Правильная зарядка ni cd аккумуляторов: как заряжать, параметры и зарядные устройства

Содержание

как заряжать, параметры и зарядные устройства

Сегодня Ni─Cd аккумуляторы используются в большинстве портативных инструментов и различных электронных устройствах (фотоаппараты, плееры и т. п.). Правда, в последнее время наблюдается тенденция замещения их литий─ионными аккумуляторами. Для того чтобы аккумулятор вашей аппаратуры служил долго, никель─кадмиевые батареи нужно правильно эксплуатировать, вовремя и своевременно заряжать и время от времени проводить циклы разряда-заряда. Тогда Ni─Cd аккумулятор будет служить вам долго. Сегодня мы поговорим о том, как заряжать никель─кадмиевые аккумуляторы по всем правилам.

 

Содержание статьи

Особенности Ni-Cd эксплуатации аккумуляторов

Для того чтобы никель-кадмиевые аккумуляторы работали продолжительное время, нужно их полностью разряжать.

Ni─Cd аккумуляторные батареи имеют ярко выраженный эффект памяти. Если разрядка в процессе эксплуатации будет неполной, то эффективная площадь электродов аккумулятора будет постоянно снижаться.

Никель─кадмиевые батареи запоминают нижнюю отметку разряда. В результате при разряде до этой отметки они перестают работать, хотя возможность для этого есть. Это явление получило название «эффект памяти».

Поэтому, перед тем как зарядить никель кадмиевый аккумулятор нужно полностью разрядить элементы батареи до напряжения 0,9─1 вольт. Это позволить как можно дольше сохранить параметры батареи и увеличить срок службы Ni─Cd аккумуляторных батарей. Стоит отметить, что слишком сильный разряд, ниже порогового значения также не рекомендуется.

Нужно также сказать, что новые никель─кадмиевые батарейки необходимо предварительно потренировать. Эта тренировка подразумевает активацию работы аккумулятора. При этом делается 3─5 циклов разряд-заряд. Такой разряд и заряд Ni─Cd аккумуляторов «разгоняет» их и они начинают работать на заявленных параметрах. После выполнения тренировки никель─кадмиевые батарейки хорошо держат нагрузки и имеют менее выраженный «эффект памяти». Иногда можно встретить рекомендации о том, что Ni─Cd батареи низкого качества требуют тренировки до 70─80 циклов разряд-заряд. Здесь стоит придерживаться рекомендаций производителя и зависит это в основном от технологии изготовления батареек.

Процесс «тренировки» или циклирования также нужно выполнять после длительного (более 6 месяцев) хранения Ni─Cd аккумуляторов. Но сильно усердствовать также не стоит, поскольку излишнее циклирование снижает ресурс аккумулятора. Стоит отметить ещё один момент. Если вы не собираетесь использовать никель─кадмиевые батарейки, то не нужно их заряжать. Этот тип батарей может вполне нормально храниться в разряженном состоянии. В заряженном состоянии никель─кадмиевый аккумулятор постепенно теряет первоначальные характеристики.

Теперь несколько слов о том, какие есть зарядные устройства для Ni─Cd аккумуляторов.
Вернуться к содержанию
 

Разновидности зарядных устройств для никель─кадмиевых аккумуляторов

Сегодня на рынке можно выделить две основные группы устройств, предназначенных для заряда никель кадмиевых аккумуляторов:

  • Автоматические ЗУ;
  • Реверсивные импульсные ЗУ.

Автоматические зарядное устройство для Ni-Cd аккумуляторных батарей. Это простые и доступные по цене устройства. Они менее сложные и выпускаются в конструкции, которая позволяет заряжать по два или 4 батарейки одновременно. Чтобы запустить заряд никель кадмиевых аккумуляторов, вставьте в батарейки в зарядное устройство. Переключателем ЗУ нужно установить количество заряжаемых батареек и подключить устройство к сети.

Как правило, автоматическое зарядное устройство для никель─кадмиевых аккумуляторов имеет следующую цветовую индикацию. Красный цвет индикатора показывает, что идёт процесс заряда батареек. Чтобы сделать разряд аккумуляторов, на устройстве имеется переключатель «разряд». В процессе разряда индикатор будет иметь жёлтый цвет. После того, как пройдёт разряд, зарядное устройство для Ni─Cd аккумуляторов само запустит зарядку. Зелёный цвет индикатора говорит о том, что цикл разряд-заряд закончен.

Пример зарядного устройства для Ni-Cd аккумуляторов

Дополнительно можете прочитать отдельную статью о про восстановление Ni─Cd аккумулятора для шуруповерта.

В данном случае речь идёт о заряде никель─кадмиевых батареек по отдельности. Если это аккумуляторы для шуруповёрта или другого электроинструмента, то с ними в комплекте идёт штатное зарядное устройство, которое позволяет заряжать всю батарею сразу от бытовой электросети.

Реверсивное импульсное ЗУ. Эти устройства более сложные и стоят дороже, чем модели первого типа. Обычно производители позиционируют их как профессиональные. Такое зарядное устройство для Ni─Cd аккумуляторов циклически проводит разряд-заряд с разным временным интервалом.

Устанавливается аккумулятор, выставляется режим и запускается работа. Индикатор даст сигнал об окончании зарядки. С помощью таких ЗУ можно не только выполнять заряд никель─кадмиевых аккумуляторов, но и поддерживать их в рабочем состоянии. В качестве примера можно привести широко распространённое универсальное зарядное устройство iMAX B6.

Никель─кадмиевые АКБ менее требовательны к характеристикам зарядного устройства, чем Ni-MH аккумуляторы. Но экономить на нём нельзя, поскольку дешевые устройства сокращают срок эксплуатации батарей. Теперь, давайте, разберёмся, как зарядить никель кадмиевый аккумулятор.
Вернуться к содержанию
 

Процесс разряда и заряда Ni─Cd аккумуляторов

Процесс разряда никель─кадмиевых батарей

Для этого типа батарей (как впрочем, и для других) разрядные характеристики зависят от особенностей аккумуляторов, которые определяют его внутреннее сопротивление. Среди таких особенностей можно отметить структуру и толщину электродов. На разрядные характеристики влияют:

  • толщина сепаратора и его структура;
  • плотность сборки;
  • объём электролита;
  • некоторые характеристики конструкции.

При работе в условиях продолжительного разряда используются дисковые батарейки с прессованными электродами большой толщины. Для них разрядная кривая показывает постоянное медленное снижение напряжения до величины 1,1 вольта. Разрядная ёмкость в случае дальнейшего разряда до 1 вольта равна от 5 до 10 процентов от номинального значения. Особенностью этого типа батарей является существенно падение разрядной ёмкости и напряжения при увеличении тока до 0,2*С. Объяснение этому достаточно простое ─ невозможность разряда активной массы равномерно по всей электрода.

Дисковые Ni-Cd аккумуляторы

Если уменьшить толщину электродов и увеличить их количество до четырёх, то ток разряда для дискового аккумулятора может быть увеличен до величины 0,6*С.

Аккумуляторные батареи с электродами из металлокерамики имеют малое внутреннее сопротивление и высокие энергетические характеристики. На их разрядных характеристиках заметно меньшее падение напряжения. У этого типа аккумуляторов величина напряжения держится выше 1,2 вольта до отдачи 0,9 от номинальной ёмкости. При дальнейшем разряде и падении напряжения с 1,1 до 1 вольта отдаётся около 3 процентов номинальной ёмкости. Допускается разряжать этот тип аккумуляторов разрядными токами величиной до 3─5*С.

Ni─Cd аккумуляторы цилиндрической формы можно разряжать более высокими токами. В них используются рулонные электроды, что позволяет разряжать их максимальным током 7─10*С.

Цилиндрические Ni─Cd аккумуляторы

На изображениях ниже можно видеть влияние тока разряда и температуры на значение разрядной ёмкости.

Разрядная характеристика никель─кадмиевого аккумулятора в зависимости от тока разряда

Разрядная характеристика никель-кадмиевого аккумулятора в зависимости от температуры ОС

Разрядная характеристика никель-кадмиевого аккумулятора в зависимости от тока разряда при различных температурах

Наибольшее значение ёмкости достигается при температуре 20 градусов Цельсия. Ёмкость практически не снижается, если увеличивать температуру. А вот при температуре ОС ниже ноля значение разрядной ёмкости падает пропорционально увеличению разрядного тока. Уменьшение ёмкости при низких температурах объясняется уменьшением разрядного напряжения щелочной аккумуляторной батареи из-за увеличения сопротивления.

Увеличение сопротивления объясняется ограниченным объёмом электролита в герметичной батарейке. Состав и концентрация электролита сильно отражаются на характеристиках. От них напрямую зависит температура образования твёрдой фазы. Это могут кристаллогидраты, лёд, соли и т. п. При замёрзшем электролите разряд вообще отсутствует. Работоспособность Ni─Cd в большинстве случае ограничена температурой минус 20 градусов Цельсия. В некоторых случаях при корректировке состава электролита и его концентрации производители выпускают модели Ni─Cd батарей работоспособных при минус 40.

Если у вас электроинструмент или электронный гаджет работает на металлогидридных батарейках, вам будет интересно прочитать о том, как восстановить Ni─MH аккумуляторы.
Вернуться к содержанию
 

Процесс заряда никель─кадмиевых батарей

В процессе зарядки никель─кадмиевых аккумуляторов важным моментом является ограничение излишнего заряда. Это важный момент, поскольку при заряде никель─кадмиевых аккумуляторов внутри них растёт давление. В процессе зарядки выделяется кислород и постепенно снижается коэффициент использования тока. На графике ниже можно видеть зависимость разрядной ёмкости от скорости заряда. Данные приводятся для цилиндрических батарей.

Эффективность заряда никель-кадмиевого аккумулятора при различной скорости зарядки

Чтобы аккумулятор полностью зарядился, ему требуется сообщить до 160 процентов от номинальной ёмкости. Зарядка никель кадмиевых аккумуляторов должна вестись в интервале температур 0─40 С. Рекомендуемый интервал 10─30 С. При понижении температуры на отрицательном электроде снижается поглощение кислорода и растёт давление. В результате при сильном перезаряде из-за увеличения давления может открыться аварийный клапан. При увеличении температуры потенциал растёт и на положительном электроде очень рано выделяется кислород, что сокращает процесс зарядки в штатном режиме.

Если температура поддерживается стабильной, то на процесс заряда сильно влияет ток. Его увеличение вызывает рост скорости выделения кислорода. А скорость его поглощения при этом не меняется, поскольку зависит от особенностей конструкции аккумуляторной батареи. Влияние на газопоглощение оказывает компоновка, структура, толщина электродов, материал сепаратора, объем электролита.

В частности, чем плотность компоновки электродов больше и их толщина меньше, тем зарядка идёт с большей скоростью. Поэтому цилиндрические батареи заряжаются с большой скоростью. На кривых заряда можно заметить, что у таких моделей Ni─Cd аккумуляторов при токе 0,1─1С эффективность зарядки почти не меняется. Снижение тока заряда вызывает существенное уменьшение ёмкости, которую батарея отдаст при разряде.

Стандартный режим зарядки считается следующий. Никель─кадмиевый аккумулятор с напряжением 1 вольт заряжается примерно 14─16 часов током 0,1С. Детали процесса зарядки оговариваются производителями аккумуляторов. Они могут отличаться из-за особенностей конструкции или увеличенной закладки активной массы (это делается для наращивания ёмкости). Для Ni-Cd аккумуляторов может использоваться зарядка постоянным током в течение всего времени. А может использоваться схема ступенчатого или плавного снижения тока зарядки во время процесса. Это позволяет проводить длительную зарядку без риска повредить аккумулятор. При таких режимах ток зарядки на первой стадии может значительно превышать значение 0,1*С.

Часто есть необходимость в увеличении скорости зарядки. Производители решают эту проблему выпуском батарей, которые способны эффективно заряжаться большими токами. При этом используются различные системы контроля, охраняющие никель─кадмиевый аккумулятор от сильного перезаряда. Эти системы контроля могут содержать, как сами аккумуляторы, так и зарядное устройство для никель─кадмиевых аккумуляторов.

Для цилиндрических Ni-Cd аккумуляторов рекомендуется выполнять зарядку постоянным током величиной 0,2 С в течение 6─7 часов. Также используется режим током 0,3 С в течение 3─4 часов. В последнем случае контроль по времени заряда обязателен. Если ведётся ускоренный заряд, то перезаряд должен составлять до 120─140 процентов от ёмкости и не более. В этом случае Ni─Cd аккумулятор набирает разрядную ёмкость не меньше номинальной. Для работы в ускоренных режимах производители даже предлагают аккумуляторы, которые могут заряжаться за один час. В таком режиме используются различные средства контроля за температурой и напряжением, чтобы никель─кадмиевые батарейки не деградировали в результате резкого роста давления.

После того, как заряд прекращается давление внутри аккумуляторной батареи ещё продолжает расти, поскольку окисление гидроксильных ионов на оксидно─никелевых электродах продолжается. Постепенно скорость выделения кислорода на положительном электроде сравнивается с поглощением на отрицательном (кадмиевом) электроде. Поэтому давление в батарее постепенно понижается. Если был существенный перезаряд, то давление будет снижаться медленнее. Рекомендуем также прочитать о том, как заряжать Ni─MH аккумуляторы.
Вернуться к содержанию
 

Режим заряда Ni─Cd аккумулятора

Давайте, суммируем, что нужно знать о режиме зарядки Ni─Cd аккумуляторов. Речь, естественно, о тех случаях, когда у вас есть возможность выставить параметры. Как вы уже поняли, при заряде никель─кадмиевого аккумулятора его напряжение растёт до определённого значения, а затем стабилизируется. Когда батарея полностью заряжается, то напряжение понижается. По этому падению зарядные устройства чаще всего отслеживают окончание заряда. Это падение напряжения ещё называется Delta Peak. Чем точнее отслеживается эта дельта, тем батарейка заряжается более качественно и не будет перезаряда.

Итак, рекомендуется следующий режим. Ток заряда до 2С (номинальная ёмкость батарейки). Если доступен, то выбирается вид импульса (Re-Flex, Flex, Normal). Delta Peak должна составлять 7─10 мВ на один элемент батареи. Ток подкачки (ещё называемый trickle) составляет 50─100 мА-ч.

Следует помнить, что нельзя допускать перегрев аккумулятора выше 50 градусов Цельсия. Для того, чтобы продлить срок службы Ni─Cd аккумулятора, то выставляйте Delta Peak по минимуму. Недозарядка составит примерно 50 мА-ч. Стоит отметить и ещё ряд деталей процесса зарядки. Советуем также прочитать материал о восстановлении и ремонте Ni─Cd аккумуляторов.

Для полноценного использования мощности аккумулятора его следует заряжать большим током зарядки. Если важно использовать его мощность по максимуму, то нужно заряжать в нормальном режиме малым током. Величина тока около 0,1С. При этом время заряда составит 14─16 часов. С помощью ступенчатой подачи тока можно зарядить Ni─Cd аккумуляторную батарею в ускоренном режиме. Для этого 10 процентов ёмкости батареи набирается током 1С, затем до 80 процентов током 1,5С, а остаток добивается током 0,5С.

Вернуться к содержанию
 

Опрос

Примите участие в опросе!

 Загрузка …

Теперь вы знаете, как зарядить никель─кадмиевый аккумулятор в различных режимах. Главное, не допускать сильного переразряда и вести контроль и отключение зарядки по ряду параметров. Если у вас есть дополнения к статье или вопросы, пишите их в комментариях ниже. Также предлагаем проголосовать в опросе и оценить материал.
Вернуться к содержанию

Ni Cd аккумуляторы как заряжать, режимы зарядки

Источники тока на базе соединений никеля и кадмия, массово выпускающиеся с 50-х гг. прошлого века, используются в портативных электрических инструментах и электронном оборудовании. Низкая стоимость изделий позволяет им конкурировать с батареями на литиевой основе. Пользователю необходимо знать, как заряжать Ni-Cd-аккумулятор, поскольку от корректности этой процедуры зависит ресурс батарейки.

