Подключение трехфазного электродвигателя ленточного гриндера
В данном материале мы рассмотрим схемы подключения трехфазного асинхронного двигателя с возможностью подключения по двум схемам. Для наших ленточных гриндеров мы рекомендуем использовать двигатель АИР71B2Y3 (ВНИМАНИЕ!! Вам необходим двигатель cдвумя режимами работы на 220/380В).
Двигатель трехфазный асинхронный 220/380 АИР71
Данный двигатель можно подключить двумя способами.
Звезда.
Звезда (Только при наличии 3-ех фазного напряжения), данный тип подключение позволяет не использовать рабочий конденсатор для функционирования гриндера. Данный тип подключения позволяет использовать всю мощность применяемого мотора, т.е. если у Вас есть 3-ех фазное напряжение, то мы рекомендуем подключать гриндер именно таким способом.
Схема подключении двигателя представлена на Рис.1
Рис.1 Схема подключения электродвигателя – звезда
Для подключения электродвигателя таким способом необходимо три провода фаз ( в любой последовательности) подключить на колодки U1 V1 W1. (ВНИМАНИЕ!! Перемычки обмоток двигателя должны располагаться как на Рис.2, В СЛУЧАЕ НЕВЕРНОГО ПОДКЛЮЧЕНИЯ ПЕРЕМЫЧЕК МЕЖДУ W2 U2 V2 ДВИГАТЕЛЬ СГОРИТ!!)
В случае запуска мотора в обратную сторону необходимо поменять местами любые из вводных проводов, см. Рис 2
Фото подключения двигателя звезда 380В
Треугольник
Треугольник, данный тип подключения хотя и менее производительный но его основным плюсом является возможность применения гриндера в домашних и гаражных условиях.
Данная схема подразумевает включение третьей обмотки двигателя через рабочий конденсатор
Когда я сам разбирался в этом вопросе на многих аналогичных схемах изображены два конденсатора (пусковой и рабочий разной номинальной емкости), но для двигателей малой мощности ( до 1.5кВт) вполне можно использовать только один конденсатор (рабочий). Емкости рабочего конденсатора подбирается очень просто:
Ф=P(двиг)*0.1
Т.е. для двигателя P=0.75 кВт – 80мкФ, для двигателя P=1.1кВт – 100мкФ
Схему подключения смотри на Рис. 3
Рис.3 Схема подключения электродвигателя – треугольник
Для подключения электродвигателя таким способом необходимо два провода ( в любой последовательности) подключить на колодки U1 V1 на колодку W1 мы подключаем провод через пусковой конденсатор.
ВНИМАНИЕ!! Перемычки обмоток двигателя должны располагаться как на Рис.4.
В случае запуска мотора в обратную сторону меняем два вводных провода местами, см. Рис 4
Фото подключения двигателя треугольник 220В
Подключение трехфазного двигателя к сети 220 или 380 В по схеме
Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.
Общая информация
Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.
Конструктивно трехфазные электродвигатели состоят из:
- Статора с магнитопроводом;
- Ротора с валом;
- Обмоток.
В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках. Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.
Схемы подключения обмоток двигателя
В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:
- Звезда;
- Треугольник;
- Звезда и треугольник.
Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается в том числе и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:
Пример обозначения на шильде
Если шильд отсутствует или информация на нем стерлась, то схему подключения можно узнать, открыв блок распределения начал обмотки (БРНО). Если вы увидите 6 выводов, имеющих клеммные соединения, можно определить тип включения обмоток. Гораздо хуже, когда борно имеет только три вывода, а подключение производится внутри корпуса. В этом случае нужно разобрать трехфазный электромотор, чтобы увидеть способ соединения.
Звезда
Схема подключения трехфазного двигателя звездой предусматривает, что начало каждой обмотки объединяется в одну точку, а к их концам подключаются фазы от питающей линии. Такой тип обеспечивает значительно более плавный пуск и относительно щадящий режим работы. Однако мощность, с которой вращается ротор, в полтора раза ниже, чем при подключении треугольником. Схематически данное подключение выглядит следующим образом:
Схема подключения звезда
Как видите на рисунке, концы выводов обмоток трехфазного двигателя A2, B2, C2 соединены в один электрический узел. А к клеммам A1, B1, C1 – подключаются фазные провода, как правило, на 220 или 380 вольт.
Если рассматривать данную схему на примере борна, выглядеть оно будет так:
Соединение обмоток звездой
Треугольник
Чтобы подключить электродвигатель треугольником вам необходимо подвести конец одной обмотки к началу другой. И таким образом замкнуть обмотки в своеобразное кольцо, в точки соединения которых и подключаются выводы питающей линии. Схема соединения треугольником обеспечивает максимальный момент и усилие на валу, что особенно актуально для больших нагрузок. Однако и ток в обмотках при номинальной нагрузке также пропорционально повысится, не уже говоря о режимах перегрузки.
Поэтому включение трехфазного двигателя треугольником и требует понижения напряжения. К примеру, если одну и ту же электрическую машину можно подключить с соединением обмоток и треугольником, и звездой, то звезда будет иметь напряжение питания 380, а треугольник 220 вольт или 220 и 127 вольт соответственно. Схематически подключение обмоток треугольником будет выглядеть так:
Схема подключения треугольник
Как видите, соединение производится от A2 к B1, от B2 к C1, от C2 к A1, в некоторых моделях электрических машин маркировка выводов может отличаться, но на крышке борна будет отображаться их принадлежность к той или иной обмотке и возможные варианты соединения между собой.
Соединение обмоток треугольником
Варианты подключения
Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.
В однофазную сеть
Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети. Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°, а вот однофазный конденсатор, наоборот, в положительную до +90°.
Графически функция отставания напряжения от тока будет выглядеть следующим образом:
Изменение тока и напряжения на емкости и индуктивности
Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:
Схема включения в однофазную сеть
Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.
Расчет конденсаторного пуска производится по формуле:
Сраб = (2800*I)/U — для включения трехфазного двигателя звездой
Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником
Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.
В трёхфазную сеть
В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.
Схема включения в трехфазную сеть
На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:
- подача напряжения на двигатель от сети производится через рубильник 1.
- далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
- после чего двигатель начинает вращение, а пусковая кнопка 6 шунтируется через повторитель 5;
- для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
- защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.
Данная схема может упрощаться в связи с конструктивными особенностями применяемых пускателей. Так как некоторые из них изготавливаются без повторителей, могут иметь функцию реверсирования трехфазного двигателя или выпускаться без защиты. Более детальную информацию о магнитных пускателях вы можете почерпнуть из соответствующей статьи на сайте: https://www.asutpp.ru/elektromagnitnyj-puskatel.html
Видео по теме
Подробное описание и схема подключения трехфазного двигателя к однофазной сети
Современный рынок предлагает однофазные и трехфазные электродвигатели. Но, как известно, бытовая сеть – однофазная, отсюда закономерный вопрос: осуществимо ли подключение трехфазного двигателя к однофазной сети?
Приведем несколько вариантов решения обозначенной задачи. Чаще предпочтение отдается методу подключение трехфазного двигателя через конденсатор – один из элементов является рабочим, другой – пусковым. Обозначения Ср и Сп. На схеме рассмотрены варианты включения «звезда» (а) и «треугольник» (б).
