к своей номинальной скорости, вспомогательная обмотка и пусковой конденсатор автоматически отключаются центробежным переключателем на валу двигателя.
Характеристики конденсаторного пускового двигателя
Конденсаторный пусковой двигатель развивает гораздо более высокий пусковой момент, примерно в 3–4,5 раза превышающий момент полной нагрузки. Для получения высокого пускового момента необходимы два условия.Они следующие: —
- Емкость пускового конденсатора должна быть большой.
- Клапан сопротивления пусковой обмотки должен быть низким.
Электролитические конденсаторы порядка 250 мкФ используются из-за высокого номинального значения Var, необходимого для конденсатора.
Ниже показана характеристика крутящего момента и скорости двигателя .
Характеристика показывает, что пусковой момент высокий. Стоимость этого двигателя больше по сравнению с двигателем с расщепленной фазой из-за дополнительной стоимости конденсатора.Конденсаторный пуск двигателя можно реверсировать, сначала приведя двигатель в состояние покоя, а затем поменяв местами соединения одной из обмоток.
Применение конденсаторного пускового двигателя
Различные области применения двигателя следующие: —
- Эти двигатели используются для нагрузок с большей инерцией, когда требуется частый запуск.
- Используется в насосах и компрессорах
- Используется в компрессорах холодильников и кондиционеров.
- Они также используются для конвейеров и станков.
Двигатели с конденсаторным пуском
: схема и объяснение того, как конденсатор используется для запуска однофазного двигателя
Однофазный асинхронный двигатель может быть выполнен с возможностью самозапуска различными способами. Один из часто используемых методов — это двигатели с расщепленной фазой. Другой метод — это индукционные двигатели с конденсаторным пуском.
Индукционные двигатели с конденсаторным пуском
Нам известно об активности конденсатора в чистом А.C. Схема. Когда конденсатор вводится таким образом, напряжение отстает от тока на некоторый фазовый угол. В этих двигателях необходимая разность фаз между Is и Im достигается за счет включения конденсатора последовательно с обмоткой стартера. В этих двигателях используются конденсаторы электролитического типа, которые обычно видны, поскольку они установлены вне двигателя как отдельный блок. (щелкните изображение, чтобы увеличить его).
Во время пуска, поскольку конденсатор включен последовательно с обмоткой пускателя, ток через обмотку пускателя Is опережает напряжение V, которое прикладывается к цепи.Но ток через основную обмотку Im по-прежнему отстает от приложенного напряжения V. Таким образом, чем больше разница между Is и Im, тем лучше результирующее вращающееся магнитное поле.
Когда двигатель достигает примерно 75% скорости полной нагрузки, центробежный переключатель S размыкается, отсоединяя обмотку стартера и конденсатор от основной обмотки. Из векторной диаграммы важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с разделенной фазой.Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Из векторной диаграммы видно, что ток через обмотку пускателя Is опережает напряжение V на небольшой угол, а ток через основную обмотку Im отстает от приложенного напряжения. Следует понимать, что результирующий ток I небольшой и почти совпадает по фазе с приложенным напряжением V.
Крутящий момент, развиваемый асинхронным двигателем с расщепленной фазой, прямо пропорционален синусу угла между Is и Я.Также угол составляет 30 градусов в случае двигателей с расщепленной фазой. Но в случае асинхронных двигателей с конденсаторным пуском угол между Is и Im составляет 80 градусов. Тогда очевидно, что одно только увеличение угла (с 30 градусов до 80 градусов) увеличивает пусковой момент почти вдвое по сравнению со стандартным асинхронным двигателем с расщепленной фазой. Кривая характеристики «скорость-крутящий момент» показывает пусковой и рабочий крутящие моменты асинхронного двигателя с конденсаторным пуском.
Типы двигателей
Существуют различные типы двигателей с конденсаторным пуском, разработанные и используемые в различных областях.Это:
- Одно напряжение, внешне реверсивное,
- Одно напряжение, нереверсивное,
- Одно напряжение, реверсивное, с термостатом,
- Одно напряжение, нереверсивное, с магнитным переключателем тип,
- Двухвольтный, нереверсивный тип,
- Двухвольтный, реверсивный тип,
- Одно-напряжение, трехпроводный, реверсивный тип,
- Одно-напряжение, мгновенно-реверсивный тип,
- Двухскоростной тип , и
- Двухскоростной с двухконденсаторным типом.
Эти двигатели могут использоваться для различных целей в зависимости от потребностей пользователя. Пусковые характеристики, характеристики скорости / крутящего момента каждого из вышеперечисленных двигателей могут быть проанализированы перед их использованием в работе.