Ni-Cd аккумулятор.

Особенности эксплуатации Ni-Cd-аккумуляторов

Правила эксплуатации никель-кадмиевых батареек:

  1. При использовании источников постоянного тока на никель-кадмиевой основе следует учитывать “эффект памяти”, приводящий к снижению емкости батареи. Явление возникает вследствие частичной разрядки элемента в процессе применения.
    Батарея прекращает работу при достижении зафиксированного значения, несмотря на оставшуюся часть емкости. Для устранения этого эффекта необходимо добиваться разряда батарейки до напряжения 0,9-0,95 В, дальнейшее снижение напряжения негативно влияет на ресурс аккумуляторной батареи.
  2. Перед началом применения никель-кадмиевого элемента выполняется цикл тренировочных разрядов и зарядов, позволяющих довести параметры изделия до заявленных производителем характеристик. Рекомендуется выполнить 4-6 рабочих циклов, для восстановления элементов низкого качества производится 30-40 циклов зарядки и разрядки.
  3. Если аккумулятор не использовался более 4-6 месяцев, то выполняется дополнительный цикл тренировки. Следует учитывать, что злоупотребление тренировочными циклами приводит к необратимому повреждению конструкции никель-кадмиевой батареи.
  4. Новые аккумуляторы допускают длительное хранение без зарядки. Если не планируется использование устройств, то выполнять зарядку не рекомендуется, т.к. при длительном хранении заряженных изделий наблюдается деградация элемента, приводящая к падению емкости и остальных параметров. Если требуется поместить на хранение ранее использовавшиеся источники тока, то они предварительно разряжаются до 0,9 В.
  5. Батареи, разряжавшиеся и заряжавшиеся слабыми токами, теряют свои емкостные характеристики. Подобное явление наблюдается у элементов, установленных в источниках бесперебойного питания. Для восстановления рабочих характеристик достаточно провести цикл глубокой разрядки с последующим набором емкости от зарядного приспособления.

Разновидности зарядных устройств для никель-кадмиевых аккумуляторов

Для восстановления емкости АКБ никель-кадмиевого типа используются 2 разновидности зарядных устройств:

  • автоматического типа;
  • импульсные реверсивные блоки.

Автоматический модуль оснащен гнездами соответствующего аккумуляторам размера. Такие устройства рассчитаны на 2 или 4 элемента, в конструкции блока предусмотрен переключатель, позволяющий выбрать количество заряжаемых изделий.

Зарядка аккумуляторов начинается после подключения блока к бытовой сети напряжением 230 В. Внутри модуля установлен понижающий трансформатор с выпрямительным каскадом, для отображения статуса зарядки применяется линейка светодиодов или многоцветный индикатор.

Во время зарядки индикатор горит красным цветом, после ее завершения включается зеленая лампочка. В конструкции автоматического блока предусмотрена функция разряда батареи, активируемая кнопочным переключателем.

Размеры Ni-Cd аккумулятора.

Для индикации режима разряда применяется диод желтого цвета, после снижения емкости зарядное устройство автоматически переходит в режим зарядки батарей. В процессе зарядки повышается температура корпуса батарейки, в блоке имеется датчик, который отключает подачу тока при достижении порогового значения.

Реверсивный зарядный блок относится к категории профессиональных изделий, отличается наличием микропроцессорного контроллера. Оборудование подает продолжительные импульсы зарядки, которые чередуются с кратковременным разрядом (время цикла изменяется в соответствии с установленным алгоритмом).

Оборудование позволяет поддерживать работоспособное состояние источника тока и продлевает срок службы Ni-Cd-батарей.

Процесс разряда и заряда Ni-Cd-аккумуляторов

В процессе заряда батареи на положительном электроде, выполненном из оксида никеля, происходит химическая реакция с выделением свободного электрона. На кадмиевом отрицательном электроде проходят дополнительные реакции.

При перезарядке элемента происходит выделение атомов кислорода, которые затем подаются через пористый сепаратор к отрицательному полюсу для последующего восстановления. Постоянство цикла восстановления обеспечивает поддержание стабильного давления газа внутри замкнутого корпуса.

При переразряде на отрицательном электроде формируются атомы водорода, который затем окисляется на никелевом положительном элементе. Из-за низкой скорости этого процесса возможно накопление газа. Для устранения эффекта выделения водорода в N-Cd-батареях всегда применяются отрицательные электроды, имеющие больший объем, чем положительные.

Процесс разряда никель-кадмиевых батарей

На процедуру разряда батарей, построенных на основе никель-кадмиевой композиции, влияют несколько факторов:

  • конфигурация и строение электродов;
  • схема и толщина сепаратора;
  • количество электролита и его химический состав;
  • плотность сборки;
  • конструктивные особенности батареи.

Конфигурация корпуса и площадь электродов учитываются при выборе типа аккумулятора, соответствующего условиям работы. Например, дисковые батареи с увеличенным сечением электродов, выполненных по технологии прессования, применяются в условиях продолжительного разряда. Устройства обеспечивают плавное снижение емкости и напряжения до 1,1 В. Остаточная емкость составляет до 10%, она падает в ходе дальнейшей разрядки до 1 В.

Конструкция цилиндрического элемента не позволяет увеличивать ток разряда до значений выше 20% от номинальной емкости.

Марка Ni-Cd аккумуляторов.

Причиной является невозможность обеспечения равномерного функционирования активной массы по всему сечению электродов.

Для устранения недостатка практикуется уменьшение диаметра электродов с одновременным увеличением количества деталей. При использовании 4 элементов обеспечивается увеличение тока до 55-60% от емкости батареи.

Для повышения эффективности работы используются аккумуляторы никель-кадмиевого типа с электродами, выполненными из металлокерамического композита. Детали отличаются пониженным внутренним сопротивлением, обеспечивая поддержание напряжения не ниже 1,2 В до разряда на 90% от заявленной производителем емкости.

При снижении напряжения на клеммах до 1,0 В емкость батареи снижается до 3% от стартового значения. При подключении внешней нагрузки ток разряда превышает номинальную емкость аккумуляторных элементов в 3-5 раз.

Батареи цилиндрического типа АА или ААА оснащаются электродами рулонной конструкции. Устройства обеспечивают ток в цепи до 10 раз выше номинальной емкости. Для обеспечения максимальных характеристик требуется поддержание температуры источника тока в диапазоне 18-22°С.

При нагреве емкость элементов снижается незначительно, при охлаждении батареи до отрицательных температур начинается снижение емкости (пропорционально току). Этот эффект возникает из-за роста сопротивления электролита и материала электродов.

При дальнейшем снижении температуры в замкнутом объеме электролита начинают формироваться кристаллы. Состав и количество твердых фракций зависят от состояния элемента и степени охлаждения. При полном замерзании электролита прекращаются электрохимические процессы, что приводит к падению напряжения до нулевой отметки.

Производители никель-кадмиевых батарей не рекомендуют использовать изделия при температуре ниже -20°С. Существуют модификации, рассчитанные на охлаждение до -40°С, но сколько отработает батарея при таких условиях, неизвестно.

Процесс заряда никель-кадмиевых батарей

При восстановлении емкости никель-кадмиевых источников тока производится принудительное ограничение степени зарядки. В процессе зарядки происходит выделение кислорода, который повышает давление внутри корпуса батареи, проходящие электрохимические процессы снижают эффективность использования поступающего тока.

Часть подводимой электроэнергии преобразуется в тепло, в конструкции батареи предусмотрен дренажный клапан, который стравливает излишки газа при росте давления выше допустимого.

Долговечность аккумулятора зависит от того, каким током производится зарядка. Для обеспечения максимального эффекта сила тока устанавливается на уровне 1,6-2,0 от номинальной емкости заряжаемого элемента. Конструкция батареи позволяет вести зарядку при температуре от 0° до 40°С, но рекомендуется выполнять операцию при нагреве до 10-30°С.

При попытке зарядить замерзшую батарею образующийся кислород не поглощается материалом отрицательного электрода, что приводит к росту давления и деформации металлического кожуха аккумулятора.

9.6 В 1400 мАч Ni-Cd аккумулятор

При повышении температуры выделение ионов кислорода на положительном электроде происходит быстрее, что ускоряет процедуру восполнения емкости. При поддержании стабильной температуры интенсивность зарядки регулируется силой тока, подаваемого на клеммы, который изменяет интенсивность выделения ионов.

При этом скорость поглощения не зависит от степени нагрева, этот параметр определяется конструкцией никель-кадмиевого элемента.

Поскольку интенсивность поглощения кислорода зависит от конфигурации электродов, конструкции сепаратора и объема электролита, то возможно создание батареек, допускающих ускоренную зарядку. Для этого применяются источники тока с увеличенным числом электродов, имеющих уменьшенное сечение. Например, цилиндрические элементы заряжаются в 2-3 раза быстрее плоских аккумуляторов.

Также существуют методики зарядки никель-кадмиевых аккумуляторов с деградировавшим электролитом. В корпусе элемента сверлится отверстие, через которое закачивается дистиллированная вода. Если производится восстановление аккумуляторной банки, собранной из нескольких батарей, то предварительно определяются детали с напряжением на клеммах около 0 В.

Заполненные водой аккумуляторы выдерживаются при комнатной температуре на протяжении 10-12 часов, затем на выводы подается напряжение, позволяющее активировать электрохимические процессы.

После появления на выходах напряжения, отличного от 0 В, производится стандартная зарядка. Рекомендуется выдержать источники тока 2-3 дня, а затем провести контрольный замер напряжения. В случае его падения выполняется повторная доливка дистиллированной воды (объем зависит от размера корпуса).

Если напряжение не снизилось, отверстия заделывают, а элементы 2-3 раза заряжают и разряжают, при необходимости производится сборка компонентов в единую банку.

Режим заряда Ni-Cd-аккумулятора

При стандартном алгоритме восполнения заряда на протяжении 14-16 часов выполняется подача постоянного тока силой 10% от емкости батареи (исходное напряжение на клеммах аккумулятора составляет 0,9-1,0 В).

Дополнительные рекомендации по зарядке указываются производителем АКБ. Например, при зарядке цилиндрической батареи сила тока составляет 20% от номинальной емкости, а время восполнения емкости не превышает 6-7 часов. При увеличении тока до 30% время зарядки падает до 4 часов.

Существуют специальные серии аккумуляторов, позволяющие восстанавливать емкость за 1-1,5 часа. При ускоренном режиме используются различные средства контроля (по времени и по температуре корпуса). При ускоренной зарядке происходит активное газообразование, и если нет контроля, то наступает быстрая деградация элемента или разрыв корпуса.

Восстановление заряда Ni-Cd-аккумулятора состоит из 2 этапов:

  1. Фаза начальной зарядки никель-кадмиевого аккумулятора характеризуется увеличением напряжения на клеммах, а затем происходит стабилизация значения, что фиксируется микропроцессором зарядного устройства. Ток зарядки устанавливается на уровне до 200% от емкости аккумулятора, часть зарядных блоков оснащена переключателем, позволяющим выбрать вид импульса при подаче напряжения.
  2. После полной зарядки батареи происходит снижение напряжения, что является сигналом к прекращению подачи тока на клеммы. Параметр падения обозначается DP (Delta Peak), от точности замера значения зависит качество зарядки, также она влияет на снижение риска перезаряда батареи, сопровождаемого повышенным газообразованием.
    Часть зарядных устройств позволяют корректировать параметр DP вручную, рекомендуется установка корректора в минимальное положение.

Профессиональные зарядные блоки производят заряд аккумулятора по ступенчатой методике с одновременным контролем температуры корпуса (не допускается прогрев выше 50°С). Ступенчатый алгоритм позволяет снизить время зарядки стандартных батарей.

Для восполнения первых 10-15% емкости используется ток силой до 100% от емкости, затем происходит плавное увеличение этого параметра до 150%. После зарядки батареи на 90% сила тока снижается в 3 раза, что позволяет уменьшить газообразование и исключает вредный эффект перезаряда Ni-Cd-аккумулятора.

После отключения питания внутри аккумулятора продолжаются электрохимические процессы, связанные с преобразованием веществ на поверхности электродов. Затем начинается постепенное выравнивание скорости выделения ионов кислорода на положительном электроде и интенсивности поглощения вещества кадмиевым отрицательным элементом.

Давление внутри батареи падает, но при предварительном перезаряде источника тока снижение давления занимает до 5-6 часов.

Как заряжать Ni Сd и Ni Mh аккумуляторы: сходства и отличия

Никель-кадмиевые (Ni-Cd) и никель-металлогидридные (Ni-Mh) аккумуляторы – два основных вида щелочных химических источников тока для автономного питания различной аппаратуры. Они сходны по своей структуре.  В качестве электролита используется щёлочь, в качестве катода — оксид никеля. Никель-металлогидридные аккумуляторы также имеют альтернативное менее распространенное написание  – никель-металлгидридные.

Первым был изобретён Ni-Cd. Этой технологии более ста лет. Ni-Mh широко применятся в бытовых устройствах, начали только в 90-х годах двадцатого века. Массовое появление на рынке более ёмких Ni-Mh батарей поначалу вызвало настоящий фурор. Но потом выявились и недостатки.

Особенности и применение Ni-Cd батарей

По сравнению с металлогидридными батареями, Ni-Cd имеют два главных недостатка:

  • меньшая ёмкость;
  • эффект памяти.

Эффектом памяти называют “запоминание” батареей нижнего предела разряда. Той есть, если такую батарею разрядить не полностью, длительность работы в следующем цикле будет меньше на эту самую величину от полного разряда до того предела, который “запомнил” аккумулятор. Чтобы “сбросить” память , нужно два-три раза полностью зарядить-разрядить такую батарею.

Казалось бы, при таких свойствах, этот тип батарей должен уйти в небытие. Но этого не происходит. Благодаря двум другим свойствам данного типа батарей:

  • высокая токоотдача;
  • способность хорошо работать при отрицательных температурах.

Приблизительно 90% Ni-Cd на сегодняшний день, это аккумуляторные сборки для электроинструмента, детских игрушек, электробритв, автономных пылесосов, медицинского оборудования и т.д. Применение в бытовом сегменте (вместо обычных первичных батареек) практически сведено к нулю.

Некоторые страны законодательно ограничивают использование Ni-Cd элементов в связи с токсичностью кадмия. В новых устройствах их место занимают литий-ионные аккумуляторы с большой токоотдачей.

Зарядка Ni-Cd аккумуляторов

Один элемент имеет номинальное напряжение 1,2V. При работе это значение может меняться от 1,35V (полностью заряжен) до 1V (полный разряд). У этих элементов есть одна интересная особенность, на которой завязан режим отключения в зарядном устройстве (если оно автоматическое). После набора ёмкости, напряжение на выводах несколько снижается на 50-70 mV. Такой скачок обозначают  ΔV(дельта V). Зарядное реагирует на такое снижение и отсекает ток заряда.

На практике срабатывать по  ΔV умеют только зарядные устройства среднего и продвинутого уровня. И часто приходится вручную просчитывать, как заряжать Ni-Cd аккумуляторы.

Напряжение заряда любая зарядка будет выдавать из расчёта 1,5-1,6V на один элемент. А вот ток заряда может быть разным. Его всегда можно посмотреть на самом зарядном устройстве (как правило, с тыльной стороны).

Ёмкость аккумулятора нужно поделить на ток заряда и умножить на коэффициент потерь 1,4. Например:

1000mAh/200mA=5 часов*1,4 = 7 часов.

Каким током заряжать? Номинальный ток заряда 0,1С, где С — ёмкость батареи. Для 1000mAh номинальным является ток 100mA. Время заряда в таком случае составит 14 часов. Не очень удобно. Почти всегда используется ускоренный режим 0,2-0,5С. Это несколько сокращает срок службы аккумуляторов, но повышает удобство использования.