Рис.1
За счет действия элемента схемы Сп достигается увеличение пускового момента. После того, как двигатель запущен, Сп отключают. В ситуациях, когда пуск электродвигателя выполняется без нагрузки, необходимость включать в цепь конденсатор Сп отпадает.
Для успешной реализации задачи важно правильно определить емкость рабочего конденсатора. Используется закономерность:
Ср=К(1ном/U), где
Ср – рабочая емкость (мкФ), 1ном – сила тока по номиналу (А), U – напряжение в однофазной цепи (В), К – коэффициент, который зависит от того, какая схема подключения трехфазного двигателя выбрана. Показатель «К» для «звезды» — 2800, «треугольника» — 4800.
Показатели номинального тока и напряжения можно найти в технической документации (паспорте) к каждому виду электрических двигателей.
Подключение трехфазного двигателя через конденсатор чаще предусматривает применение недорогого электролитического конденсатора ЭП. После каждого включения такой конденсатор крайне важно разряжать.
Как показывает практика, подключение трехфазного двигателя к однофазной сети с помощью конденсаторов оправдано. Такая схема дает мощность в 65-85% от приведенных в паспорте данных. Проблемы могут возникнуть только с подбором нужного типа конденсатора. Чтобы не решать подобных задач, большое распространение получила схема подключения трехфазного двигателя с применением активных сопротивлений.
Рис.2
Но необходимо учесть, что при помощи метода сопротивления часто не получается получить мощность силовой установки больше, чем половина ее номинала.
Выполняя подключение трехфазного двигателя в однофазную сеть через конденсатор важно понимать, что номинал конденсаторов модификаций КБГ-МН и БГТ приводится на постоянном токе. При работе в условиях переменного тока, величины допустимых напряжений не должны превышать приведенных в таблице ниже показателей.
Номинальное напряжение постоянного тока, В | Допустимое напряжение переменного тока, В, при частоте 50Гц и емкости конденсатора, мкФ: | |
---|---|---|
до 2 | 4-10 | |
400 600 1000 1500 | 250 300 400 500 | 200 250 350 — |
Определить величину пусковых активных сопротивлений можно, опираясь на величины, приведенные в таблице ниже. За основу принимаются мощности электрического двигателя в трехфазном режиме.
Мощность двигателя, кВт | Пусковое сопротивление, Ом |
---|---|
при включении по схеме Рис.2 (а) | |
0,6 1,0 1,7 2,8 4,5; 7,0 | 25-30 20-25 10-15 4-10 3-5 |
при включении по схеме Рис. 2 (б) | |
0,6; 1,0 1,7; 2,8 4,5 | 8-15 3-4 1,5-3 |
В информационном разделе Дельта Привод вы также можете подробнее ознакомиться с вопросом включения двигателя постоянного тока в сеть 110/220 вольт.
Подключение электродвигателя по схеме звезда и треугольник
Схемы подключения электродвигателя. Звезда, треугольник, звезда — треугольник.
Асинхронные двигатели, имея ряд таких неоспоримых достоинств, как надежность в эксплуатации, высокая производительность, способность выдерживать большие механические перегрузки, неприхотливость и невысокая стоимость обслуживания и ремонта, обусловленные простотой конструкции, имеют, конечно и свои определенные недостатки.
На практике применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».
При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).
При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).
Не вдаваясь в технические и теоретические основы электротехники известно, что электродвигатели у которого обмотки, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенными обмотками треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.
В связи с этим для снижения пусковых токов целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме «звезда», после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме «треугольник».
Схема управления :
Еще вариант схемы управления двигателем
Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.
После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.
При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.
Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.
(Начало обмоток статора: U1; V1; W1. Концы обмоток: U2; V2; W2. На клеммной доске шпильки начала и концов обмоток расположены в строгой последовательности: W2; U2; V2; под ними расположены: U1; V1; W1. При подключении двигателя в «треугольник» шпильки соединяются перемычками: W2-U1; U2-V1; V2-W1.)
На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.
Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.
Для запуска двигателей по схеме звезда-треугольник разными производителями выпускаются так называемые пусковые реле, название они могут иметь разные «Пусковые реле времени» , реле «старт-дельта» и др. , но назначение у них одно и тоже:
РВП-3, ВЛ-32М1, D6DS (Австрия) , ВЛ-163 (Украина), CRM-2T (Чехия), TRS2D (Чехия), 1SVR630210R3300 (ABB), 80 series (Finder) и другие.
Типовая схема с пусковым реле времени (реле «звезда/треугольник») для управления запуском трехфазного асинхронного двигателя:
Вывод: Для снижения пусковых токов запускать двигатель необходимо в следующей последовательности: сначала включенным по схеме «звезда» на пониженных оборотах, далее переключаться на «треугольник».
Запуск сначала треугольником создает максимальный момент, а уже переключение на звезду (пусковой момент в 2 раза меньше) с дальнейшей работой в номинальном режиме, когда электродвигатель «набрал обороты», происходит автоматическое переключение на схему треугольник, стоит учитывать какая нагрузка на валу перед запуском, ведь вращающий момент при звезде ослаблен, поэтому такой способ запуска вряд ли подойдет для очень загруженных двигателей, может выйти из строя.
Пуск трёхфазного двигателя без конденсаторов: 4 схемы
Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.
Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.
Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.
Содержание статьи
С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.
Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.
Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.
Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.
Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.
Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.
Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.
Три обмотки статора необходимо подключать по схеме треугольника.
Их выводы собираются на клеммной колодке тремя последовательными перемычками.
Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.
Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».
Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.
Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.
Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.
Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.
Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».
Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.
Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.
Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.
Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.
При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.
Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.
Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.
За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.
Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.
Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).
Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.
Максимальное введение сопротивления резистора R7 закрывает электронный ключ.
Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.
Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.
Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.
Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.
Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.
2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.
Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…
Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.
Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.
Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик
Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.
Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.
При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.
Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.
Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.
Рекомендации автора по сборке и наладке
Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.
На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.
При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.
Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.
Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами
Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.
На картинке ниже их полярность показана точками.
В этой ситуации создается больший крутящий момент для запуска ротора.
Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.
Рекомендации автора по наладке и работе не изменились.
Преимущества схемы тиристорного преобразователя: автор В Соломыков
Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.
Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.
Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.
Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.
Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:
- DD1 — К176ЛЕ5;
- DD2 — К176 ИР2.
Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.
Логическая часть
Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.
Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.
Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.
Таблица данных К176ИР2 и состояний регистров
Число разрядов | 4х2 | Входы | Выход | |||
Сторона сдвига | Направо | C | D | R | Q0 | Qn |
Тип ввода | Последовательно | ∫ | H | Н | H | Qn-1 |
Тип вывода | Параллельно | ∫ | B | H | B | Qn-1 |
Тактовая частота | 2,5MHz | ∫ | X | H | Q1 | Qn не меняется |
Рабочая температура | -45÷+85 | X | X | B | H | H |
Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.
Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.
Силовая часть схемы, принципы ее управления и наладки
При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.
При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.
В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.
Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.
Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.
Емкость конденсаторов предварительно рассчитывают по формуле:
С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).
При номинальной частоте вращения ротора выставляют n=1.
Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.
Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.
Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.
Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.
Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.
Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.
Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.
Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.
Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.
Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.
Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть
Схема подключения электродвигателя во многом определяется условиями его эксплуатации.
Например, подключение «звездой» обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением «треугольником».
Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).
На рисунке 1 представлены две схемы соединения обмоток двигателя.