Моя следующая статья об однофазных двигателях с расщепленными полюсами; Вы можете прочитать это здесь.
Изображение предоставлено:
www.tpub.com
www.allaboutcircuits.com
A / C-D / C Machines от A.K & B.L. Тераджа.
(PDF) Простой метод использования стандарта соединения треугольником трехфазного асинхронного двигателя при однофазной сети
Международный журнал инженерных тенденций и технологий (IJETT) — Том 15, номер 9 — сентябрь 2014 г.
ISSN: 2231 -5381 http://www.ijettjournal.org Страница 447
Рис. 10 Блок управления стандартным трехфазным асинхронным электродвигателем
, подключенным по схеме треугольника, для работы от однофазного питания
В.ВЫВОДЫ
Из проведенного исследования можно резюмировать
следующим образом.
1. Метод, который использовался в этом исследовании, может хорошо работать для работы по схеме треугольника
стандарт 3-фазного асинхронного двигателя на однофазном питании
при нагрузке до 66% от его
3- номинальная мощность фазы.
2. Метод может работать с двигателем при коэффициенте мощности
, близком к единице, более высоком КПД
(99,759%) и более низкой гармонике
искажение
ПОДТВЕРЖДЕНИЕ
Я выражаю благодарность команде лаборатории
электротехники из «Institut Teknologi
Padang», которые помогли этому исследованию провести
без сбоев.Я также хотел бы поблагодарить
‘Kopertis Wilayah X’ из Индонезии, которые профинансировали
этого исследования.
ССЫЛКИ
[1] Энтони, З., Тумиран и Берахим, Х, «Производительность асинхронного двигателя 3-
при работе от однофазного источника питания (Kinerja
pengoperasian motor indksi 3-fasa pada sistem tenaga 1-fasa dengan
menggunakan kapasitor) », Журнал Teknosain UGM, т. 16 нет. 1,
с.1–12, январь 2003 г.
[2] Энтони, З., 2004, «Анализ цепи рабочего конденсатора по методу двигателя
Semihex TM (анализатор двигателя
Semihex TM)», в Proc. Конференция SNVMS 2004, 2004, стр. 637-
641.
[3] Энтони, З., «Конструкция цепи пускового конденсатора для работы асинхронных двигателей 3-
на однофазной сети (Perencanaan kapasitor
start Untuk mengoperasikan motor индуктивность 3-фазная система (1-
фаза) », Journal of Momentum ITP, vol.2 шт. 2, pp. 9-13, Aug. 2004.
[4] Энтони З., «Конструкция системы управления с двойным функционалом для работы с трехфазным асинхронным двигателем
(Perancangan sistem kendali dual playsi
pengoperasian motor indexi 3- fasa) », Журнал Momentum ITP, т.
3 шт. 2, стр. 58-63, август 2005 г.
[5] Энтони З., «Конструкция цепи работы конденсатора для работы асинхронных двигателей 3-
на однофазной сети (Perancangan kapasitor
jalan untuk pengoperasian motor индуккси 3-fasa pada sistem tenaga 1-
fasa) », Журнал Teknik Elektro UK Petra, vol.8 нет. 1, pp. 46-51,
March 2008.
[6] Энтони З, «Конденсаторная батарея Влияние на пусковой ток асинхронного двигателя фазы 3-
(Pengaruh penggunaan kapasitor perbaikan
faktor daya terhadap arus пуск двигателя индукси 3-фаса), Журнал
Teknik Elektro ITP, вып. 2 шт. 1, стр. 26–32, январь 2013 г.
[7] Энтони З., «Простой метод работы трехфазного асинхронного двигателя
от однофазного источника питания (для стандарта соединения звездой)»
International Journal инженерных тенденций и технологий (IJETT),
т.5 шт. 1, ноябрь 2013 г., стр. 13–16.
[8] Бадр М.А., Алолах А.И. и Халим Абдул М.А., «Конденсаторный пуск трехфазного асинхронного двигателя
», Транзакция IEEE по преобразованию энергии, вып.
10 шт. 4, стр. 675-680, декабрь 1995 г.
[9] Хуанг Х., Фукс Э. Ф. и Уайт Дж. К. «Оптимальное размещение конденсатора пробега
в конструкции однофазного асинхронного двигателя», транзакции IEEE
по преобразованию энергии , Vol. 3, вып. 3, стр. 647-652, сентябрь 1988 г.
[10] Щеда, Ф. А., Эксплуатация трехфазных двигателей на однофазном питании, EC&M,
Январь 1985 г., стр. 40-41.
[11] Смит, О.Дж., «Большой недорогой однофазный двигатель SemihexTM», IEEE
Trans.