Важно! Средний срок службы никель-кадмиевых аккумуляторов составляет 500 циклов заряд-разряд. Производитель заявляет, как правило, ДО 1000. Таких показателей можно достичь только в идеальных условиях и чётко выдерживая номинальные режимы работы.

Основные правила заряда никель кадмиевых аккумуляторов

  • Перед зарядом аккумуляторы необходимо обязательно разрядить. Продвинутые зарядные устройства умеют это делать прежде, чем начинать очередной цикл заряда, но, возможно просто разрядить с использованием какой-либо нагрузки.
  • Подключить зарядное устройство (или установить в него аккумуляторы при бытовом исполнении) и дождаться отключения при полном заряде.
  • В случае если зарядное не обеспечивает автоотключение, рассчитать необходимое время заряда и по его истечении произвести отключение.
  • Хранить Ni-Cd аккумуляторы в разряженном состоянии.

Особенности и применение Ni-Mh аккумуляторов

Область применения металлогидридных батарей напрямую связана с их свойствами. Максимальная ёмкость при минимальном объёме позволила им занять место в той электронике, где одноразовые батарейки приходится менять очень часто. Это фотоаппараты, беспроводные мыши и клавиатуры, радиопульты, детские игрушки.

В основном используется два размера таких элементов – это АА и ААА. Использовать такие элементы можно в любом месте, где используются одноразовые батарейки. Но часто это не имеет экономического смысла (в том случае, если одноразовая батарейка служит в устройстве годами)

Номинальное напряжение Ni-Mh аккумулятора 1,2V. С незначительным отклонением под нагрузкой такое напряжение держится в течение всего цикла работы батареи. Напряжение одноразовой батарейки в работе плавно падает от 1,5 до 1 вольта. Той есть 1,2-среднее значение. Это позволяет аккумулятору отлично заменять одноразовую батарейку в 99% случаев. Случаи, когда необходимо именно 1,5V для работы устройства, единичные и часто “лечатся” сменой режима в меню устройства “батарейка/аккумулятор”.

Внимание! Максимальная ёмкость (физический предел) для аккумулятора АА составляет 2700mAh,для ААА — 1000mAh. В случае, если на этикетке большее значение и “загадочное” название фирмы-изготовителя, перед вами гарантированный обман.

Эффект памяти при заряде никель-металлогидридных аккумуляторов менее заметен, чем у Ni-Cd элементов. Первые несколько лет массовых продаж производители размещали надпись “без эффекта памяти”.  Впоследствии эту надпись убрали.

Рекомендация “заряд после разряда” актуальна и для  металлогидридных аккумуляторов.

Напряжение зарядки Ni-Mh такое же, как и у никель-кадмиевых батарей. Зарядное устройство будет подавать на один элемент 1,5-1,6V. Ток заряда Ni-Mh аккумуляторов может меняться от 0,1 до 1С. Но любой производитель бытовых батарей обязательно указывает на них свою рекомендацию этого параметра.  Рекомендация производителей составляет 0,1С.

Например для 2500mAh номинальный ток заряда Ni-Mh аккумуляторов составляет 250mA. Время заряда номинальным током 14 часов. По той же формуле. Ёмкость/ток заряда, результат умножить на 1,4. При таком режиме можно рассчитывать на заявленное производителем, количество циклов. При ускоренном режиме срок службы уменьшается.

Металлогидридные батареи плохо переносят:

  • перегрев;
  • глубокий разряд;
  • сильный перезаряд.

Перегрев может возникнуть при большом токе заряда, повышенном внутреннем сопротивлении. При сильном нагреве заряд следует прекратить. Глубокий разряд возникает при длительном неиспользовании элемента. При бездействии в течение года и более, аккумулятор, скорее всего, придётся заменить. Избыточный перезаряд случается при использовании зарядного устройства без функции отключения или неправильно просчитанном времени заряда.

Зарядные устройства и методы заряда

Зарядных устройств в продаже представлено огромное количество. В них реализованы разные схемы отключения или отключение не реализовано вообще. Можно легко их разделить на подвиды по внешнему виду.

  1. Простейшие. Включили в розетку — заряд пошёл, выключили – заряд закончен. Контроль над временем заряда лежит на пользователе. Такие устройства имеют право на существование с целью экономии средств. Необходимо лишь выбрать из них такое, которое будет заряжать каждый элемент отдельно. Если каналы заряда спарены, возникает перекос. Такой режим сокращает срок службы батарей. Отличить несложно. Количество светодиодных индикаторов должно совпадать с количеством каналов заряда.
  2. С надписью AUTO. Такая надпись говорит о том, что здесь реализовано отключение по таймеру. Обычно от 6 до 12 часов. Не самый плохой вариант. Перезаряда точно не будет. Но скорее всего не будет и полного заряда. В таком случае можно подобрать аккумуляторы именно под это зарядное устройство. Но корректной работа зарядного устройства будет первые 100-200 циклов.
  3. ΔV контроль. Если у производителя реализована эта функция, он обязательно напишет это на упаковке. Если надписи нет, зарядное устройство относится к пункту 2. С наличием ΔV контроля, зарядное устройство уже полноценно автоматическое. Не забываем о раздельной зарядке каждого канала (популярные лет 10-12 назад зарядные с индексом 508 имеют контроль ΔV, но воспринимают установленные в него аккумуляторы как одну батарею).
  4. С жидкокристаллическим дисплеем. Как правило, его наличие говорит о том, что реализовано всё, что перечислено выше и плюс температурный контроль. Зарядные устройства с дисплеем начального уровня не предполагают программирование режима и тока заряда, но со своей функцией — правильно заряжать Ni Mh батареи, справляются отлично.
  5. Зарядка – комбайн.  Больше размером, чем в пункте 4. Предполагают программирование пользователем режимов и тока заряда. Если ничего не программировать в режиме “по умолчанию” заряжают батареи минимальным током и отключают заряд по ΔV контролю. Часто есть функция полного разряда аккумуляторов перед зарядкой для сброса эффекта памяти.

Чем более функциональное зарядное устройство, тем оно дороже. Но даже в дорогом исполнении, стоимость равна примерно 50 щелочным батарейкам. Окупаемость наступает достаточно быстро. Зарядное устройство такого класса обычно универсальное. И позволяет заряжать кроме никелевых аккумуляторов, ещё и литиево-ионные батареи. А также имеет функции:

  • измерения ёмкости;
  • измерения внутреннего сопротивления батарей;
  • режим сброса эффекта памяти у никелевых аккумуляторов.

Ni-Mh аккумуляторы с низким саморазрядом

Это достаточно новая технология. Иногда применяется аббревиатура LSD. Что в переводе с английского “low self-discharge” – низкий саморазряд.

В продаже такие батареи появились чуть больше 10 лет назад и зарекомендовали себя очень хорошо. По сравнению с обычными аккумуляторами, они имеют более низкое внутреннее сопротивление и как следствие большие токи разряда. Ёмкость у них несколько ниже, чем у обычных Ni-Mh батарей. Но за счёт того, что у обычной батареи саморазряд в первые сутки около 10%, показывают себя не менее эффективно.

Отличить такой аккумулятор от обычного, достаточно несложно. На упаковке и на самом элементе будет присутствовать надпись “ready to use” т.е. “готово к использованию”. Продаются такие элементы уже заряженные. Это оптимальный выбор для любительской фотосъёмки, когда не стоит задача сделать несколько тысяч кадров за один день.

Правила заряда Ni Mh

Ответ на вопрос — как заряжать Ni-Mh аккумуляторы зависит, прежде всего, от того, какое у пользователя зарядное устройство. Для того, чтобы заряжать правильно, достаточно придерживаться  простых норм.

  • Перед зарядом, аккумуляторы желательно разрядить. Это не строгая норма в отличие от Ni-Cd батарей, но желательная.
  • Температура окружающего воздуха должна быть не ниже 5oC. Верхний предел температуры 50oC. Такая температура может возникнуть летом при попадании прямых солнечных лучей.
  • Изучить функции зарядного устройства. Если оно не обеспечивает автоматическое отключение, рассчитать время заряда.
  • Установить батареи в зарядное устройство и подключить его к сети. Через некоторое время проверить степень нагрева аккумуляторов. В случае сильного нагрева, заряд прекратить.
  • Отключить зарядное устройство либо по истечении расчётного времени, либо после включения соответствующей индикации (зависит от типа зарядного устройства).
  • Хранить Ni-Mh элементы заряженными на 10-20% ёмкости. Напряжение не должно падать ниже, чем 0,9V.

При правильном заряде никель металлогидридных аккумуляторов, служат они достаточно долго. От 500 до 1000 циклов заряд-разряд. Основная причина преждевременного выхода из строя – длительное неиспользование и как следствие глубокий разряд. Часто желание пользователей отказаться от технологии Ni-Mh или Ni-Cd и перевести всю свою технику на литий ионные батареи, совершенно не оправдано. Эти батареи прочно занимают своё место, как в бытовом сегменте, так и в промышленности.

Методы заряда Ni-Cd и Ni-MH аккумуляторов. Источники питания и зарядные устройства

Методы заряда Ni-Cd и Ni-MH аккумуляторов

Существует много различных методов заряда NiCd или NiMH аккумуляторов. Но все их можно разделить на 4 основные группы:

• – стандартный заряд – заряд постоянным током, равным 1/10 от величины номинальной емкости аккумулятора, в течение примерно 15 часов.

• – быстрый заряд – заряд постоянным током, равным 1/3 от величины номинальной емкости аккумулятора в течение примерно 5 часов.

• – ускоренный или дельта V заряд – заряд с начальным током заряда, равным величине номинальной емкости аккумулятора, при котором постоянно измеряется напряжение на аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда примерно 1 час.

• – реверсивный заряд – импульсный метод заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами.

Несколько слов о терминологии. Емкость аккумулятора часто обозначается буквой “C”, и Вы часто будете видеть ссылки подобные 1/20 C или C/20. Когда говорят о разряде, равном 1/10 C, то это означает разряд током, равным десятой части от величины номинальной емкости аккумулятора.


Так например, для аккумулятора емкостью 600 мА*час это будет разряд током 600/10 = 60mA.

Теоретически аккумулятор емкостью 600 мА*час может отдавать ток 600mA в течение одного часа, 60 мА в течение 10 часов, или 6mA в течение 100 часов. Практически же, при высоких значениях тока разряда номинальная емкость никогда не достигается, а при низких токах превышается.

Аналогично при заряде аккумуляторов, значение 1/10 C означает заряд током, равным десятой части заявленной емкости аккумулятора. Медленный заряд в 1/10 C – обычно безопасен для любого аккумулятора.

Стандартный (или медленный) метод заряда

Этот метод подразумевает заряд током приблизительно равным 50 мА (для AA элементов) в течение 15 часов. При таком токе, диффузия кислорода более чем достаточна, чтобы предпринимать какие-либо меры для уменьшения тока после достижения полного заряда.

Безусловно, что в этом случае существует риск получить уменьшение напряжения при перезаряде.

Рис. 3

На графике (Рис.3) ток заряда поддерживается постоянно равным 0. 1C в течение 16 часов. Во время заряда наблюдается повышение напряжения на элементе аккумулятора. (По окончании заряда и при перезаряде напряжение начинает уменьшаться. Примеч. Переводчика.)

Следует отметить, что NiCd и NiMH аккумуляторы всегда заряжаются постоянным током, в отличие от свинцово-кислотных, которые заряжаются при постоянном напряжении.

Метод быстрого заряда.

Разновидностью медленного заряда является метод быстрого заряда, при котором используется ток заряда от 0.3 до 1.0C. В этом случае существенно важно, чтобы аккумулятор был полностью разряжен перед зарядом, так что такие зарядные устройства часто начинают заряд с цикла разряда для того, чтобы зарядить аккумулятор до его максимальной емкости.

Рис. 4

На графике (Рис.4) заряд током в 1/3 C поддерживался от 4 до 5 часов. Этот метод заряда имеет тенденцию к перегреву аккумулятора, особенно при заряде током близком к 1 C.

Метод D V заряда

Наилучший метод заряда NiCd и NiMH аккумуляторов – так называемый метод дельта V (метод измерения изменения напряжения). Если измерять напряжение на выводах элемента в течение заряда постоянным током, то можно заметить, что напряжение медленно повышается во время заряда. В точке полного заряда, напряжение на элементе будет кратковременно уменьшаться.

Величина уменьшения небольшая, примерно 10 mV на элемент для NiCd и меньше для NiMH, но явно выражена. Метод дельта V заряда почти всегда сопровождается измерением температуры, что обеспечивает дополнительный критерий оценки степени заряда аккумулятора (а для верности зарядные устройства для больших аккумуляторов высокой емкости обычно имеют кроме этого и таймеры безопасности).

Рис. 5

На графике (Рис.5) использовался ток заряда равный 1 C и после достижения полного заряда, ток заряда уменьшился до 1/30 … 1/50 C для компенсации явления саморазряда аккумулятора.

Существуют электронные схемы, разработанные специально для реализации метода дельта V заряда. Например MAX712 и 713. Реализация этого метода более дорога, чем другие, но дает хорошо воспроизводимые результаты.

Следует отметить, что в аккумуляторе с хотя бы одним плохим элементом из цепочки последовательно соединенных, метод дельта V заряда может не работать и привести к разрушению остальных элементов, поэтому необходимо быть осторожным.

Другой экономичный путь обнаружения момента полного заряда аккумулятора заключается в измерении температуры элемента. Температура элемента резко повышается при достижении полного заряда. И когда она повысится на 10° С или значительно выше окружающей среды, прекратите заряд, или перейдите в режим тонкоструйного заряда. При любом методе заряда, если применяются большие токи заряда, требуется предохранительный таймер. На всякий случай не допускайте ток заряда более, чем значение двойной емкости элемента,. (т.е. для элемента емкостью 800 мА*час, не более, чем 1600 мА*часа заряд).

NiMH аккумуляторы имеют специфические проблемы с зарядом. Величина дельта V очень мала (примерно 2mV на элемент) и ее более трудно обнаружить, чем в случае NiCd аккумуляторов.

Поэтому NiMH аккумуляторы для сотовых телефонов имеют температурные датчики в качестве резервного средства для обнаружения дельта V .

Одна из специфических проблем, связанных с зарядом по этому методу заключается в том, что при использовании в автомобилях электрические шумы и помехи маскируют обнаружение дельта V, и телефоны более склонные к управлению зарядом по температурному ограничению. Это может привести к порче аккумулятора в автомобиле, где телефон постоянно подключен (например автомобильный комплект) и многократные запуски и остановки двигателя имеет место. Каждый раз, когда зажигание выключается на несколько минут и затем включается обратно, новый цикл заряда инициируется.

Итак, какой же ток заряда следует считать правильным?

При использовании нерегулируемого зарядного устройства, которое не обеспечивает обнаружение момента наступления полного заряда любым известным способом, необходимо ограничить ток заряда. Практически все NiCd элементы могут заряжаться током C/10 (приблизительно 50 мА для AA элемента) неопределенно долго без охлаждения. При этом, естественно, не удасться избежать уменьшения напряжения после полного заряда, но и аккумулятор не испортится. Все зарядные устройства, непосредственно встроенные в телефоны, имеют электронные схемы обнаружения полного заряда.

Если хотите ускорить процесс, то заряд током величиной C/3 зарядит элементы примерно через 4 часа, и при таком токе большинство элементов лишь немного перезарядится без больших неприятностей. То есть, если Вы заканчиваете процесс заряда в течение часа после достижения полного заряда, то это – хорошо. Исключение перезаряда – вот к чему необходимо стремиться. При токе заряда более C/2 необходимо использовать только зарядные устройства с автоматическими средствами обнаружения полного заряда. При таком токе и выше, элементы аккумулятора могут быть при перезаряде легко повреждены. Те элементы, которые содержат в своем составе поглотители кислорода, могут не охлаждаться, но будут весьма горячими.