- Схема соединения «звездой». Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).
Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.
- Соединение обмоток электродвигателя «треугольником». При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.
В отличие от соединения «звездой» эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.
- Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.
Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.
Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.
Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.
В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.
- Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
- Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
- Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.
Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.
ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ
Такая необходимость возникает достаточно часто. Сразу замечу — мощность электродвигателя при этом теряется.
Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100.
Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.
Наиболее простая схема приведена на рисунке 3.
В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.
Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.
Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 — 500 кОм.
По этой схеме можно подключать электродвигатели с по схеме как «треугольник» так и «звезда».
Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.
При нажатии кнопки «пуск» срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими — включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.
После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки «стоп», размыкающей цепь питания.
Катушки пускателей должны быть рассчитана на напряжение 220В.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Схемы подключения электродвигателя, подключение трехфазного двигателя к трехфазной сети 380 В
На производственном предприятии регулярно возникает необходимость подключения или переподключения трехфазного электродвигателя к трехфазной сети 380 В, 660 В или однофазной 220 В, но не всегда есть опыт грамотно работать со всеми возможными схемами подключения трехфазного электродвигателя. В зависимости от цели эксплуатации электродвигателя, ниже приведены схемы подключения трехфазного двигателя со всеми достоинствами и недостатками. При покупке электродвигателя не всегда обращают внимание на схему подключения на именной табличке или на задней крышке клемной коробки, а подключают новый двигатель по привычке как старый и это является чуть ли не основной причиной сгоревших моторов. Следует отметить что трехфазные электродвигатели встречаются трех модификаций по возможности подключения:
- 380 В — 3 вывода, схема «звезда» (Y)
- 220 / 380 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)
- 380 / 660 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)
ВНИМАНИЕ! Работа с электрическими двигателями без заземления, пусковой и защитной автоматики запрещена. Неквалифицированное обращение с высоким напряжением может нанести вред здоровью и летальному исходу.
Схема подключения электродвигателя 380В — 3 вывода
Это самый простой тип подключения, когда заводом изготовителем заранее собрано схему «звезда» (Y) и в клемной коробке предстоит подсоединить всего три провода (3 фазы) без наличия перемычек меж клеммами.
Преимущество данной схемы:
- Простота подключения электродвигателя.
- Надежная работа с максимальным КПД и мощностью в номинальном режиме.
Недостаток такого исполнения:
- Невозможность использовать электродвигатель от однофазной сети 220 В с максимальной мощностью до 70%
- Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.
Схема подключения электродвигателя «220/380В» треугольник / звезда — 6 выводов
Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и подключается в трехфазную сеть 380 Вольт по схеме (Y) «звезда» см. Рис.1, которая собрана по умолчанию на заводе изготовителе. В таком исполнении завод изготовитель выпускает чаще всего маломощные трехфазные электродвигатели от 0,12 кВт до 7,5 кВт или же габариты двигателей от АИР 56 до АИР 112.
Преимущества схемы «звезда» (Y) для 220/380 В:
- Высокая надежность работы электромотора.
- Максимальное КПД двигателя.
- Устойчивость к кратковременным перегрузам электродвигателя.
Преимущества схемы «треугольник» (Δ) для 220/380 В:
- При необходимости данный электродвигатель может быть использован подключением от сети 220 В по схеме «треугольник» (Δ) с использование рабочего конденсатора и если потребуется дополнительно пускового конденсатора. В этом случае двигатель будет работать на 70% от заявленной мощности. Этот вариант подключения со всеми преимуществами и недостатками подробно разберем в следующей статье.
Недостатки исполнения электродвигателя 220/380 В:
- Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.
Схемы подключения трехфазных электродвигателей «380/660В» треугольник / звезда — 6 выводов
Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и чаще всего в новом электродвигателе в заводском исполнении производителем заранее собрана по умолчанию схема «звезда» (Y) см. Рис.1. Исполнение 380/660 чаще всего идет на средней и большой мощности электродвигателей от 4 кВт до 315 кВт и более или от габарита АИР 132 до АИР 355 и более. В связи с универсальностью в эксплуатации данного исполнения электродвигателей средней и высокой мощности низковольтного оборудования можно смело заявить о достоинствах без недостатков. Трехфазные электродвигатели можно подключать к трехфазной сети 380/660 В по следующим схемам:
- схема «звезда» (Y) или 660В используется для плавного пуска избегая тяжелого пуска (высокий пусковой момент) и высоких пусковых токов.
- схема «треугольник» (Δ) работа от стандартной сети 380В в номинальном режиме эксплуатации электродвигателя.
- схема «звезда-треугольник» (Y/Δ) комбинированная схема подключения для автоматического перехода с плавного пуска на 660В на рабочий режим 380В
Схема «звезда» для 380/660 В
Подключение звездой применяют для того, чтобы пуск электродвигателя сделать плавным за счет снижения пусковых токов. Но в ней есть один существенный минус для продолжительной работы: двигатель будет работать с мощностью на 30% меньшей от указанной в паспорте. Как подключить трехфазный асинхронный электродвигатель по схеме «звезда» показано на Рис.1.
Схема «треугольник» для 380/660 В
Подключение треугольником к сети 380 В позволяет использовать всю заявленную мощность электродвигателя. Но и она имеет недостаток для пускового момента: во время пуска мотора сила тока очень высока и как результат в двигателе под тяжелой пусковой нагрузкой может подгореть изоляция обмоток. Как подключить трехфазный асинхронный электродвигатель по схеме «треугольник» показано на Рис.1.
Схема «звезда-треугольник» для 380/660 В
Комбинированная схема подключения звезда-треугольник позволяет использовать все преимущества двух отдельных схем и обойти их недостатки. Чаще всего так подключают электродвигатели с большой мощностью. Суть этого решения заключается в том, что двигатель запускается по схеме «звезда», а при достижении оптимального числа оборотов переключается на схему «треугольник». Таким образом пуск электродвигателя получается плавным с небольшими пусковыми токами, а после переключения схем его мощность увеличивается на 30% и полностью соответствует заявленной в паспорте. Как подключить трехфазный асинхронный электродвигатель по схеме «звезда-треугольник» показано на Рис.2. Электродвигатель подключен по схеме «звезда», если замкнуты ключи K1 и K3, а по схеме «треугольник» – если замкнуты ключи K1 и K2. Переключение с одной схемы на другую происходит автоматически или вручную, в зависимости от предустановленного автоматического оборудования. Для этого используют чаще всего магнитный пускатель, пусковое реле или пакетный переключатель.
Как подключить трехфазный двигатель
Я пытаюсь починить старую трехфазную дрель.
Из двигателя выходят 3 провода, которые подключаются к трем фазам.
Подключение его к источнику питания ничего не дает, поэтому я проверил его с помощью мультиметра и увидел, что два провода, идущие от двигателя, закорочены вместе, но не с хорошим соединением (~ 25 Ом).
Я не разбираюсь в электричестве, кроме ваших обычных знаний непрофессионала, и определенно не знаю, зачем нужны три фазы или как они используются (или, действительно, что этот термин даже означает, помимо очевидных трех проводов)
Поэтому сначала я предполагал, что это короткое замыкание является неисправностью где-то внутри двигателя.
Затем, переосмыслив, я понял, что если три фазы полностью разделены и нет 0 / заземления, идущего к двигателю, то как можно замкнуть цепь?