С хорошей электронной схемой управления зарядом могут быть использованы токи заряда более 1C – проблемой в этом случае становится уменьшение эффективности заряда и внутреннее нагревание от потерь на внутреннем сопротивлении. Однако, если Вы не спешите, избегайте заряд током большим, чем 1C.


Реверсивный метод заряда

В анализаторах аккумуляторов Cadex 7000 и CASP/2000L (H) используются реверсивные импульсные методы заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами. Считается, что такой метод заряда улучшает рекомбинацию газов, возникающих в процессе заряда, и позволяет проводить заряд большим током за меньшее время. Кроме того, восстанавливается кристаллическая структура кадмиевых анодов, устраняя тем самым «эффект памяти».

На рис.6 схематично изображена временная диаграмма реверсивного метода заряда NiCd и NiMH аккумуляторов, реализованная в анализаторе Cadex 7000. Цифрой 1 обозначен нагрузочный импульс, а цифрой 2 – зарядный.

Рис. 6

Величина обратного импульса нагрузки определяется в процентах от тока заряда в диапазоне от 5 до 12 %. Оптимальное значение 9 %. Так например, для NiCd аккумулятора емкостью 1800 мА*час, зарядный ток величиной в 1С равен 1800 мА. Тогда импульс нагрузочного тока будет равен 1800 мА * 0.09 = 162 мА. Выбирайте значение равное 5 % для NiCd емкостью 500 мА*час и менее.

Примечание переводчика:

Был проведен единичный эксперимент по измерению параметров метода реверсивного заряда NiCd и NiMH аккумуляторов емкостью 1000 мА*час.

Измерения проводились с помощью осциллографа, путем измерения параметров импульса напряжения на резисторе С5 -16В – 0.2 Ом +-1%, последовательно включенном в положительную цепь заряда аккумулятора. По результатам измерений получилось:

• длительность импульса «1» составляет ~30 мс, а период следования ~200 мс;

• амплитуды импульсов тока «1» и «2» примерно одинаковы и равны значению тока заряда.

Дополнительная информация:

Быстрый заряд NiMH аккумуляторов осуществляется постоянным током с отслеживанием момента полного заряда по моменту начала уменьшения напряжения на и (или) максимально допустимому приращению температуры. Типовые характеристики быстрого заряда NiMH аккумуляторов в зависимости от тока заряда приведены на Рис. 7. Дополнительно на рисунке приведены график изменения температуры внутри аккумулятора и изменения тока в процессе заряда.

Рис. 7. Типовые характеристики быстрого заряда NiMH аккумуляторов





Заряд никель-кадмиевых аккумуляторов Ni-Cd

Категория: Поддержка по зарядным устройствам
Опубликовано 07. 05.2016 13:21
Автор:
Abramova Olesya


Производители рекомендуют заряжать новые аккумуляторы медленно, в течение 16-24 часов непосредственно перед использованием. Медленная зарядка позволяет равномерно зарядить все элементы аккумулятора. Это важно потому, что каждый элемент никель-кадмиевого аккумулятора может иметь свою собственную скорость саморазряда. Кроме того, при длительном хранении электролит имеет тенденцию оседать на дно элемента, и первоначальная медленная зарядка помогает устранять сухие пятна на сепараторе. (Смотрите BU-803c: Потери электролита).

Поставляемые новые аккумуляторы на основе свинца и никеля требуют первоначального обслуживания. Оно заключается в нескольких циклах полной зарядки/разрядки, после которых аккумуляторы достигнут оптимальных значений производительности. Эти манипуляции являются частью нормальной эксплуатации; также их можно провести не вручную, а используя возможности специального устройства — аккумуляторного анализатора. Известно, что аккумуляторным батареям необходимы 5-7 циклов зарядки/разрядки для приобретения заявленных характеристик (некоторым моделям для этого нужно около 50-100 циклов). Наилучшие свои показатели аккумулятор показывает в диапазоне 100-300 циклов, после чего его производительность начинает постепенно ухудшаться.

Большинство перезаряжаемых электрических элементов имеют в составе предохранительный клапан, который сбрасывает избыточное давление, возникающее вследствие неправильной зарядки. Клапан NiCd элементов срабатывает при давлении 1000-1400 кПа. Сброс давления не вызывает какого-либо повреждения элемента, но тем не менее, при каждом таком сбросе теряется небольшая часть электролита, и клапан может начать подтекать. Об этом будет свидетельствовать формирование на клапане налета из белого порошка. Постоянное срабатывание клапана в конечном итоге приведет к высыханию электролита, поэтому желательно не доводить аккумулятор до состояния повышенного внутреннего давления.


Аккумуляторы EverExceed

 





OPzSNI-CDOPzV
20 лет / 1500 циклов25 лет / 2000 циклов20 лет / 1500 циклов
для промышленного и частного применения: телекоммуникации, аварийное освещение, солнечные электростанции, системы безопасности, (UPS) источники бесперебойного питания и т. д.

Обнаружение полного заряда герметичных никелевых аккумуляторов является несколько более сложным, чем у свинцово-кислотных или литий-ионных. Недорогие зарядные устройства часто руководствуются измерением температуры для фиксации окончания быстрой зарядки, но этот метод несет в себе некоторые недостатки. Ядро элемента имеет температуру на несколько градусов большую, чем измеряемая температура внешней оболочки, и это может послужить причиной перезаряда. Производители зарядных устройств используют температуру отсечки 50°С. Хотя любое длительное влияние температуры выше 45°С вредно для аккумулятора, кратковременное воздействие допустимо.

Продвинутые зарядные устройства в отличие от простых полагаются не на просто достижение аккумулятором некоторого порогового значения температуры, в расчет берется повышение температуры в течение всего зарядного процесса — такой метод известен как отношение дельты температуры к дельте времени, или просто dT/dt. Вместо того, чтобы ожидать значения абсолютной температуры, этот метод использует быстрое ее повышение в конце зарядки. Этот дельта температурный метод зарядки позволяет держать аккумуляторы более холодными, чем при методе фиксированной температурной отсечки, но ток зарядки должен быть достаточно сильным, чтобы вызывать фиксируемое повышение температуры. Окончание зарядки происходит при скорости повышения температуры 1°С в минуту. Если аккумулятор не может достичь этой скорости, установленная абсолютная температура отсечки 60°С принудительно прекращает зарядку.

Зарядные устройства, использующие температурные показатели, могут привести к нежелательному вредному перезаряду в случае необходимости извлечения и переподключения аккумулятора. К примеру, такая ситуация может возникнуть в транспортных средствах. Повторное подключение инициирует новый цикл зарядки, который приведет к повторному нагреву аккумулятора.

Литий-ионная электрохимическая система имеет преимущество в том, что состоянием заряда управляет напряжение. Повторное подключение полностью заряженного литий-ионного аккумулятора к зарядному устройству сразу же обнаружит пороговое напряжение полного заряда, ток упадет и зарядное устройство вскоре отключится без необходимости анализа температуры.

2. Обнаружение полного заряда с помощью напряжения

Продвинутые зарядные устройства могут прекращать зарядный процесс при определенных изменениях в напряжении аккумулятора. Этот метод обеспечивает более точное обнаружение полного заряда в сравнении с температурными методами. Зарядное устройство фиксирует некоторое падение напряжения которое происходит при достижении аккумулятором полного заряда. Этот метод называется “минус дельта ВЭ” или “дельта пик” или -dV.

“Дельта пик” является рекомендуемым методом обнаружения полного заряда для зарядных устройств, применяющих скорость заряда 0,3С и выше. Он обладает быстрым временем отклика и хорошо работает с частично или полностью заряженными аккумуляторами. При подключении полностью заряженного аккумулятора напряжение на клеммах быстро повышается, а потом резко падает, приводя к индикации полного заряда. Такая зарядка длится всего несколько минут и аккумулятор остается холодным. Зарядные устройства с методом -dV, как правило, реагируют на падение напряжения значением 5 мВ на элемент.

Для достижения надежной фиксации изменения напряжения скорость зарядки должна быть 0,5С и выше. При более медленных скоростях происходит менее рельефное падение напряжения, особенно, если элементы не соответствуют друг другу и каждый из них достигает полного заряда в разный момент времени. Для обеспечения более надежного обнаружения полного заряда большинство зарядных устройств с -dV также используют плату детекции напряжения, которая прерывает заряд, если напряжение остается в одном значении в течение заданного времени. Такие зарядные устройства обычно также имеют функцию детекции дельта температуры, абсолютной температуры и таймер отключения.

Чем выше скорость зарядки, тем она эффективнее. При скорости 1С эффективность стандартного NiCd составляет 91 процент, а время — около часа (66 минут для 91%). При медленной зарядке эффективность падает до 71 процента, увеличивая время до 14 часов при 0,1С.

При заполнении первых 70 процентов заряда аккумулятора, КПД NiCd близок к 100 процентам. Аккумулятор поглощает почти всю энергии, тепловые потери отсутствуют. Никель-кадмиевые аккумуляторы, оптимизированные под быструю зарядку, могут быть заряжены токами, в несколько раз превышающими их емкость, без значительного выделения тепла. В действительности, только никель-кадмиевая электрохимическая система может быть подвергнута ультрабыстрой зарядке с минимальных стрессом. Элементы, оптимизированные под ультрабыструю зарядку, заряжаются до 70 процентов всего за несколько минут.


Зарядные устройства Victron Energy (Голландия)

 





Phoenix ChargerSkylla-iSkylla-TG
12/24В, 16-200А24В, 80-500А24/48В, 30-500А
Мощные профессиональные зарядные устройства для яхт, катеров и другого вида транспорта. Предлагаются однофазные и трехфазные зарядные устройства высокой мощности. Многостадийный адаптивный заряд с возможностью ручного управления.

На рисунке 1 показана зависимость напряжения элемента, давления и температуры от степени заряда. Все идет хорошо примерно до 70 процентов заряда, после чего эффективность зарядки падает. В элементах начинает происходить газообразование, быстро повышается температура. Некоторые зарядные устройства даже снижают скорость заряда после 70 процентов для уменьшения стресса аккумулятора.

Рисунок 1: Зарядные характеристики NiCd элемента. Эффективность зарядки высока до 70 процентов, после чего идет проседание характеристик. Никель-металл-гидридная электрохимическая система имеет схожее поведение. Эффективность зарядки подразумевает способность аккумулятора принимать заряд и имеет сходство с кулоновской эффективностью.

Никель-кадмиевые аккумуляторы с ультравысокой емкостью, как правило, нагреваются больше стандартных в случае зарядки скоростью 1С и больше, отчасти это вызвано большим внутренним сопротивлением. Применение высокого тока на начальном этапе зарядки с дальнейшим его уменьшением по мере заряда аккумулятора, является рекомендуемым методом быстрой зарядки для этих более хрупких версий. (Смотрите BU-208: Производительность циклического режима работы).

Перемежая разрядные импульсы с импульсами зарядки, можно улучшить восприимчивость к зарядке аккумуляторов на основе никеля. Такой метод называют “обратной нагрузкой”, и его использование помогает процессу рекомбинации газов, образующихся во время зарядки. Как результат, аккумулятор остается более холодным и получает более эффективный заряд в сравнении с методами обычных зарядных устройств постоянного тока. Также есть информация, что этот метод препятствует “эффекту памяти”, так как зарядка производится импульсным током. (Смотрите BU-807: Как восстановить аккумулятор на основе никеля). В то время как импульсная зарядка представляется весьма интересной в отношении никель-кадмиевой и никель-металл-гидридной электрохимической системы, для других типов систем она не применима.

После полной зарядки к NiCd аккумуляторам необходимо применить капельную подзарядку силой в 0,05-0,1С для компенсации саморазряда. Производители зарядных устройств стараются сделать силу тока как можно меньшей во избежание вредных эффектов перезаряда. Лучше всего не оставлять NiCd аккумулятор подключенным к зарядному устройству более чем на несколько дней. Лучше всего заряжать их перед самой эксплуатацией.

3. Зарядка затопленных никель-кадмиевых аккумуляторов

Затопленные NiCd аккумуляторы заряжаются постоянным напряжением значением примерно 1,55 В на элемент. Затем ток снижают до 0,1С и продолжают зарядку до тех пор, пока не будет достигнуто напряжение 1,55 В на элемент. После зарядное устройство переходит в режим капельной подзарядки. Возможна зарядка и большим напряжением, но это приводит к чрезмерному газообразованию и, как следствие, истощению воды. Обнаружение полного заряда по методу “дельта пик” не используется, так как затопленный NiCd не герметичный и не поглощает газы.

Последнее обновление 2016-02-29

Рекомендации по зарядке/разрядке Ni-MH аккумуляторов

Для нормальной работы любого аккумулятора нужно всегда помнить «Правило «Трёх П»:
— Не перегревать!
— Не перезаряжать!
— Не переразряжать!

Для вычисления времени зарядки никель-металл-гидридного аккумулятора или батареи из нескольких элементов можно использовать следующую формулу:

Время зарядки (ч) = Емкость аккумулятора (мАч) / Сила тока зарядного устройства (мА)

Пример:
Мы имеем аккумулятор с ёмкостью 2000mAh. Ток заряда в нашем зарядном устройстве  — 500mA. Делим ёмкость аккумулятора на ток заряда и получаем 2000/500=4. Это означает, что при токе в 500 миллиампер наш аккумулятор с ёмкостью 2000 миллиамперчасов будет заряжаться до полной ёмкости 4 часа!

А теперь более подробно про правила, которые нужно стараться соблюдать, для нормальной работы никель-металл-гидридного (Ni-MH) аккумулятора:

Храните Ni-MH аккумуляторы с небольшим количеством заряда (30 — 50% от его номинальной ёмкости).
Никель-металлогидридные аккумуляторы более чувствительны к нагреву, чем никель-кадмиевые (Ni-Cd), поэтому не перегружайте их. Перегрузка может отрицательно сказаться на токоотдаче  аккумулятора (способности аккумулятора держать и выдавать накопленный заряд). Если у вас есть интелектуальное зарядное устройство с технологией «Delta Peak» (прерывание заряда аккумулятора по достижению пика напряжения), то вы можете заряжать аккумуляторы практически без риска перезарядки и разрушения оных.
Ni-MH (никель-металл-гидридные) аккумуляторы после покупки можно (но не обязательно!) подвергать «тренировке». 4-6 циклов заряда/разряда для аккумуляторов в качественном зарядном устройстве позволяет достичь придела ёмкости, которая была растеряна в процессе перевозки и хранения аккумуляторов в сомнительных условиях после выхода с конвейера завода-производителя. Количество подобных циклов может быть совершенно разным для аккумуляторов от разных производителей. Качественные аккумуляторы достигают предела ёмкости уже после 1-2 циклов, а аккумуляторы сомнительного качества с искусственно завышенной ёмкостью не могут достигнуть своего предела и после 50-100 циклов заряда/разряда.
После разряда или заряда старайтесь дать остыть аккумулятору до комнатной температуры (~20o C). Заряд аккумуляторов при температурах ниже 5oC или выше 50oC может значительно отразиться на сроке службы батареи.
Если хотите разрядить Ni-MH аккумулятор, то не разряжайте его менее, чем до 0.9В для каждого элемента. Когда напряжение никелевых аккумуляторов падает ниже 0.9В на элемент, большинство зарядных устройств, обладающих «минимальным интеллектом», не могут активировать режим заряда. Если Ваше зарядное устройство не может опознать глубоко разряженный элемент (разряженный менее 0.9В), то стоит прибегнуть к помощи более «тупого» зарядника или подключить аккумулятор на короткое время к источнику питания с током 100-150мА до достижения напряжения на аккумуляторе 0.9В.
Если вы постоянно используете одну и ту же сборку из аккумуляторов в электронном устройстве в режиме дозаряда, то иногда стоит разряжать каждый аккумулятор из сборки до напряжения 0,9В и производить его полный заряд во внешнем зарядном устройстве. Подобную процедуру полного циклирования стоит производить один раз на 5-10 циклов дозаряда аккумуляторов.

Рекомендации по работе с Ni-MH аккумуляторами

Первое использование

Для того чтобы аккумуляторы вышли на свою максимальную емкость, перед первым их необходимо сначала разрядить до напряжения 0,9В, а затем полностью зарядить.
Эту процедуру рекомендуется повторить 3-5 раз.
Новые купленные аккумуляторы из упаковки должны иметь напряжение более 1В. Меньшее напряжение говорит о том, что аккумуляторы хранились слишком долго без подзаряда, либо хранились при неоптимальной температуре и за счет саморазряда их напряжение снизилось. При снижении напряжения ниже 0,9В в аккумуляторе начинаются необратимые процессы, которые ведут к снижению емкости и увеличению внутреннего сопротивления.

Существуют зарядные устройства с функциями доразряда, тренировки аккумуляторов (циклирования) и измерения емкости и напряжения, например ROBITON ProCharger1000, MasterCharger Pro, MasterCharger 2B/Pro

Номинальная емкость

Номинальная емкость — количество электричества в ампер-часах, которое способен отдать полностью заряженный аккумулятор при разряде в строго определенных условиях.
Для измерения номинальной емкости производители используют следующую методику:
заряд током 0,2С в течение 16 часов (где С — емкость аккумулятора), перерыв 1 час, разряд током 0,15-0,20С до 0,9В. Температура 18-22*С.
При несоблюдении этих условий емкость ваших аккумуляторов может отличаться от заявленной. Но зачастую хорошие аккумуляторы сохраняют те же показатели емкости и при значительном увеличении тока заряда и разряда.

Точное значение номинальной емкости можно узнать в спецификации на данный аккумулятор. Емкость, указанная на этикетке, может отличаться от номинальной.

Большинство зарядных устройств, которые обладают функцией замера емкости  — не калиброваны и имеют погрешность до 5%. Это означает, что один и тот же аккумулятор емкостью 2500мАч, может показать различную емкость при измерении: от 2375мАч до 2625мАч. 

Эффект памяти

Эффект памяти —  потеря емкости, имеющая место в некоторых типах электрических аккумуляторов при подзаряде не полностью разрядившегося аккумулятора.
Когда говорят, что Ni-MH не обладают «эффектом памяти», имеют ввиду, что выражен он значительно слабее, чем у Ni-Cd аккумуляторов. Так сложилось исторически, так как Ni-Cd аккумуляторы появились первыми и обладали сильновыраженным «эффектом памяти»
Примерно 1 раз в два месяца необходимо полностью разряжать Ni-MH аккумуляторы (до 0,9В), чтобы поддерживать емкость аккумулятора на уровне заявленной производителем.

Название «эффект памяти» связано с внешним проявлением эффекта: аккумулятор как будто «помнит», что в предыдущие циклы работы его ёмкость не была использована полностью, и при разряде отдаёт только до «запомненной границы»

Количество циклов

Ni-MH аккумуляторы могут выдержать более 500 циклов заряд/разряд.
Количество циклов измеряется просто — аккумулятор заряжается/разряжается до тех пор, пока его емкость не снизится до уровня 80% от номинальной емкости. После 500-го цикла аккумулятор не «умирает», а продолжает работать, но его емкость уже будет ниже на 20% от изначальной емкости.

Температура

Стандартный заряд: От 0 до 45ºС

Быстрый заряд: От 10 до 45ºС

Разряд: От -20 до 65ºС

Зачастую перегрев происходит при заряде аккумуляторов большим током. Температура при заряде током более 0,5С (где С — емкость) может достигать 65*С, поэтому при использовании быстрых зарядных устройств неизбежно ускоренное старение аккумуляторов.

Некоторые зарядные устройства имеют охлаждающий куллер, либо систему защиты от перегрева – они прекращают процесс заряда при превышении некоторого температурного порога.

Хранение

Максимальный срок хранения Ni-MH аккумуляторов достигается при уровне заряженности примерно 50%. С производства Ni-MH аккумуляторы выходят именно в таком состоянии. Оптимальная температура хранения от -20 до +30*С.

Саморазряд

Стандартные Ni-MH аккумуляторы, как и все другие элементы питания подвержены саморазряду. Это означает, что с течением времени их запасенная энергия снижается.
Скорость саморазряда стандартных Ni-MH аккумуляторов составляет до 40% в течение месяца. При этом 15-20% своей запасенной энергии аккумулятор теряет в первые сутки после заряда и по 10-15% от остаточной запасенной энергии теряется в течение каждого следующего месяца.
Это означает, что стандартные Ni-MH аккумуляторы необходимо подзаряжать непосредственно перед использованием.

Существуют Ni-MH аккумуляторы с низким саморазрядом, обычно с отметкой READY To USE или LOW SelfDischarge. За год их запасенная энергия снижается всего на 15%. Такие аккумуляторы выходят с производства полностью заряженными, они готовы к использованию сразу после покупки.

Время заряда Ni-MH аккумуляторов

Для аккумуляторов любой емкости формула расчета времени заряда проста:
Время (в часах) = Емкость аккумулятора (в мАч) * 1,2 / Ток зарядного устройства (в мА)

Например, если аккумулятор емкостью 2500мАч поставить на заряд током 700мА, то время заряда составит: 2500 * 1,2 / 700 = 4,3 часа

Формула применима для полностью разряженных аккумуляторов

Ток заряда Ni-MH аккумуляторов

Все Ni-MH аккумуляторы поддерживают стандартный и быстрый заряд.
Некоторые модели аккумуляторов могут поддерживать сверхбыстрый заряд.
Ток заряда выражается через С — емкость аккумулятора.
Например, ток заряда 0,3С для аккумулятора 2500мАч это 2500 * 0,3=750мА

Стандартный заряд: ток заряда <0,2C 

Время заряда аккумуляторов контролируется пользователем. Перед зарядом аккумуляторов необходимо вычислить приблизительное время заряда по формуле.

Быстрый заряд: ток заряда 0,2C-0,5С

При этом токе возможно автоматическое определение момента окончания заряда. Аккумуляторы можно заряжать в автоматическом режиме, если используется автоматическое зарядное устройство. В случае использования стандартных зарядных устройств, время заряда контролируется пользователем и вычисляется предварительно  по формуле.
В процессе заряда возможен небольшой нагрев аккумуляторов, это нормально.

Сверхбыстрый заряд: ток заряда 0,5-1C

При этом токе возможно автоматическое определение момента окончания заряда. Можно заряжать в автоматическом режиме, если у вас автоматическое з/у, а если нет, то нужно вычислить время по приведенной выше формуле.

Возможен сильный нагрев аккумуляторов, это нормально. Если нагрев выше 55*С, необходимо отключить заряд и подождать их остывания. Примерно температуру можно оценить по тактильным ощущениям при длительном прикосновении к аккумуляторам — если есть ощущение жжения и продолжительно удерживать контакт невозможно, значит температура 55-60*С.

Помните, что не все аккумуляторы поддерживают сверхбыстрый заряд.

Зарядное устройство для простых никель-кадмиевых аккумуляторов

с индикатором заряда

>> Ресурсы электронного дизайна
.. >> Библиотека: Серия статей
.. .. >> Серия: Идеи для дизайна
.. .. .. >> Идеи для дизайна Том 2

% {[data-embed-type = «image» data-embed-id = «5df275e5f6d5f267ee20be1a» data-embed-element = «aside» data-embed-alt = «Insidepenton Com Электронный дизайн Adobe Pdf Logo Tiny» data-embed- src = «https: // img. electronicdesign.com/files/base/ebm/electronicdesign/image/2013/01/insidepenton_com_electronic_design_adobe_pdf_logo_tiny.png?auto=format&fit=max&w=1440 «data-embed-caption =» «]}% Загрузите эту статью в формате .PDF.
Этот тип файлов включает графику и схемы с высоким разрешением.

Перезаряжаемые никель-кадмиевые (NiCd) батареи широко используются в бытовой электронике из-за их высокой плотности энергии, длительного срока службы и низкой скорости саморазряда.Стандартные никель-кадмиевые элементы можно заряжать с разными скоростями: быстрая зарядка сильным током или ночь малым током.

Независимо от скорости зарядки, во время зарядки на аккумулятор должен подаваться постоянный ток. Кроме того, в аккумуляторную батарею необходимо подавать больше энергии, чем ее фактическая емкость, чтобы компенсировать потери энергии во время зарядки.

Однако при разработке зарядного устройства для них необходимо решить две проблемы: как установить правильное значение зарядного тока и как остановить процесс зарядки, когда аккумулятор полностью заряжен, чтобы избежать перезарядки. Это простое и недорогое зарядное устройство решает обе проблемы.

% {[data-embed-type = «image» data-embed-id = «5df275e8f6d5f267ee20d394» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Electronicdesign Com Sites Electronicdesign com Загрузка файлов 2013 04 Ifd2544 Fig1a «data-embed-src =» https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2013/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2013_04_IFD2544_Files_uploads_2013_04_IFD2544_Fig = 1440 «data-embed-caption =» «]}% 1.Постоянный ток зарядки создается LDO и резистором и стробируется Q1, который, в свою очередь, управляется выходом микроконтроллера. Квартет светодиодов, также управляемых микроконтроллером, показывает пользователю состояние заряда.

Самый дешевый и безопасный способ зарядить никель-кадмиевый аккумулятор — заряжать 10% от номинальной емкости в час в течение 16 часов. Используемый аккумуляторный блок содержит два никель-кадмиевых элемента AA емкостью 1200 мАч, поэтому аккумулятор необходимо заряжать током 120 мА.

В схеме зарядки на Рисунке 1 постоянный ток заряда генерируется регулятором тока, состоящим из IC3 (LM317 LDO) и резистора R3, где R3 равно 1.25 В / 120 мА, около 10 Ом. Коммутирующий полевой МОП-транзистор Q1 (IRF520) был выбран из-за его очень низкого импеданса в открытом состоянии (проводящего) 0,3 Ом.

Лучшая практика зарядки — использовать таймер, чтобы предотвратить перезарядку в течение более 16 часов. Такой подход не требует датчика окончания заряда и обеспечивает полную зарядку. Функция синхронизации выполняется микроконтроллером IC1, который также сообщает о состоянии заряда через светодиоды.

В этом проекте можно использовать любой микроконтроллер.Здесь использовался недорогой восьмиконтактный микроконтроллер Motorola (Freescale) MC68HC908QT1.

Каждый этап зарядки обозначается включением соответствующего светодиода. Количество шагов определяется количеством доступных выходов микроконтроллера без добавления каких-либо дополнительных компонентов. Поскольку микроконтроллер имеет пять выходов, один из них используется для запуска заряда, поэтому четыре могут использоваться для индикации заряда. Для минимизации количества компонентов используются светодиоды со встроенными резисторами (WP710A10YD5V, www.kingbrightusa.com).

Чтобы сделать процесс более наглядным, эти светодиоды должны быть расположены на одной линии с очертаниями батареи, нарисованными вокруг них, поэтому включение светодиодов по одному будет четко указывать на процесс зарядки. Разумно выбрать одинаковые временные интервалы, при этом светодиоды будут показывать 25%, 50%, 75% и 100% времени заряда аккумулятора.

Программа начинает мигать соответствующим светодиодом в начале каждого временного интервала и до конца каждого интервала.После этого загорятся светодиоды. Когда зарядка завершена, все четыре светодиода горят, поэтому пользователь знает статус заряда в любое время. (В качестве дополнительной функции можно добавить зуммер для подачи звукового сигнала по окончании зарядки. )

Программа микроконтроллера на рисунке 2 проста. Листинг кода ассемблера можно найти здесь.

% {[data-embed-type = «image» data-embed-id = «5df275e8f6d5f267ee20d396» data-embed-element = «aside» data-embed-align = «left» data-embed-alt = «Electronicdesign Com Sites Electronicdesign com Загрузка файлов 2013 04 Ifd2544 Fig2a «data-embed-src =» https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2013/04/electronicdesign_com_sites_electronicdesign.com_files_uploads_2013_04_IFD2544_Fig2a.png?auto=format&fit=max&w=1440 «data-embed]-caption%. последовательность проверки уровня / пошаговой итерации кода для управления светодиодами индикации заряда.

Период мигания светодиода установлен на одну секунду. Встроенный генератор микроконтроллера генерирует частоту 12,8 МГц и обеспечивает длительность одного цикла 312.5 нс. При установке предварительного делителя таймера на 64 и регистра по модулю таймера на 50 000 (C350H) период переполнения таймера (TOF) равен одной секунде (0,3125 мкс × 64 × 50 000). Программа переключает светодиод в каждом периоде TOF.

Ночной «продолжительный» заряд длится 16 часов, при этом константа счетчика MAX_CNT рассчитана как 16 × 60 × 60 = 57 600 (E100H). Таким же образом можно установить любое максимальное время зарядки. Очевидно, что ждать 16 часов для тестирования программы неудобно, и более практичным было бы, например, 20 минут.

Для этого более короткого периода постоянная MAX_CNT должна быть установлена ​​на 20 × 60 = 1200 (04B0H). Продолжительность каждого из четырех временных интервалов будет автоматически установлена ​​прошивкой после ввода максимального времени зарядки.

Этот подход очень гибкий и может быть применен для зарядки любой никель-кадмиевой батареи, выбрав соответствующий резистор R3. Кроме того, можно использовать практически любой тип микроконтроллера, поскольку программа проста и использует только стандартные инструкции.

Абель Рейнус — инженер в Armatron International Inc. , Малден, Массачусетс. С ним можно связаться по адресу [email protected].

% {[data-embed-type = «image» data-embed-id = «5df275e5f6d5f267ee20be1a» data-embed-element = «aside» data-embed-alt = «Insidepenton Com Электронный дизайн Adobe Pdf Logo Tiny» data-embed- src = «https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2013/01/insidepenton_com_electronic_design_adobe_pdf_logo_tiny.png?auto=format&fit=max&w=1440″ data-embed]-caption = » Загрузите эту статью в формате.Формат PDF
Этот тип файлов включает графику и схемы с высоким разрешением.

>> Ресурсы электронного дизайна
.. >> Библиотека: Серия статей
.. .. >> Серия: Идеи для дизайна
.. .. .. >> Идеи для дизайна Том 2

Никель-кадмиевый заряд »Электроника

Правильная зарядка никель-кадмиевых, никель-кадмиевых аккумуляторов является ключевым моментом: заряжайте их правильно, и они будут работать хорошо, с ними плохо обращаются, и их срок службы сокращается.


Аккумуляторная технология Включает:
Обзор аккумуляторной технологии
Определения и термины батареи
NiCad
NiMH
Литий-ионный
Свинцово-кислотный

Никель-кадмиевый аккумулятор в комплекте:
NiCad зарядка
Эффект памяти NiCad


Аккумуляторная батарея заряжается или заряжается с осторожностью. Перезаряжаемые батареи и элементы необходимо заряжать надлежащим образом, иначе они могут быть повреждены.

Если никель-кадмиевые батареи правильно заряжены, они прослужат намного дольше, принимая и сохраняя полный уровень заряда.

Неправильная зарядка или никель-кадмиевые батареи могут привести к сокращению срока службы или, в некоторых случаях, когда зарядка особенно неуместна, это может вызвать пожар или даже взрыв.

К счастью, никель-кадмиевые и никель-кадмиевые методы зарядки относительно просты, и на рынке было много подходящих зарядных устройств для этих батарей и элементов.