Действительно ли это короткое замыкание является неисправностью? как возникает замкнутая цепь, когда единственные линии, идущие в двигатель, — это линии питания?
Спасибо 🙂
/ Редактировать
Учитывая полезные ответы и комментарии, я могу только предположить, что что-то внутри двигателя неисправно.
Это потому, что 1) Ничего не произошло, когда он был подключен к электричеству, даже ничего плохого.2) Мультиметр показывает, что существует только физическое соединение между одной из трех пар.
Надеюсь, я смогу протестировать это дальше и завтра предоставлю фотографии.
Спасибо!
/ После дополнительных испытаний
Похоже, я был введен в заблуждение, и к трехфазной розетке в стене даже не подавалось питание. Ой!
При реальной подаче мощности на двигатель, он как бы пытается вращаться с ОЧЕНЬ сильным сопротивлением, и, в конце концов, через несколько секунд ему удается вращаться очень медленно.Становится очень жарко.
Поскольку существует только физическое соединение между одной из трех пар, я предполагаю, что это означает, что только одна из фаз действительно работает.
Возможно, я попытаюсь полностью открыть его, хотя не думаю, что у меня есть подходящие инструменты для работы.
Большое спасибо за ответы и пояснения, по крайней мере, у меня есть некоторая базовая информация по этому вопросу, о которой я совершенно ничего не знал два дня назад 🙂
/ Заключение
Двигатель был отправлен на ремонт, и действительно, обмотки испортились, и их пришлось переделывать.
Большое спасибо вам всем за то, что вы меня обучили 🙂
Трехфазные двигатели, включенные параллельно — возможно?
Трехфазные двигатели, включенные параллельно — возможно? — Обмен электротехнического стека
Сеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange
0
+0
- Авторизоваться
Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществу
Кто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено
127 раз
\ $ \ begingroup \ $
Допускается ли параллельное соединение некоторых (группы) трехфазных двигателей вентиляторов с внутренней проводкой Даландера? Вся группа будет использоваться для низкой и высокой скорости по запросу.Равная нагрузка на каждый двигатель. Может у кого-то есть такой опыт? Общие предохранители для всей группы, а не для отдельных (знаю, что это плохо).
У всех одна сила.
Создан 12 ноя.
\ $ \ endgroup \ $
2
\ $ \ begingroup \ $
Да.Несколько двигателей были подключены, чтобы по существу «помогать друг другу» управлять нагрузкой разными способами на протяжении многих десятилетий. Один из распространенных вариантов — наличие приточного и возвратного вентиляторов в системе отопления, вентиляции и кондиционирования (HVAC). Вы должны быть осторожны при проектировании механической системы, чтобы один двигатель не принимал на себя всю нагрузку или даже не «перегружал» другой (ие). Распределение нагрузки, системы с несколькими двигателями использовались даже в ситуациях, когда нагрузки механически связаны друг с другом, например, два двигателя, подключенные к одному валу, несколько двигателей с ведущими звездочками на одной цепи или привод более одной ведущей шестерни на одном кольце. механизм.В некоторых случаях используются специальные системы управления двигателем. В асинхронных двигателях присущее им скольжение помогает распределять нагрузку.
Создан 12 ноя.
Чарльз КоуиЧарльз Коуи
33.3k11 золотых знаков2323 серебряных знака5757 бронзовых знаков
\ $ \ endgroup \ $
4
Не тот ответ, который вы ищете? Посмотрите другие вопросы с метками параллельный двигатель или задайте свой вопрос.
Электротехнический стек Exchange лучше всего работает с включенным JavaScript
Ваша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie
Настроить параметры
Конденсатор
— трехфазный двигатель, работающий от однофазной сети с использованием соединения треугольником Штейнмеца
Как трехфазные двигатели могут работать от однофазной сети с использованием соединения треугольником Штейнмеца с одним конденсатором?
Подключение не дает хорошей производительности, но дает лучшее, что может быть достигнуто без трехфазного источника питания.2 x 50 / f где:
C в микрофарадах
л.с. — номинальная мощность двигателя
л.с.
В — номинальное напряжение двигателя
f — номинальная частота двигателя
К сожалению, я скопировал ссылки, которые у меня есть некоторое время назад, без указания их происхождения.
Приложение 1:
Ёмкость конденсатора должна быть оптимизирована в зависимости от фактической нагрузки двигателя.
Формула взята из PDF-файла на сайте engineering.com. При нажатии на ссылку поиска Google файл PDF загружается.Я не знаю, как получить доступ к какому-либо связанному контексту на сайте.
В целом можно сказать, что хороший многофазный двигатель делает плохой
однофазный двигатель. Хороший многофазный двигатель может быть однофазным.
двигатель, и чтобы получить хороший однофазный двигатель чрезвычайно хороший
требуется многофазный двигатель.
Однофазный асинхронный двигатель , Чарльз Протеус Стейнмец, заседание Американского института инженеров-электриков, Нью-Йорк, 23 февраля 1898 г.
Приложение 2:
Метод оптимизации емкости конденсатора состоит в том, чтобы отрегулировать емкость таким образом, чтобы ток в конденсаторе был равен номинальному току двигателя для соединения треугольником.
Существуют варианты подключения Steinmetz для конденсаторного запуска, конденсаторного запуска с конденсаторным запуском и для соединения звездой (звездой).
Трехфазное питание: объяснение треугольника и звезды
Электричество используется для питания множества устройств, которые предназначены для удобства и необходимости людей и процессов по всему миру. Трехфазное питание играет ключевую роль в проектировании электрических систем, а трехфазные фильтры электромагнитных помех являются важной частью электрических устройств на различных рынках, в первую очередь в тяжелых промышленных приложениях.Большинству устройств в промышленных приложениях требуется большая мощность для обеспечения достаточного количества электроэнергии для поддержки больших двигателей, систем отопления, инверторов, выпрямителей, источника питания и индукционных цепей. Из-за этого высокомощное оборудование обычно проектируется для трехфазного или многофазного переменного тока, в котором общая потребляемая мощность делится между многими фазами, оптимизируя систему энергоснабжения (генерацию и распределение) и конструкцию оборудования.
В трехфазной системе есть три проводника, по которым протекает переменный ток.Они называются фазами и обычно обозначаются как A, B и C. Каждая фаза настроена на одинаковую частоту и амплитуду напряжения, но сдвинута по фазе на 120 °, что обеспечивает постоянную передачу мощности во время электрических циклов.
Конфигурации с трехфазным питанием особенно важны, поскольку они могут поддерживать в три раза больше мощности, используя всего в 1 ½ — 2 раза больше проводов, чем конфигурация с однофазным питанием. Это может помочь снизить стоимость и количество материалов, необходимых для проектирования системы.Это также может упростить конструкцию двигателя, исключив необходимость в пусковых конденсаторах.
Однако преобразование большой мощности (инвертирование, выпрямление) генерирует шум с чрезмерно высокими частотами (EMI), который обычно представляет собой гармоники высшего порядка различных частот переключения.
По этой причине трехфазные фильтры электромагнитных помех становятся особенно важными в трехфазных приложениях, поскольку они снижают уровень электромагнитных помех, предотвращают нарушения в работе оборудования и помогают компаниям соблюдать правила электромагнитной совместимости.
Различия между Delta и WYE
Трехфазные системы могут быть сконфигурированы двумя различными способами для поддержания равных нагрузок; они известны как конфигурации Delta и WYE. Названия «Дельта» и «WYE» представляют собой специфические индикаторы форм, на которые напоминают провода после соединения друг с другом. «Дельта» происходит от греческого символа «Δ», а «WYE» напоминает букву «Y» и также известна как «звездная» цепь. Обе конфигурации, Delta и WYE обладают гибкостью для подачи питания по трем проводам, но основные различия между ними основаны на количестве проводов, доступных в каждой конфигурации, и текущем потоке.Конфигурация WYE приобрела популярность в последние годы, поскольку она имеет нейтральный провод, который позволяет подключать как фазу к нейтрали (однофазное), так и линейное (2/3 фазы).
Что такое фильтры трехфазной линии питания?
Трехфазные фильтры электромагнитных помех
разработаны в соответствии со строгими требованиями нормативов электромагнитной совместимости для промышленных приложений. Правила определяют максимально допустимые уровни шума (в дБ), допустимые на линиях электропередач. Общие требования к конструкции 3-фазного фильтра электромагнитных помех включают входные токи, линейное напряжение, ограничение размера и требуемые вносимые потери.В дополнение к этому, конфигурация 3-фазного фильтра электромагнитных помех играет важную роль в конструкции.
Дельта-фильтр трехфазных электромагнитных помех
3-фазные фильтры электромагнитных помех
Delta предназначены для уменьшения электромагнитных помех в устройствах, подключенных к трехфазному питанию, подключенному по схеме «треугольник». Конфигурация Delta состоит из четырех проводов; три токопроводящих жилы и один заземляющий провод. Фазовые нагрузки (например, обмотки двигателя) соединены друг с другом в форме треугольника, где соединение выполняется от одного конца обмотки к начальному концу другого, образуя замкнутую цепь.
В этой конфигурации нет нейтрального провода, но он может питаться от трехфазной сети WYE, если нейтральная линия опущена / заземлена. Дельта-система используется для передачи энергии из-за более низкой стоимости из-за отсутствия нейтрального кабеля. Он также используется в приложениях, требующих высокого пускового момента.
Из-за отсутствия нейтрального провода конденсаторы, используемые в трехфазных фильтрах электромагнитных помех Delta, должны быть рассчитаны на линейное (междуфазное) напряжение, что может увеличить размер, вес и стоимость.Однако отсутствие нейтрального провода позволяет получить более высокие номинальные токи, чем WYE, и лучшую производительность при том же заданном кубическом объеме.
Проектирование и трехфазный дельта-фильтр электромагнитных помех
- Определите максимальную мощность, требуемую нагрузкой.
- Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
- Разделите ответ на линейное напряжение.
- Умножьте предыдущий ответ на квадратный корень из 3.
Преимущества дельта-конфигурации
- Дельта-конфигурации обычно могут быть разработаны для работы с более высоким током и более эффективны.
- Защита для дельта-конфигураций может быть простой.
- Delta обычно устанавливаются для тяжелых условий эксплуатации и предпочтительны для выработки и передачи электроэнергии.
Конфигурации
WYE 3-фазный фильтр для защиты от электромагнитных помех
Фильтры EMI
WYE предназначены для фильтрации типичных устройств преобразования мощности в режиме переключения и других приложений, требующих нейтрального подключения. Эта конфигурация состоит из пяти проводов; три проводника под напряжением, нейтраль и земля.В конфигурации WYE фазные нагрузки подключаются в единственной (нейтральной) точке, к которой подключается нейтральный провод.
Когда нагрузки WYE-конфигурации полностью сбалансированы, через нейтральный провод ток не течет. Когда нагрузки неуравновешены, через нейтральный провод проходит ток. Эта конфигурация позволяет использовать в фильтре конденсаторы более низкого напряжения (120 В переменного тока в системе 208 В переменного тока и 277 В переменного тока в системе 480 В переменного тока), что может привести к экономии затрат, веса и объема.
Во многих случаях нейтральный провод можно оставить плавающим.Однако, как упоминалось ранее, конфигурация WYE обеспечивает гибкость для подключения нагрузок в цепи между фазой и нейтралью или между фазами. В отличие от Delta, эта конфигурация может использоваться как четырехпроводная схема или пятипроводная схема. Конфигурации WYE обычно используются в сетях распределения электроэнергии. Это в первую очередь требуется в приложениях, требующих меньшего пускового тока и перемещаемых на большие расстояния.
Проектирование и трехфазный фильтр электромагнитных помех WYE
- Определите максимальную мощность, требуемую нагрузкой.
- Разделите максимальную мощность, требуемую нагрузкой, на 3, чтобы получить мощность на каждую фазу.
- Разделите ответ на напряжение между фазой и нейтралью / землей.
Преимущества конфигураций WYE
- Предпочтительно для распределения электроэнергии, поскольку он может поддерживать однофазные (фаза-нейтраль), 2-фазные (междуфазные) и трехфазные нагрузки.
- Точка звезды обычно заземлена, что делает ее идеальной для несимметричных нагрузок.
- Для той же поддержки напряжения требуется меньшая изоляция.
Стоимость трехфазных фильтров линии питания Delta по сравнению с WYE
Конфигурация трехфазного дельта-фильтра электромагнитных помех может быть технически более рентабельной, чем конфигурации WYE, поскольку для нее требуется только трехжильный кабель вместо четырех, что снижает стоимость материалов для изготовления блоков. Однако некоторые из этих рентабельности могут быть компенсированы необходимостью в компонентах, рассчитанных на высокое напряжение.
Трехфазный фильтр электромагнитных помех Astrodyne TDI с дельта- и WYE-конфигурациями
Astrodyne TDI предлагает 3-фазные фильтры электромагнитных помех в конфигурациях Delta и WYE, чтобы помочь снизить электромагнитные помехи в различных приложениях и обеспечить соответствие международным стандартам излучения.Наши трехфазные фильтры электромагнитных помех находятся в диапазоне от 480 В / 520 В до 600 В переменного тока с номинальным током до 2500 А. Сетевые фильтры предлагаются в одно-, двух- и многоступенчатом исполнении, с более высокими значениями тока и напряжения, доступными по запросу.
Благодаря нашему обширному ассортименту фильтров и сильным конструктивным возможностям наша команда инженеров может гарантировать, что найдет наиболее эффективное решение для трехфазного фильтра электромагнитных помех, соответствующее любой спецификации и самым сложным приложениям.
Просмотрите нашу подборку трехфазных фильтров электромагнитных помех или свяжитесь с нашей командой, чтобы узнать больше о продукте, который поможет удовлетворить ваши требования.
Трехфазный асинхронный двигатель с помощью промышленного пускателя со звездой-треугольником
Трехфазный асинхронный двигатель состоит из статора, который содержит трехфазную обмотку, подключенную к трехфазному источнику переменного тока. Обмотка расположена так, чтобы создавать вращающееся магнитное поле. Ротор асинхронного двигателя содержит цилиндрический сердечник с параллельными пазами, в которых расположены проводники.
Проблемы, возникающие при запуске двигателя:
Самой основной особенностью асинхронного двигателя является его механизм самозапуска.Из-за вращающегося магнитного поля в роторе индуцируется ЭДС, из-за которой в роторе начинает течь ток. Согласно закону Ленца, ротор начнет вращаться в направлении, препятствующем прохождению электрического тока, и это придаст двигателю крутящий момент. Таким образом двигатель запускается самостоятельно.