Основная зарядка NiCd аккумуляторов

Производители никель-кадмиевых аккумуляторов

не полностью форматируют свои аккумуляторы перед отправкой, чтобы они не сильно разлагались при хранении. В результате лучше всего перед использованием дать новым батареям медленную зарядку. Обычно это занимает от 15 до 24 часов. Это гарантирует, что каждая ячейка будет иметь одинаковый уровень заряда, поскольку они саморазрядились с разной скоростью во время транспортировки.

Кроме того, обнаружено, что характеристики новых элементов достигают оптимума только после нескольких циклов заряда / разряда. Обычно элементы должны достичь заданного уровня производительности после пяти-десяти циклов заряда-разряда.

Помимо этого, пиковая емкость может быть достигнута примерно после 100 или более циклов зарядки-разрядки, после чего производительность начнет падать.

Предполагается, что никель-кадмиевые батареи заряжаются и разряжаются надлежащим образом, и они не подлежат неправильному обращению.

Основы зарядки NiCd

В отличие от свинцово-кислотных элементов, никель-кадмиевые аккумуляторы заряжаются от источника постоянного тока. Их внутреннее сопротивление таково, что если бы использовалось постоянное напряжение, они потребляли бы слишком большие токи, которые могли бы повредить элементы.

Обычно элементы заряжаются со скоростью около C / 10. Другими словами, если их емкость составляет 1 ампер-час, они будут заряжаться со скоростью 100 мА. Время зарядки обычно превышает десять часов, потому что не вся энергия, поступающая в элемент, преобразуется в накопленную электрическую энергию.

Установлено, что во время первого этапа зарядки, до примерно 70% полной зарядки, процесс зарядки почти на 100% эффективен. После этого он падает.

Быстрая зарядка NiCd

Иногда оборудование, в котором используются никель-кадмиевые элементы, требует использования методов быстрой зарядки.

Обычно зарядка происходит со скоростью около C. Однако необходимо убедиться, что зарядка NiCd выполняется правильно, и зарядка прекращается сразу после завершения зарядки.

Так как эффективность зарядки составляет почти 100% до примерно 70% полной зарядки, заряд на полной скорости поддерживается до этого момента, после чего скорость зарядки снижается по мере увеличения температуры по мере снижения эффективности заряда.

Было обнаружено, что быстрая зарядка никель-кадмиевых элементов также улучшает эффективность заряда.При скорости заряда 1С общая эффективность заряда стандартного NiCd составляет около 90%, а время заряда составляет чуть более часа.

Обнаружение окончания заряда для NiCds

Независимо от того, используется ли медленная или быстрая зарядка, необходимо убедиться, что никель-кадмиевые элементы не перезаряжаются. Следовательно, необходимо иметь возможность определять окончание заряда. Есть несколько способов добиться этого.

  • Базовое зарядное устройство: Некоторые из самых простых никель-кадмиевых зарядных устройств, которые можно купить, просто заряжают около C / 10.Они не включают таймер и предполагают, что пользователь снимет зарядку, когда батарея будет заряжена. Этот режим не совсем удовлетворителен, так как если пользователь забудет, ячейки будут перезаряжены, что приведет к их повреждению. Также нет возможности узнать точное состояние заряда до начала зарядки.
  • Истекшее время / таймер: Некоторые из самых простых зарядных устройств предполагают, что элементы потребуют полной зарядки, и, зная их емкость, они могут получать заряд в течение определенного времени.Это простой и понятный метод зарядки никель-кадмиевых элементов и аккумуляторов. Одним из основных недостатков этой формы прекращения заряда является то, что он предполагает, что все батареи полностью разряжены перед их перезарядкой. Чтобы батареи были полностью разряжены, зарядное устройство может выполнить цикл разряда.

    Это не очень точный метод подзарядки батарей и элементов, поскольку количество заряда, которое они могут удерживать, меняется в течение их срока службы.Однако это лучше, чем отсутствие прекращения начисления.

  • Сигнатура напряжения: Сигнатура напряжения Зарядные устройства NiCd используют сигнатуру напряжения никель-кадмиевого элемента, чтобы определить, где он находится в цикле зарядки.

    Обнаружено, что когда никель-кадмиевый аккумулятор полностью заряжен, напряжение на клеммах немного падает. Зарядные устройства на базе микропроцессоров могут контролировать напряжение и определять точку полной зарядки, когда они завершают процесс зарядки.

    Эту форму прекращения заряда NiCd часто называют отрицательным дельта-напряжением, NDV. Он обеспечивает лучшую производительность при быстрой зарядке, поскольку отрицательная точка дельта-напряжения более очевидна при использовании быстрой зарядки.

  • Повышение температуры: Для определения момента окончания быстрой зарядки используется метод измерения температуры. Проблема в том, что это неточно, потому что ядро ​​ячейки будет иметь гораздо более высокую температуру, чем периферия.При нормальной скорости заряда скорость повышения температуры может быть недостаточной для точного определения.

    Обычно в качестве температуры отключения используется температура 50 ° C. Хотя короткий период при температуре 45 ° C может быть приемлемым, если температура может быстро падать, любой продолжительный период при температуре выше или выше вызывает ухудшение состояния элемента.

    Для быстрых зарядных устройств стали доступны более совершенные зарядные устройства с использованием более совершенных технологий. Основанные на микропроцессорной технологии, они способны определять скорость изменения температуры.Обычно прекращение заряда происходит при достижении скорости повышения температуры на 1 ° C в минуту или при достижении предельной заданной температуры (часто между 50 ° C и 60 ° C).

    Обнаружение скорости повышения температуры важно, потому что оно определяет, когда элемент полностью заряжен и энергия, поступающая в элемент, не преобразуется в накопленную энергию за счет потери тепла.

    Одним из недостатков этого метода является то, что никель-кадмиевые элементы или батареи, повторно вставленные в зарядное устройство с датчиком температуры, которое, вероятно, будет быстрым зарядным устройством, может вызвать опасный перезаряд, если аккумулятор повторно вставлен без полной разрядки, как в случае кто-то хочет убедиться, что аккумулятор заряжен.

Капельный заряд NiCd

Часто необходимо поддерживать никель-кадмиевые элементы и батареи полностью заряженными и преодолевать любой саморазряд элемента с течением времени, из-за которого их нельзя сразу использовать.

После полной зарядки NiCd можно поддерживать в полностью заряженном состоянии, применяя постоянный заряд. Этот непрерывный заряд может быть безопасно достигнут путем подачи небольшого тока к элементу или элементам на уровне примерно от 0,05 C до 0,1 C. Это должно быть достигнуто с использованием источника тока, поскольку фактическое напряжение элементов может изменяться в зависимости от температуры. .

Часто к элементу или элементам может быть приложен гораздо более высокий постоянный заряд, что может привести к перегреву и некоторому повреждению.

, даже несмотря на то, что часто требуется держать элементы или батареи на постоянной подзарядке, чтобы гарантировать их готовность к работе, если срок службы батареи является важным фактором, оставлять никель-кадмиевые элементы на непрерывной подзарядке более чем на несколько дней не является идеальным решением. время. Гораздо лучше их снять и зарядить перед использованием.

Если никель-кадмиевые никель-кадмиевые батареи заряжать осторожно, они будут работать в течение длительного времени.Известно, что некоторые NiCd-элементы используются в течение многих лет. Несмотря на то, что мощность неизбежно падает по мере использования, они могут оставаться в рабочем состоянии в течение длительного времени, обеспечивая хорошее обслуживание.

Другие электронные компоненты: Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
Полевой транзистор
Типы памяти
Тиристор
Разъемы
ВЧ разъемы
Клапаны / трубки
Аккумуляторы
Переключатели
Реле

Вернуться в меню «Компоненты».. .

Статьи о BatteryStuff | Ответы на общие вопросы о батареях NiCD

Если это не ваша первая остановка в информационном следе NiCd, я уверен, что информация, которую вы прочитали, услышали или нашли в Интернете, просто огромна. В этом уроке мы постараемся сделать его простым, точным и по существу. Если у вас есть вопросы, на которые вы не нашли ответа, сообщите нам, и мы надеемся, что сможем помочь.

Что такое никель-кадмиевые батареи?

«NiCd» — это химическое сокращение от состава никель-кадмиевых батарей, которые представляют собой тип вторичных (перезаряжаемых) батарей. Никель-кадмиевые батареи содержат химические вещества никель (Ni) и кадмий (Cd) в различных формах и составах. Обычно положительный электрод состоит из гидроксида никеля (Ni (OH) 2), а отрицательный электрод — из гидроксида кадмия (Cd (OH) 2), причем сам электролит представляет собой гидроксид калия (KOH).

В чем уникальность никель-кадмиевых батарей

Никель-кадмиевые батареи

отличаются от обычных щелочных или свинцово-кислотных батарей по нескольким ключевым параметрам. Одно из основных отличий — напряжение на ячейках. Типичная щелочная или свинцово-кислотная батарея имеет напряжение элемента около 2 В, которое затем постепенно падает по мере разряда. Никель-кадмиевые батареи уникальны тем, что они будут поддерживать постоянное напряжение 1,2 В на элемент до тех пор, пока оно почти полностью не разрядится. Это позволяет никель-кадмиевым батареям обеспечивать полную выходную мощность до конца цикла разряда.Таким образом, хотя у них более низкое напряжение на ячейку, они обеспечивают более мощную доставку во всем приложении. Некоторые производители компенсируют разницу в напряжении, добавляя в аккумуляторную батарею дополнительную ячейку. Это позволяет сохранять напряжение, такое же, как у аккумуляторов традиционного типа, при этом сохраняя постоянное напряжение, которое является уникальным для никель-кадмиевых аккумуляторов. Еще одна причина, по которой никель-кадмиевые батареи могут обеспечивать такую ​​высокую выходную мощность, заключается в их очень низком внутреннем сопротивлении. Поскольку их внутреннее сопротивление настолько низкое, они способны очень быстро разряжать большую мощность, а также очень быстро принимать большую мощность.Такое низкое внутреннее сопротивление позволяет поддерживать низкую внутреннюю температуру, что обеспечивает быструю зарядку и разрядку. Эта особенность в сочетании с постоянным напряжением элементов позволяет им выдавать большую силу тока при постоянно более высоком напряжении, чем у сопоставимых щелочных батарей.

Применение электроинструментов

Одно из наиболее практичных применений никель-кадмиевых батарей — это аккумуляторные электроинструменты. Электроинструменты требуют большого количества энергии в течение всего времени использования и не работают так же хорошо при падении напряжения, как обычная батарея.Благодаря никель-кадмиевой технологии электроинструменты могут работать на полную мощность в течение всего времени использования, а не только в первые несколько минут работы. С литий-ионной, щелочной или даже свинцово-кислотной батареей электроинструмент будет работать исключительно хорошо с самого начала, с постоянным снижением мощности, пока электроинструмент не перестанет работать вообще. NiCads, с другой стороны, заставят электроинструмент оставаться на полной мощности до самого конца заряда. Более того, никель-кадмиевые аккумуляторы можно безопасно заряжать всего за 1-2 часа! Мы рекомендуем сменные никель-кадмиевые аккумуляторы PremiumGold для электроинструментов.

Зарядка NiCd аккумуляторов

Еще одна уникальная особенность никель-кадмиевых аккумуляторов заключается в их способе зарядки. В отличие от свинцово-кислотных аккумуляторов, которые могут выдерживать большие колебания силы тока и напряжения во время зарядки, никель-кадмиевые аккумуляторы требуют постоянной силы тока и лишь очень незначительных колебаний напряжения. Уровень заряда NiCad составляет от 1,2 В до 1,45 В на элемент. При зарядке никель-кадмиевых аккумуляторов обычно используется скорость заряда c / 10 (10% емкости), за исключением скоростных зарядных устройств, которые заряжают либо c / 1 (100% емкости), либо c / 2 (50% емкости). .Никель-кадмиевые аккумуляторы способны получать гораздо более высокую скорость заряда, до 115% от их общей емкости, с минимальным сокращением срока службы, что делает никель-кадмиевые аккумуляторы идеальными аккумуляторами для электроинструментов. Если вы заметили, что аккумулятор нагревается во время зарядки, охладите его, а затем завершите зарядку. Химическая реакция в NiCad во время зарядки заключается в поглощении тепла, а не в выделении тепла, поэтому во время зарядки возможно более высокое потребление энергии, что позволяет сократить время зарядки.

Хранение никель-кадмиевых батарей

Храните никель-кадмиевые батареи в прохладном и сухом месте.Диапазон температур для хранения батарей составляет от -20 ° C до 45 ° C. При подготовке к хранению никель-кадмиевых батарей убедитесь, что они достаточно глубоко разряжены. Рекомендуемый диапазон составляет от 40% до 0% заряда при хранении. НИКОГДА не замыкайте никель-кадмиевый корпус на сток, поскольку это вызывает чрезмерное нагревание и может вызвать выделение газообразного водорода… AKA-Boom! Скорость саморазряда никель-кадмиевых аккумуляторов составляет около 10% при 20 ° C и возрастает до 20% при более высоких температурах. Рекомендуется не хранить никель-кадмиевые батареи в течение длительного времени, не используя изредка батареи.При длительном хранении кадмий в NiCad может образовывать дендриты (тонкие проводящие кристаллы), которые могут перекрывать зазор между контактами и замыкать аккумулятор. Как только это произойдет, уже ничего нельзя будет сделать, чтобы исправить это в долгосрочной перспективе. Лучший способ предотвратить это — частое использование.

Эффект памяти

Одна из самых обсуждаемых тем о NiCad — есть ли у них «память». Идея зарядной памяти возникла, когда они начали использовать никель-кадмиевые батареи в спутниках, где они обычно заряжались в течение двенадцати часов из двадцати четырех в течение нескольких лет. 1 По прошествии нескольких лет было замечено, что емкость аккумулятора, похоже, сильно снизилась, и, будучи еще работоспособными, они разряжаются только до такой степени, что обычно срабатывает зарядное устройство, а затем разряжаются, как если бы они были полностью разряжены. разряжены. Для типичного потребителя это не имеет большого значения, однако мы рекомендуем полностью разрядить используемый никель-кадмиевый аккумулятор перед подзарядкой. Время от времени полное истощение (но НИКОГДА не замыкается накоротко) никель-кадмиевый аккумулятор может предотвратить включение этой загадочной «памяти» батареи.Эффект с похожими симптомами на эффект памяти — это то, что называется понижением напряжения или эффектом ленивого заряда батареи. Это вызвано частой перезарядкой NiCad. Вы можете сказать, что это происходит, когда батарея кажется полностью заряженной, но быстро разряжается после непродолжительного использования. Это не эффект памяти , который ограничен только никель-кадмиевыми батареями, это то, что может случиться с любой батареей и почти всегда происходит из-за перезарядки. Иногда это можно исправить, выполнив несколько циклов очень глубокой разрядки аккумулятора, но это может сократить общий срок службы аккумулятора.Никель-кадмиевые батареи — это единственный тип батарей, который полностью разряжается перед подзарядкой.

Надлежащая утилизация

Никель-кадмиевые батареи содержат кадмий, высокотоксичный «тяжелый» металл. Никогда не сжигайте никель-кадмиевые аккумуляторы, не выбрасывайте их в мусор и не ломайте их. Всегда утилизируйте никель-кадмиевые кадры в официальных пунктах переработки никель-кадмиевых аккумуляторов. Пока никель-кадмиевые батареи герметично закрыты, не допускают короткого замыкания или чрезмерного заряда, никель-кадмиевые батареи совершенно безопасны в использовании и не выделяют токсичный материал.Если с никель-кадмиевым аккумулятором обращаться хорошо, его хватит на 1000 циклов. Быстрая зарядка никель-кадмиевых аккумуляторов может немного сократить их срок службы, равно как и неправильное хранение.

Сводка

Несмотря на то, что никель-кадмиевые батареи ограничены в применении, они являются исключительным выбором для любых ваших требований к беспроводному электроинструменту. По мере развития технологий появляются и другие химические батареи, однако лучшая отдача, поскольку для сменных батарей для электроинструментов, по-прежнему заключается в этом испытанном и испытанном типе батареи.