Период запуска двигателя по сравнению с периодом работы в установившемся состоянии
Во время этого периода самозапуска по мере увеличения крутящего момента в роторе протекает большой ток. Для этого статор потребляет большое количество тока, и к тому времени, когда двигатель достигает своей полной скорости, потребляется большое количество тока, и катушки нагреваются, повреждая двигатель.Следовательно, возникает необходимость контролировать запуск двигателя. Один из способов — уменьшить приложенное напряжение, что, в свою очередь, снижает крутящий момент.
Цели пускателя двигателя по схеме звезда-треугольник:
- Снижение высокого пускового тока и предотвращение перегрева двигателя
- Обеспечение перегрузки и отсутствие напряжения
Пускатель звезда-треугольник:
В схеме звезда-треугольник при запуске двигатель подключается в режиме STAR в течение всего периода запуска.Когда двигатель достигает необходимой скорости, двигатель подключается в режиме ТРЕУГОЛЬНИК.
Цепь питания управления электродвигателем звезда-треугольник
Компоненты пускателя звезда-треугольник:
Контакторы: Цепь пускателя звезда-треугольник состоит из трех контакторов: главного, звезды и треугольника. Требуется, чтобы три контактора соединяли обмотки двигателя сначала звездой, а затем треугольником.
Таймер: Контакторы регулируются таймером, встроенным в пусковой механизм.
Блокировочные выключатели: Блокировочные выключатели подключаются между контакторами звезды и треугольника в цепи управления в качестве меры безопасности, поэтому нельзя активировать контактор треугольника, не отключив контактор звезды. В случае одновременного срабатывания контакторов со звездой и треугольником двигатель выйдет из строя.
Тепловое реле перегрузки: Тепловое реле перегрузки также объединено в цепь управления звезда-треугольник, чтобы защитить двигатель от чрезмерного нагрева, который может ускорить обнаружение двигателя или его износ.В случае, если температура выходит за пределы заданного значения, контакт размыкается, и питание отключается таким образом, чтобы обеспечить работу двигателя.
Работа пускателя звезда-треугольник:
Сначала замыкаются первичный контактор и контакторы звезда. По прошествии некоторого времени таймер подает сигнал контактору звезды о переходе в разомкнутое положение, а первичные контакторы треугольником переходят в положение отключения, соответственно структурируя схему треугольника.
Во время пуска, когда обмотки статора связаны звездой, каждая ступень статора получает напряжение VL / √3, где VL — линейное напряжение.Следовательно, линейный ток, потребляемый двигателем при запуске, уменьшается до одной трети по сравнению с пусковым током с обмотками, соединенными в треугольник. Точно так же, поскольку крутящий момент, развиваемый асинхронным двигателем, соответствует квадрату приложенного напряжения; Пускатель со звезды на треугольник снижает пусковой крутящий момент до одной трети от возможного при немедленном запуске по схеме треугольник.
Таймер управляет преобразованием со звезды в треугольник. Таймер в пускателе со звезды на треугольник для трехфазного двигателя предназначен для перехода от режима звезды, при использовании которого двигатель работает при пониженном напряжении и токе и производит меньший крутящий момент, в режим треугольника, необходимый для работы двигателя на полную мощность. мощность, использующая высокое напряжение и ток для преобразования высокого крутящего момента.
Клеммные соединения в конфигурациях звезды и треугольника:
L1, L2 и L3 — это трехфазные линейные напряжения, которые подаются на первичный контактор. Катушки главного двигателя U, V и W показаны на рисунке. В режиме звезды обмотки двигателя первичный контактор связывает сеть с клеммами основной обмотки U1, V1 и W1. Контактор звездой замыкает клеммы вспомогательной обмотки U2, V2 и W2, как показано на рисунке. Независимо от того, когда первичный контактор отключен, питание поступает на клеммы A1, B1, C1, и, следовательно, обмотки двигателя находятся под напряжением в звездном режиме.
Таймер запускается в тот момент, когда контактор звезды находится под напряжением. После того, как таймер достигает заданного периода времени, контактор звезды обесточивается, а контактор треугольник включается.
Клеммы обмотки асинхронного двигателя, подключенные по схеме «звезда» и «треугольник»
Точка, когда замыкается контактор треугольником, клеммы обмотки двигателя U2, V2 и W2 связываются с V1, W1 и U1 индивидуально через замыкающие контакты первичного контактора. То есть для объединения в треугольник, выполняющий конец одной обмотки должен быть соединен с начальным концом другой обмотки.Конфигурация обмоток двигателя изменяется по схеме «треугольник» путем подачи линейного напряжения L1 на выводы обмотки W2 и U1, линейного напряжения L2 на выводы обмотки U2 и V1; и линейное напряжение L3 к клеммам обмотки V2 и W1, как показано на рисунке.
Типы пускателей со звезды на треугольник:
Существует два типа пускателей со звезды на треугольник: открытый и закрытый.
Стартер с открытым переходом звезда-треугольник:
Это наиболее широко признанная стратегия пуска со звезды на треугольник. Как следует из названия, в этой стратегии обмотки двигателя открыты в течение всего времени переключения обмоток из режима звезды в режим треугольника.Пускатель с размыканием звезда-треугольник использует 3 контактора двигателя и реле задержки движения.
Достоинства:
Пускатель с открытым переходом очень прост в реализации с точки зрения стоимости и схемотехники, он не требует дополнительного оборудования для определения напряжения.
Недостатки:
Открытый переход вызывает выброс тока и крутящего момента при переключении, который оглушает систему как электрически, так и механически. В электрическом плане результат кратковременных пиков тока может вызвать колебания силы или несчастья.С механической точки зрения увеличенный крутящий момент, возникающий из-за всплеска тока, может быть достаточным, чтобы повредить компоненты системы, то есть сломать приводной вал.
Пускатель с замкнутым переходом звезда-треугольник:
В этом пускателе переключение со звезды на треугольник осуществляется без отключения двигателя от сети. Несколько компонентов добавляются для устранения или уменьшения выбросов, связанных с открытым переходом. Дополнительные компоненты включают контактор и несколько переходных резисторов. Переходные резисторы потребляют текущий поток во время переключения обмотки.Четвертый контактор дополнительно используется для включения резистора в цепь перед размыканием контактора звезды и последующей откачки резисторов после замыкания контактора треугольником. Несмотря на необходимость дополнительной замены механизмов, схема управления более запутана из-за необходимости полной замены резистора.
Достоинства:
Имеется уменьшение скачка нарастающего тока, возникающего в результате перехода. Таким образом, пускатель с закрытым переходом имеет плавное переключение.
Недостаток:
Помимо необходимости большего количества переключающих устройств, схема управления более сложна из-за необходимости переключения резисторов. Кроме того, добавление схем приводит к значительному удорожанию установки.
Ток полной нагрузки при разомкнутом и закрытом переходах
Пример пускателя звезда-треугольник:
Пускатель звезда-треугольник обычно используется для уменьшения пускового тока двигателя. Дан пример, чтобы знать о пускателе со звезды на треугольник.
Из схемы мы использовали источник питания 440 вольт для запуска двигателя. И здесь мы использовали набор реле для переключения соединений двигателя со звезды на треугольник с задержкой по времени. В этом мы объяснили работу с использованием лампы вместо двигателя для облегчения понимания. Во время работы по схеме «звезда» лампы могут слабо светиться, показывая, что напряжение питания на катушках составляет 440 вольт. В режиме треугольника после срабатывания таймера огни могут гореть с полной интенсивностью, показывая полное напряжение питания 440 вольт.Таймер 555 выполняет моностабильную работу, выход которой поддерживается реле для обновления сетевого питания с трехфазной звезды на треугольник.
Блок-схема от Edgefx Kits
Фото предоставлено:
- Период пуска двигателя по сравнению с периодом работы в устойчивом состоянии myelectrical
- Схема питания управления двигателем звезда-треугольник by s1.hubimg
- Клеммы обмотки асинхронного двигателя соединены по схеме звезда и треугольник от myelectrical
- Ток полной нагрузки при открытом переходе и закрытом переходе с помощью электрического нейтрона
Проблема с двигателем | Причина | Средство правовой защиты |
Двигатель не запускается | Перегорели предохранители | Замените предохранитель на предохранитель соответствующего типа и номинала |
Отключение при перегрузке | Проверить и сбросить перегрузку в стартере | |
Неправильный источник питания | Убедитесь, что подаваемая мощность соответствует техническим характеристикам на паспортной табличке и коэффициенту нагрузки | |
Неправильное подключение линии | Проверьте соединения по электросхеме, поставляемой с двигателем | |
Обрыв в обмотке или управляющем переключателе | Обычно это обозначается жужжанием при включении переключателя.Проверьте надежность соединений проводки. Убедитесь, что все управляющие контакты замыкаются. | |
Механическая неисправность | Убедитесь, что двигатель и привод вращаются свободно. Проверить подшипники и смазку | |
Короткое замыкание статора | Обозначается перегоревшими предохранителями. Мотор необходимо перемотать | |
Плохое соединение обмотки статора | Снимите концевые ремни. Найдите плохой контакт с контрольной лампой. | |
Неисправен ротор | Проверить на сломанные стержни или концевые кольца | |
Двигатель может быть перегружен | Уменьшить нагрузку на двигатель | |
Мотор глохнет | Одна фаза может быть открыта | Проверить питающие линии на обрыв фазы |
Неправильная заявка | Измените тип или размер. Проконсультируйтесь с производителем двигателя | |
Перегрузка | Уменьшить нагрузку | |
Низкое напряжение | Убедитесь, что напряжение, указанное на паспортной табличке, сохраняется.Проверьте подключение. | |
Обрыв цепи | Перегорели предохранители. Проверить реле перегрузки, статор и кнопки | |
Двигатель запускается, а затем останавливается | Сбой питания | Проверить надежность соединения с линией, предохранителями и блоком управления |
Двигатель не набирает обороты | Двигатель применяется не по назначению | Обратитесь к производителю для правильного применения двигателя |
Напряжение на клеммах двигателя слишком низкое из-за падения напряжения в линии | Используйте более высокое напряжение на клеммах трансформатора или уменьшите нагрузку.Проверить соединения. Проверьте провода на предмет надлежащего размера. | |
Слишком высокая пусковая нагрузка | Проверьте нагрузку, которую двигатель должен выдерживать при запуске. | |
Сломанные стержни ротора или ослабленный ротор | Ищите трещины возле колец. Может потребоваться новый ротор, поскольку ремонт обычно носит временный, а не постоянный характер | |
Обрыв первичной цепи | Найдите неисправность с помощью испытательного устройства и устраните ее. | |
Двигатель слишком долго разгоняется и / или потребляет большой ток (А) | Чрезмерная нагрузка | Уменьшить нагрузку |
Низкое напряжение при запуске | Проверить на высокое сопротивление.Соответствующий размер провода. | |
Неисправен ротор с короткозамкнутым ротором | Заменить ротор новым | |
Слишком низкое приложенное напряжение | Увеличьте напряжение на клеммах трансформатора путем переключения ответвлений. | |
Неправильное вращение | Неправильная последовательность фаз | Обратные соединения на двигателе или в распределительном щите. |
Двигатель перегревается при работе под нагрузкой | Перегрузка | Уменьшить нагрузку |
Вентиляционные отверстия рамы или кронштейна могут быть забиты грязью и препятствовать надлежащей вентиляции двигателя. | Откройте вентиляционные отверстия и проверьте, не выходит ли из двигателя непрерывный поток воздуха. | |
Двигатель может иметь обрыв одной фазы | Убедитесь, что все провода надежно подключены. | |
Заземленная катушка | Найти и отремонтировать | |
Несимметричное напряжение на клеммах | Проверьте наличие неисправных проводов, соединений и трансформаторов. | |
Двигатель вибрирует | Двигатель смещен | Перенастройка |
Слабая опора | Усиленное основание | |
Несбалансированная муфта | Балансировочная муфта | |
Несбалансированное приводное оборудование | Приводное оборудование с перебалансировкой | |
Неисправные подшипники | Заменить подшипник | |
Подшипники не в ряд | Выровнять подшипники правильно | |
Балансировочные грузы смещены | Двигатель повторной балансировки | |
Многофазный двигатель, работающий однофазный | Проверить на обрыв цепи | |
Чрезмерный осевой люфт | Регулировка подшипника | |
Несимметричный линейный ток на многофазных двигателях при нормальной работе | Неравное напряжение на клеммах | Проверить провода и соединения |
Однофазный режим | Проверить на обрыв контактов | |
Несимметричное напряжение | Правильный несимметричный источник питания | |
Шумная работа | Воздушный зазор неравномерный | Проверьте и исправьте посадку кронштейна или подшипника. |
Дисбаланс ротора | Перебалансировка | |
Горячие подшипники общие | Вал изогнутый или подрессоренный | Выпрямите или замените вал |
Чрезмерное натяжение ремня | Уменьшить натяжение ремня | |
Шкив слишком далеко | Переместите шкив ближе к подшипнику двигателя | |
Диаметр шкива слишком мал | Используйте шкивы большего размера | |
Несоосность | Исправить перенастройкой привода | |
Горячие подшипники шариковые | Недостаточно смазки | Поддерживайте необходимое количество смазки в подшипнике |
Износ пластичной смазки или смазка загрязнена | Удалить старую смазку, тщательно промыть подшипники в керосине и заменить новой смазкой. | |
Избыток смазки | Уменьшите количество смазки, подшипник не должен быть заполнен более чем на 1/2 | |
Подшипник с перегрузкой | Проверьте соосность, боковую и торцевую ось. | |
Сломанный мяч или грубые гонки | Заменить подшипник, сначала тщательно очистить корпус |
Техника пуска трехфазного двигателя
Джо Эванс, Насос Эд 101
Новички в насосной отрасли часто не знакомы со многими методами запуска трехфазных двигателей, в которых используется «полупроводниковая» технология.Сюрприз — большинство из них все еще используются и, вероятно, будут здесь еще какое-то время. Основная цель альтернативных методов запуска — снизить нагрузку на систему во время запуска. Типичный асинхронный двигатель переменного тока имеет пусковой ток во время пуска, который примерно в пять-семь раз превышает рабочий ток. Сегодня частотно-регулируемый привод может обеспечить плавный пуск и автоматический останов, просто увеличивая входную частоту. Раньше это было не всегда так просто. В этой статье будут рассмотрены наиболее распространенные способы запуска двигателя.В таблице в самом конце будут сравниваться электрические характеристики каждого из них.