Выберите аккумулятор для электроинструмента NiCd

Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.

Как правильно зарядить NiCd аккумулятор?

У никель-кадмиевых аккумуляторов есть два метода зарядки: один — постоянное напряжение (повышение + поплавок), а другой — постоянный ток.Рекомендуется использовать метод зарядки постоянного напряжения для никель-кадмиевых аккумуляторов, обычно с ограничением тока до C / 5 или C / 10. . Напряжение зарядки необходимо регулярно проверять.Чтобы оптимизировать работу аккумулятора, необходимо следить за тем, чтобы напряжение оставалось в определенных пределах.

Основы зарядки NiCd:

Обычно элементы заряжаются со скоростью около C / 5. Другими словами, если их емкость составляет 1 ампер-час, они будут заряжаться со скоростью 200 мА. Время зарядки обычно превышает 10 часов, потому что не вся энергия, поступающая в элемент, преобразуется в накопленную электрическую энергию.

Установлено, что во время первой стадии зарядки, до примерно 70% от полной зарядки, процесс зарядки почти на 100% эффективен.После этого он падает.

Подготовка перед первоначальной загрузкой:
После установки и подключения аккумулятор необходимо как можно скорее полностью зарядить. Желательно, чтобы весь заряд проводился при постоянном токе. Время зарядки обратно пропорционально току, который устанавливается ограничением тока зарядного оборудования.
Рекомендуемые значения для первой зарядки: 0,2 C5A в течение 10 часов
0,1 C5A в течение 20 часов

Зарядка:

Каждая ячейка должна быть заряжена по стандартному току 0.2C5 A для зарядки 8 часов, элементы одной модели можно заряжать вместе, а разные модели нельзя заряжать вместе. Во время зарядки температура электролита медленно повышается. Если температура поднимется выше 45 ℃, это будет вредно для аккумулятора, зарядку следует немедленно прекратить, когда температура опустится ниже 45 ℃, продолжайте зарядку. Запишите подробности зарядки.

Лечение после первоначальной зарядки:

Проверьте, в норме ли уровень электролита после зарядки, если он намного ниже макс.уровень, пожалуйста, залейте электролит до нужного уровня.

Быстрая зарядка NiCd:

Иногда оборудование, использующее никель-кадмиевые элементы, требует использования методов быстрой зарядки. Обычно зарядка происходит со скоростью около C. Однако необходимо убедиться, что зарядка NiCd выполняется правильно, и зарядка прекращается сразу после завершения зарядки.
Поскольку эффективность зарядки составляет почти 100% до примерно 70% полной зарядки, зарядка на полной скорости поддерживается до этого момента, после чего скорость зарядки снижается по мере увеличения температуры по мере снижения эффективности заряда.
Обнаружено, что быстрая зарядка никель-кадмиевых элементов также повышает эффективность заряда. Рекомендуется для быстрой зарядки: 0,4 C5 A в течение 2,5 часов на 0,2 C5 A в течение 2,5 часов.

Когда дело доходит до зарядки любых аккумуляторов извне, всегда целесообразно использовать хорошее зарядное устройство. EverExceed предлагает интегрированные высококачественные зарядные устройства для промышленных выпрямителей с уникальным дизайном и такими интеллектуальными функциями, как:

• Тиристорная технология с фазовым управлением
• Гибкое обслуживание и сокращение MTTR
• Длительный расчетный срок службы до 20+ лет
• Полная совместимость со свинцово-кислотными и никель-кадмиевыми батареями, герметичными или вентилируемыми
• Интеллектуальная связь и удаленный мониторинг

Вы ищете высококачественные никель-кадмиевые батареи или подходящие зарядные устройства для этих батарей? Пожалуйста, ознакомьтесь с нашим широким ассортиментом продукции в соответствии с вашим подходящим применением.По любым вопросам обращайтесь к нам через форму ниже.

Линейное зарядное устройство для никель-кадмиевых или никель-металлогидридных батарей сокращает количество деталей

Хотя перезаряжаемый литий-ионный
и литий-полимерные батареи имеют
в последнее время был предпочтительным аккумулятором в высоком
производительность портативных продуктов,
старая рабочая лошадка никель кадмий (NiCd)
и новый никель-металлгидрид
(NiMH) батареи по-прежнему важны
источники портативного питания. Никель
батареи на базе прочные, способные
высокой скорости разряда, хорошего срока службы
и относительно недороги.NiMH
батареи заменяют NiCd во многих
приложений из-за более высокого
номинальная мощность (на 40-50% выше) и
из-за экологических проблем
кадмий, содержащийся в элементах NiCd.
В этой статье рассказывается о батареях NiCd / NiMH.
основы зарядки и знакомит с
Линейное зарядное устройство LTC4060.

Различные способы зарядки
Батареи на никелевой основе делятся на категории
по скорости: медленно, быстро и быстро. В
Самый простой тип зарядного устройства — медленный
зарядное устройство с таймером,
относительно низкий ток заряда
около 14 часов.Это тоже может быть
долго для многих портативных приложений.
Для более короткого времени зарядки, быстрой и
быстрые зарядные устройства применяют постоянный ток
при мониторинге напряжения аккумулятора
и / или температуру для определения
когда прекратить или прекратить заряд
цикл. Время зарядки обычно варьируется
от 3 до 4 часов (быстро
зарядки) примерно до 0,75–1,5 часов
(быстрая зарядка).

Зарядные устройства для быстрой и быстрой зарядки
постоянный ток заряда и разрешить
напряжение батареи подняться до уровня
требуется (в определенных пределах) заставить это
Текущий.Во время цикла зарядки
зарядное устройство измеряет напряжение аккумулятора
через регулярные промежутки времени, чтобы определить, когда
для завершения цикла зарядки. В течение
цикл заряда, напряжение аккумулятора
поднимается по мере принятия заряда (см. рисунок 1).
Ближе к концу цикла зарядки
напряжение батареи начинает сильно расти
быстрее достигает пика, затем начинает падать.
Когда напряжение батареи упало
фиксированное количество мВ от пика
(–ΔV), аккумулятор полностью заряжен и
цикл зарядки заканчивается.

Рисунок 1.Типичный профиль заряда для 4-элементного никель-металлгидридного аккумулятора емкостью 2000 мАч, заряжаемого со скоростью 1С.

Аккумулятор имеет внутреннюю защиту
против завышения. В то время как
напряжение на ячейке падает со своего пика,
температура батареи и внутренняя
давление быстро повышается. Если быстрая зарядка
продолжается в течение значительного количества
время после достижения полной зарядки
герметичное уплотнение аккумулятора может на мгновение
открываются, вызывая выход газа. Этот
не обязательно катастрофичен для
батарея, но когда ячейка вентилирует, некоторые
также выделяется электролит.Если вентиляция
происходит часто, клетка со временем
неудача. Кроме того, после вентиляции
уплотнение может закрываться неправильно, и
электролит может высохнуть.

Напряжение холостого хода (номинальное 1,2 В)
и напряжение в конце срока службы (от 0,9 В до 1 В)
почти идентичны между двумя
типы аккумуляторов, но характеристики зарядки
несколько отличаются. Все элементы NiCd
может заряжаться непрерывно,
но некоторые NiMH-элементы не могут и могут
быть поврежденным, если капельный заряд
продолжается после достижения полной зарядки.Также профиль напряжения батареи во время
цикл быстрой зарядки различается между
два типа батарей.

Для NiMH ячеек снижение
напряжение аккумуляторной батареи (–ΔV) после достижения
пик составляет примерно половину
NiCd ячеек, таким образом заряжая
прекращение на основе –ΔV слегка
труднее. Кроме того, NiMH
повышение температуры батареи во время
цикл заряда выше, чем у NiCd,
и чем выше температура, тем выше
уменьшает величину –ΔV, которая возникает
при достижении полной зарядки. Для
Ячейки NiMH, –ΔV практически не существует
при высоких температурах для зарядки
ставки ниже, чем C / 2.(См. Боковую панель для
определение «C»). Старые батареи и несоответствие элементов еще больше сокращают
уже минута падает в батарее
Напряжение.

Другие различия между двумя
химия включает более высокую энергию
плотность и значительно пониженное напряжение
депрессия или «эффект памяти» для NiMH
ячейки, хотя никель-кадмиевые по-прежнему предпочтительны
для приложений с большим током утечки.
NiCd-элементы также обладают более низким саморазрядом.
характеристики, но NiMH
технологиям есть куда совершенствоваться
в этом отношении, в то время как технология NiCd
довольно зрелый.

LTC4060 — это полностью NiCd или
Контроллер линейного зарядного устройства NiMH
что обеспечивает постоянный ток заряда
и прекращение заряда для быстрого
зарядка до четырех последовательно соединенных
клетки. Простой в использовании и требующий
минимум внешних компонентов,
IC управляет недорогим внешним PNP
транзистор для обеспечения тока заряда.
Базовая конфигурация требует только
пять внешних компонентов, хотя
включены дополнительные функции, такие
as, вход NTC для температуры батареи
квалификация, регулируемое напряжение перезарядки,
выходы состояния, способные управлять
светодиод и входы выключения и паузы.Выбор химического состава аккумулятора
и количество заряжаемых ячеек достигнуто
закрепив булавки, а
ток заряда программируется с помощью
резистор стандартного номинала. При адекватном
тепловое управление, ток заряда
возможно до 2А, а то и выше
ток при использовании внешнего тока
чувствительный резистор параллельно с
внутренний резистор считывания.

Как только аккумуляторная химия и
количество ячеек установлено, необходимо
определить правильный ток заряда.
LTC4060 разработан для быстрого
зарядка никелевых аккумуляторов и
использует –ΔV в качестве окончания заряда
метод.Температура батареи может
также следует контролировать, чтобы избежать чрезмерного
температура аккумулятора во время зарядки,
а таймер безопасности отключает зарядное устройство, если прекращение заряда
не происходит. Типичное напряжение быстрой зарядки
профиль (быстрый подъем, затем падение
по напряжению батареи (–ΔV) ближе к концу
цикла заряда) происходит только при
относительно высокий ток заряда. Если
ток заряда слишком низкий, аккумулятор
напряжение не дает необходимого
падение напряжения аккумуляторной батареи после достижения
пик, необходимый для
LTC4060 для завершения цикла зарядки.При очень низком токе заряда –ΔV делает
не происходит вообще. С другой стороны,
если ток заряда слишком велик,
аккумулятор может сильно нагреться
требует наличия термистора NTC, расположенного рядом с аккумулятором, чтобы приостановить заряд
цикл, позволяющий батарее остыть
перед возобновлением цикла зарядки.

При достаточном входном напряжении,
батарея не подключена и правильный
ток заряда, время заряда и
соединения термистора на месте,
выходное напряжение зарядного устройства очень близко
к входному напряжению.Подключение
разряженный аккумулятор к зарядному устройству тянет
понизить выходное напряжение зарядного устройства
ниже 1,9 • V CELL (V CELL — общее
напряжение батареи, деленное на количество заряжаемых ячеек), таким образом, запускается
цикл зарядки.

Если температура АКБ, как
измеряется термистором NTC, составляет
вне окна от 5 ° C до 45 ° C,
цикл зарядки приостанавливается и не заряжается
ток течет до приемлемого
температура достигнута. Когда
температура АКБ в допустимых пределах,
напряжение аккумулятора измеряется и
должно быть ниже максимального предела.

Если напряжение V CELL ниже 900 мВ, зарядное устройство
начинает капельный заряд 20% от
запрограммированный ток заряда до
напряжение превышает 900 мВ, после чего
полный запрограммированный ток заряда
начинается. Несколько сотен миллисекунд
после начала цикла зарядки, если
напряжение аккумулятора превышает 1,95 В,
цикл зарядки прекращается. Это перенапряжение
состояние обычно означает аккумулятор
неисправен, требуется, чтобы зарядное устройство
сбросить вручную, заменив
аккумулятор, переключая контакт выключения, или
снятие и повторное включение питания.

После запрограммированной константы
ток заряда начинает течь, период
времени, известное как «время задержки».
Это время задержки колеблется от 4
минут до 15 минут в зависимости от
ток заряда и время заряда
настройки. Во время задержки
окончание –ΔV отключено, чтобы
предотвратить ложное прекращение начисления. А
аккумулятор, который сильно разряжен или
не был заряжен в последнее время может
демонстрируют падение напряжения батареи во время
ранняя часть цикла зарядки,
который может быть ошибочно принят за действительный
–ΔV прекращение.

Во время цикла зарядки аккумулятор
напряжение медленно повышается. Когда
аккумулятор приближается к полной зарядке,
напряжение аккумулятора начинает расти быстрее,
достигает пика, затем начинает падать.
Зарядное устройство непрерывно измеряет напряжение батареи каждые 15-40 секунд,
в зависимости от тока заряда и таймера
настройки. Если каждое измеренное значение напряжения
меньше, чем предыдущее значение,
для четырех последовательных чтений, а
общее падение напряжения батареи превышает
8 мВ / элемент для NiMH или 16 мВ / элемент для
NiCd, ток заряда прекращается, окончание
цикл зарядки.Открытый сток
выходной штифт «CHRG», который был вытянут
низкий во время цикла зарядки, теперь становится высоким импедансом.

Подзарядка, программируемая пользователем
функция запускает новый цикл зарядки, если
напряжение аккумулятора падает ниже установленного
уровень напряжения из-за саморазряда
или нагрузка на аккумулятор. Кроме того, если полностью
заряженный аккумулятор более 1,3 В
подключенный к зарядному устройству, клемма –ΔV
схема обнаружения включена
немедленно, без задержки,
таким образом сокращая цикл зарядки для
аккумулятор, который уже почти полностью заряжен
заряжать.

Если батарея достигает примерно
55 ° C во время цикла зарядки
зарядное устройство приостанавливает работу, пока температура
падает до 45 ° C, затем возобновляет зарядку
пока окончание –ΔV не закончит
цикл зарядки. Если нет прекращения –ΔV
происходит, таймер безопасности останавливается
цикл зарядки. Если таймер остановит
цикл зарядки, считается неисправностью
состояние и зарядное устройство должно быть
сбросить, удалив и заменив
аккумулятор, переключение контакта SHDN или переключение
входная мощность зарядного устройства.

Правильный ток заряда всегда зависит от емкости аккумулятора или просто «C».Буква «C» — это термин, используемый для обозначения заявленной производителем разрядной емкости аккумулятора, которая измеряется в мА • час. Например, батарея с номиналом 2000 мАч может обеспечивать нагрузку 2000 мА в течение одного часа, прежде чем напряжение элемента упадет до 0,9 В или нулевой емкости. В том же примере зарядка того же аккумулятора со скоростью C / 2 будет означать зарядку с током 1000 мА (1 А).

Правильный ток заряда для быстрой зарядки никель-кадмиевых или никель-металлгидридных аккумуляторов составляет примерно от C / 2 до 2C . Этот уровень тока необходим для того, чтобы элемент демонстрировал требуемый изгиб –ΔV, который возникает, когда элемент достигает полного заряда, хотя зарядка при 2 ° C может вызвать чрезмерное повышение температуры аккумулятора, особенно с небольшими NiMH элементами большой емкости.Из-за химических различий между химическим составом двух аккумуляторов никель-металлгидридные элементы выделяют больше тепла при быстрой зарядке.

Не подключайте нагрузку напрямую к
аккумулятор при зарядке. Заряд
ток должен оставаться относительно постоянным
для прекращения заряда –ΔV
чтобы быть эффективными. Нагрузки с изменением
текущие уровни приводят к небольшим изменениям
в напряжении батареи, которое может вызвать
ложное прекращение заряда –ΔV. Для
приложения, требующие нагрузки, см.
к показанным компонентам силового тракта
на рисунке 2.Когда входное напряжение
в настоящее время нагрузка питается от
входное питание через диод Шоттки
D1 и аккумулятор изолирован от
Загрузка. Снятие входного напряжения
тянет ворота Q2 на низкий уровень, включая его
обеспечение пути тока с низким сопротивлением
между аккумулятором и нагрузкой.