Перед тем, как мы начнем, давайте рассмотрим, как обмотки типичного шестипроводного трехфазного двигателя подключаются к входящей мощности. Статор с шестью выводами легче всего понять, и понимание того, как он подключен, важно для нашего обсуждения нескольких методов запуска.
Рисунок 1: Схема подключения двигателя на два напряжения.
Двигатели с одним напряжением могут быть спроектированы как для соединения звездой (Y), так и треугольником.Двигатели с двойным (и трех) напряжением обычно предназначены для использования соединения звездой для высокого напряжения и соединения треугольником для низкого напряжения. На рисунке 1 показаны эти две схемы подключения.
В соединении звездой (левый рисунок) концы обмоток 4, 5 и 6 соединены вместе. Входящее питание подключается к выводам 1, 2 и 3 (другой конец обмоток). Чтобы любые две фазы могли электрически соединиться, они должны пересечь два набора обмоток, тем самым увеличивая импеданс цепи.
При соединении треугольником (рисунок справа) концы обмоток 1 и 6, 2 и 4, 3 и 5 соединены вместе. Входящая мощность подается на каждую из этих трех пар. Теперь любые две фазы можно соединить через одну обмотку. Также часто встречаются двигатели с двойным напряжением, намотанные только для соединения Y или треугольника. В этом случае требуется девять выводов для установления правильного соотношения между обмоткой и напряжением.
Рисунок 2: Через линию, начинающуюся
Через линию, начиная с
Самый распространенный метод запуска двигателя — «поперек линии».Здесь трехполюсный переключатель или магнитный контактор подключает линейное напряжение непосредственно к каждому из выводов двигателя. При использовании этого метода напряжение и ток на клеммах двигателя равны линейному напряжению и току, а пусковой момент равен номинальному пусковому моменту двигателя. Рисунок 2 представляет собой типичную схему начала линии.
Однако бывают случаи, когда желательно уменьшить токовую нагрузку, необходимую для запуска двигателя, особенно большого. Следующие общие методы пуска с пониженным током позволяют добиться этого в различной степени.
Рисунок 3: Пониженное напряжение последовательного сопротивления
Пуск с пониженным напряжением с последовательным сопротивлением
Когда используется пуск с последовательным сопротивлением, во время пуска на двигатель последовательно включается сопротивление падения напряжения. Рисунок 3 иллюстрирует эту технику. Сопротивление увеличивает общий импеданс, что вызывает падение напряжения. Этот метод используется в приложениях с низким напряжением (ниже 600 В), где крутящий момент во время ускорения минимален.Это также ограничено двигателями меньшего размера, поскольку потеря тепла в резисторах может быть фактором для более крупных моделей. Бывают случаи, когда только кабель двигателя может обеспечить необходимое сопротивление при запуске. Двигатели с погружными насосами, которые используют максимальную рекомендуемую длину кабеля определенного размера, могут ожидать пятипроцентного падения напряжения во время запуска. Это приведет к снижению номинального пускового тока на 16–20%.
Рисунок 4: Реативное пониженное напряжение серии
Последовательное реактивное сопротивление Пуск с пониженным напряжением
На рисунке 4 показан метод пуска, аналогичный приведенному выше, за исключением того, что вместо сопротивления используется реактивное сопротивление падения напряжения.Опять же, общий импеданс увеличивается, что приводит к падению напряжения. Пуск с последовательным реактивным сопротивлением используется в двигателях среднего и низкого напряжения с минимальной нагрузкой крутящего момента во время разгона.
Рисунок 5: Автотрансформатор пониженного напряжения
Автотрансформатор для пуска с пониженным напряжением
В этой форме пуска с пониженным напряжением автотрансформатор устанавливается последовательно с двигателем. Его схема представлена ниже.Трансформатор снижает линейное напряжение и тем самым снижает пусковой ток. Снижение пускового тока зависит от выходного напряжения трансформатора. Обычно эти устройства конфигурируются с выходным ответвлением 80%, 65% и 50%. Они используются там, где требуется значительное снижение тока, а крутящий момент нагрузки может быть высоким.
Пуск с полупроводниковым двигателем с пониженным напряжением
В этом варианте пуска с пониженным напряжением используется твердотельный пускатель, который включает в себя тиристоры (выпрямители с кремниевым управлением).SCR уменьшают амплитуду синусоидальной волны переменного тока, так что только часть волны видна двигателю. Они управляются логическими схемами, которые могут реагировать на несколько различных датчиков обратной связи. Твердотельные пускатели используются, когда необходимо контролировать скорость ускорения или когда желателен «мягкий» пуск (пониженный ток). Они доступны
как для двигателей низкого, так и среднего (4160 В) напряжения.
Рисунок 6: Пуск твердотельного двигателя при пониженном напряжении
Пуск с твердотельным преобразователем частоты
Пуск с регулируемой частотой, хотя его иногда путают с описанным выше методом, подает полное «эффективное» напряжение на клеммы двигателя, но с пониженной частотой через преобразователь переменной частоты.Начальная частота может быть очень низкой и постепенно увеличиваться. Он часто используется, когда во время ускорения требуется момент полной нагрузки. Обычно они слишком дороги для использования в качестве стартера, но иногда могут быть оправданы, потому что они предлагают самые лучшие пусковые характеристики по сравнению с нагрузкой на источник питания.
До сих пор мы обсуждали методы пуска, в которых используются устройства, полностью отделенные от двигателя. Однако есть несколько методов, которые могут снизить пусковой ток, изменив конфигурацию обмотки двигателя.
Рисунок 7: Пуск звезда и треугольник
Пуск звездой / треугольник, пуск при пониженном напряжении
Технически это не метод пониженного напряжения, поскольку на клеммах двигателя присутствует полное напряжение. Пускатель звезда / треугольник соединяет выводы двигателя звездой во время пуска, увеличивая тем самым нормальное реактивное сопротивление цепи. Результат — уменьшение напряжения, отраженного к статору, равное √3. Таким образом, потребляемый ток снижается примерно до 30% от нормального пускового тока.
После запуска двигателя стартер переключает провода на нормальное соединение треугольником, и восстанавливается полное напряжение. Этот метод используется, когда требуется очень низкий пусковой крутящий момент, и чаще встречается в системах, производимых в Европе.
Рисунок 8: Начало частичной обмотки
Пуск с частичной обмоткой
Для этого метода пуска требуется двигатель с обмоткой, специально предназначенный для этого применения. Это не метод пониженного напряжения. Эти специальные двигатели с девятью выводами используют только часть (от 1/2 до 2/3) своих обмоток во время запуска.Пусковой крутящий момент очень низкий, и двигатель не разгоняется. В некоторых случаях вал может не вращаться визуально. В любом случае пускатель не должен оставаться в исходном положении более одной-двух секунд из-за возможного теплового повреждения обмоток.
Описанные здесь методы пуска применимы к трехфазным асинхронным двигателям переменного тока. Существуют и другие методы запуска двигателей переменного тока с фазным ротором, которые будут рассмотрены в отдельном руководстве. В таблице ниже приведены электрические характеристики различных методов пуска, которые мы обсуждали.
Статьи по теме
.