Рис. 2. Зарядное устройство для 4-элементных никель-металлгидридных аккумуляторов 2 А с термистором NTC и управлением цепью питания

Минимизируйте сопротивление постоянному току между
зарядное устройство и аккумулятор.
Некоторые держатели батарей имеют пружины
и контакты с чрезмерным сопротивлением.Повышенное сопротивление в
серия с аккумулятором может предотвратить
цикл зарядки с момента запуска из-за
состояние перенапряжения аккумулятора один раз
начинается полный зарядный ток. Плохо
сконструированные держатели аккумуляторных батарей также могут
произвести ложное прекращение обвинения, если
движение батареи вызывает преждевременное
–ΔV чтение.

В отличие от литий-ионных элементов, которые могут быть
параллельно для увеличения емкости, NiCd
или никель-металлгидридные элементы не должны подключаться параллельно,
особенно при быстрой зарядке. Взаимодействие
между ячейками мешает правильному
прекращение начисления.Если больше емкости
требуется, выберите ячейки большего размера.

Не все батареи NiCd или NiMH
ведут себя так же при зарядке.
Производители различаются материалами и
строительство, приводящее к некоторому
различные профили напряжения заряда или
количество выделяемого тепла. Аккумулятор
может быть разработан для общего назначения
использовать или оптимизировать для большой емкости,
быстрая зарядка или высокая температура
операция. Некоторые батареи могут не
предназначен для сильноточного (2C) заряда
скорости, приводящие к высокой температуре ячейки
при зарядке.Кроме того, самые новые
клетки сформированы не полностью и
требуют некоторой подготовки, прежде чем они
достигают своей номинальной мощности. Кондиционирование
состоит из многократного заряда и
циклы разряда.

Термистор, установленный рядом с аккумулятором
упаковка, желательно контактирующая
с одной или несколькими ячейками, очень
рекомендуется, как в качестве меры безопасности
и для увеличения срока службы батареи. В отличие от литий-ионных батарей, которые очень
небольшое повышение температуры при зарядке,
Никелевые батареи нагреваются во время
цикл зарядки, особенно NiMH
батареи.Минимизация продолжительности времени
аккумулятор подвергается воздействию повышенной температуры
продлевает срок службы батареи.

NiCd и NiMH батареи идеально подходят
источники аккумуляторной энергии для
многие портативные продукты и резервное копирование
Приложения. Эта статья помогает
ознакомить пользователя с некоторыми из
зарядные характеристики никеля
на основе батарей и как они применяются
к зарядному устройству LTC4060. Зарядка
Аккумуляторы NiCd и NiMH правильно и
безопасность упрощается с помощью LTC4060
линейный контроллер зарядного устройства.

Никель-кадмиевые батареи: основы теории и процедуры обслуживания

Базовая теория и процедуры обслуживания

Джо Эскобар

Никель-кадмиевые батареи, обычно называемые никель-кадмиевыми батареями, широко используются в авиационной промышленности. При надлежащем обслуживании они могут обеспечить годы безотказной службы. Давайте посмотрим на основную конструкцию этих батарей, а также на некоторые вопросы обслуживания, которые следует учитывать при работе с ними.

Конструкция

Элемент является основным элементом никель-кадмиевой батареи. Он состоит из положительных
и отрицательные пластины, сепараторы, электролит, вентиляция ячейки и контейнер ячейки. Положительные пластины изготовлены из пористой пластины, на которую нанесен гидроксид никеля. Отрицательные пластины изготовлены из аналогичных пластин, на которые нанесен гидроксид кадмия. В обоих случаях пористый налет получают путем спекания никелевого порошка никелевого порошка с мелкоячеистой сеткой.Спекание — это процесс плавления чрезвычайно мелких гранул порошка при высокой температуре. После того, как активные положительные и отрицательные материалы нанесены на пластину, она формируется и разрезается на пластину нужного размера. Затем к углу каждой пластины приваривается никелевый язычок, и пластины собираются с язычками, приваренными к соответствующим клеммам. Пластины отделены друг от друга сплошной полосой из пористого пластика.

Электролит, используемый в никель-кадмиевых батареях, представляет собой 30-процентный раствор гидроксида калия (КОН) в дистиллированной воде.Удельный вес электролита составляет от 1,240 до 1,300 при комнатной температуре. Следует отметить, что никаких заметных изменений в электролите во время заряда или разряда не происходит. Из-за этого заряд аккумулятора определить невозможно.
проверкой удельного веса электролита. Уровень электролита должен поддерживаться чуть выше верхушки пластин.

Зарядка никель-кадмиевых батарей

Когда к никель-кадмиевым батареям подается зарядный ток, отрицательные пластины теряют кислород и начинают образовывать металлический кадмий.Активный материал положительных пластин, гидроксид никеля, становится более окисленным. Этот процесс продолжается, пока подается зарядный ток или пока весь кислород не будет удален с отрицательных пластин, и останется только кадмий.

Ближе к концу цикла зарядки элементы выделяют газ. Это также произойдет, если ячейки будут перезаряжены. Этот газ возникает в результате разложения воды в электролите на водород на отрицательных пластинах и кислород на положительных пластинах. Напряжение, используемое во время зарядки, а также температура определяют, когда произойдет выделение газа.Чтобы полностью зарядить никель-кадмиевую батарею, должно иметь место выделение газа, пусть даже незначительное; таким образом будет использовано немного воды.

Разряд

Во время разряда происходит обратное химическое действие. Положительные пластины медленно выделяют кислород, который восстанавливается отрицательными пластинами. Этот процесс приводит к преобразованию химической энергии в электрическую. Во время разряда пластины поглощают некоторое количество электролита. При перезарядке уровень электролита повышается, а при полной зарядке уровень электролита будет максимальным.Поэтому воду следует добавлять только тогда, когда аккумулятор полностью заряжен.

Переход со свинцово-кислотных на никель-кадмиевые

Никель-кадмиевые аккумуляторы обычно взаимозаменяемы со свинцово-кислотными аккумуляторами.
При замене свинцово-кислотного аккумулятора на никель-кадмиевый аккумуляторный отсек должен быть чистым, сухим и не содержать следов кислоты от старого аккумулятора. Отсек необходимо промыть и нейтрализовать раствором аммиака или борной кислоты, дать ему полностью высохнуть, а затем покрасить стойким к щелочам лаком.

Прокладка в отстойнике аккумуляторной батареи должна быть пропитана 3-процентным (по весу) раствором борной кислоты и воды перед подключением системы вентиляции аккумуляторной батареи.

Обслуживание никель-кадмиевых аккумуляторов

Методы обслуживания никель-кадмиевых аккумуляторов и свинцово-кислотных аккумуляторов существенно различаются. Наиболее важные моменты, на которые следует обратить внимание, заключаются в следующем.

Для никель-кадмиевых аккумуляторов должна быть предусмотрена отдельная площадка для хранения и обслуживания.Электролит химически противоположен серной кислоте, используемой в свинцово-кислотных аккумуляторах. Пары свинцово-кислотной батареи могут загрязнить электролит в никель-кадмиевой батарее. Эта мера предосторожности должна включать такое оборудование, как ручные инструменты и шприцы, используемые со свинцово-кислотными батареями. В самом деле, необходимо принять все возможные меры предосторожности, чтобы все, что содержит кислоту, не попадало в магазины с никель-кадмиевыми батареями.

Электролит гидроксида калия, используемый в никель-кадмиевых батареях, чрезвычайно агрессивен. Защитное снаряжение, такое как очки, резиновые перчатки и резина.
При обращении с аккумуляторами и их обслуживании следует использовать фартуки.На случай попадания электролита на одежду или кожу необходимо предоставить подходящие средства для стирки. Любое такое воздействие электролита следует немедленно промыть водой или уксусом, лимонным соком или раствором борной кислоты. Помните, что когда гидроксид калия и дистиллированная вода смешиваются для получения электролита, гидроксид калия следует добавлять в воду медленно, а не наоборот.

Не используйте проволочную щетку для очистки аккумулятора. Использование металлической щетки может привести к возникновению сильной дуги.Кроме того, вентиляционные пробки должны быть закрыты во время процесса очистки, а аккумулятор никогда не следует очищать кислотами, растворителями или какими-либо химическими растворами. Пролитый электролит может реагировать с диоксидом углерода с образованием кристаллов карбоната калия. Они не токсичны и не вызывают коррозии, их можно ослабить волоконной щеткой и протереть влажной тканью. Когда карбонат калия образуется на правильно обслуживаемой батарее, это может указывать на то, что батарея перезаряжается из-за того, что регулятор напряжения не отрегулирован.

Никогда не добавляйте дополнительную воду в аккумулятор раньше, чем через три или четыре часа после полной зарядки. Если вам нужно добавить воды,
используйте только дистиллированную или деминерализованную воду. Кроме того, будьте осторожны, чтобы не залить аккумулятор водой. Если вы это сделаете и должны удалить часть жидкости, вы уменьшите концентрацию гидроксида калия в ячейке. Это повлияет на его работу.

Поскольку электролит не вступает в химическую реакцию с пластинами ячейки, его удельный вес существенно не изменяется.Таким образом, невозможно определить уровень заряда никель-кадмиевой батареи с помощью ареометра. Кроме того, заряд никель-кадмиевой батареи нельзя определить с помощью испытания напряжения, поскольку напряжение никель-кадмиевой батареи остается постоянным в течение 90 процентов цикла разряда.

Периодичность обслуживания

Никель-кадмиевые батареи следует обслуживать через регулярные промежутки времени, исходя из опыта,
поскольку расход воды зависит от температуры окружающей среды и методов работы. Через большие промежутки времени аккумулятор следует снимать с самолета и подвергать стендовой проверке в магазине.

Если аккумулятор полностью разряжен, некоторые элементы могут достичь нулевого потенциала и заряжаться в обратном направлении. Это может повлиять на него таким образом, что он не сможет удерживать полный заряд емкости. В этом случае аккумулятор следует разрядить и сбалансировать каждую ячейку перед подзарядкой аккумулятора. Это называется выравниванием.

Зарядка может выполняться как при постоянном напряжении, так и при постоянном токе. Для зарядки с постоянным потенциалом поддерживайте постоянное зарядное напряжение до тех пор, пока зарядный ток не упадет до 3 ампер или менее, убедившись, что температура элемента батареи не превышает 100 градусов по Фаренгейту и напряжение не начинает снижаться.

Капельная зарядка

Капельная зарядка — это процесс поддержания аккумулятора в активном режиме ожидания путем непрерывной зарядки аккумулятора в состоянии перезарядки. Хотя некоторые производители не рекомендуют эту процедуру для зарядки, некоторые операторы выбрали этот метод для зарядки своих никель-кадмиевых аккумуляторов. Имейте в виду, что использование капельного зарядного устройства со временем приведет к расходу воды из-за эффекта газообразования, о котором говорилось ранее. Вы должны отрегулировать электролит
выровняйте перед установкой аккумулятора на борт самолета.В противном случае существует риск аварии с аккумулятором, поскольку элементы могут высохнуть до нормального окончания интервала технического обслуживания.

Безопасное обращение

Никель-кадмиевые батареи обычно не опасны при нормальной работе и имеют достаточно прочную конструкцию, чтобы выдерживать проколы при типичных сценариях повреждений. Однако если по какой-то причине они разорвутся, они могут быть довольно опасными. Гидроксид калия в никель-кадмиевых батареях представляет собой раствор щелочи, который опасен и сильно разъедает кожу.Эта жидкость может вылиться в случае повреждения аккумулятора. Попадание на кожу может вызвать ожоги. Попадание в глаза может привести к необратимому повреждению глаз. При проглатывании он токсичен. Избегайте вдыхания паров в закрытом помещении, так как это может вызвать раздражение во рту, горле и легких. Долгосрочное воздействие паров гидроксида калия может вызвать заболевания печени и почек, и OSHA идентифицировало его как возможный канцероген.

Лицам, работающим с никель-кадмиевыми батареями, следует избегать контакта с внутренними компонентами и тщательно мыть руки после работы.В случае разлива обязательно наденьте защитную одежду, включая перчатки из винила или ПВХ, очки и маску для лица. Конечно, никогда не пытайтесь ликвидировать разлив опасного материала, если вы не прошли надлежащую подготовку.

Отгрузка

Помните, что никель-кадмиевые батареи содержат опасные материалы и должны
иметь маркировку и документацию в соответствии с действующими правилами IATA (UN2797 или UN2800, если применимо), регулирующими транспортировку вентилируемых NiCad батарей.

В конце концов, вы можете помочь продлить срок службы ваших никель-кадмиевых батарей, применяя надлежащие методы обслуживания. Весь персонал, обслуживающий их или даже обслуживающий их, должен быть обучен надлежащим методам работы. Обязательно соблюдайте все процедуры, рекомендованные производителем. Если возможно, воспользуйтесь любым обучением, проводимым производителем или его дистрибьюторами. В конце концов, знание правильных процедур может обеспечить долгую и безопасную жизнь вашей батареи.

Дополнительные ресурсы

Информационный циркуляр FAA 00-33B
Никель-кадмиевые батареи, методы эксплуатации, технического обслуживания и капитального ремонта.

Аккумуляторы Marathon
P.O. Box 8233
Waco, TX 76714
(254) 776-0650
www.mptc.com

Saft
711 Industrial Boulevard
Valdosta, Georgia 31601
(229) 247-2331
www.saftbatteries.com

Зарядное устройство для никель-кадмиевых аккумуляторов

— методы зарядки и аккумулятор Best Buy_Greenway

Никель-кадмиевые батареи

часто укорачивают, поскольку никель-кадмиевые батареи являются вторичными или перезаряжаемыми батареями. Эти батареи содержат химические вещества никель (Ni) и кадмий (Cd) в различных составах и формах.Обычно положительный электрод изготовлен из гидроксида никеля, а отрицательный электрод — из гидроксида кадмия, а электролитом является гидроксид калия.

Никель-кадмиевые батареи

уникальны тем, что эти батареи отличаются от других щелочных батарей или свинцово-кислотных батарей во многих отношениях. Никель-кадмиевые батареи могут обеспечивать полную выходную мощность до конца цикла разряда. Одно из наиболее практичных применений никель-кадмиевых аккумуляторов — это беспроводные электроинструменты, поскольку электроинструменты требуют большого количества энергии на протяжении всего времени использования.

По мере того, как вы узнаете, что такое никель-кадмиевые аккумуляторы, теперь давайте перейдем к более подробным сведениям о методах зарядки никель-кадмиевых аккумуляторов и их лучшей покупке.

Можно ли зарядить никель-кадмиевый аккумулятор с помощью никель-металлгидридного зарядного устройства

Уникальная особенность никель-кадмиевых аккумуляторов заключается в том, как они заряжаются. В отличие от других аккумуляторов, которые подвергаются значительным колебаниям напряжения и силы тока во время зарядки, никель-кадмиевые аккумуляторы требуют постоянной и стабильной силы тока с небольшими и небольшими колебаниями напряжения.Никель-кадмиевые батареи могут заряжаться с гораздо большей скоростью — до 115% от их общей емкости с минимальным сокращением срока службы, что делает эти батареи идеальными для электроинструментов.

Теперь, если мы поговорим о том, можно ли заряжать NiCd аккумулятор с помощью NiMH зарядного устройства, то вот ответ.

Алгоритм зарядки никель-кадмиевых аккумуляторов аналогичен никель-металлогидридным, но за исключением того, что никель-металлогидридные аккумуляторы сложнее заряжать. Поскольку оба алгоритма зарядки этих аккумуляторов одинаковы, никель-кадмиевые аккумуляторы можно легко заряжать с помощью никель-металлгидридных зарядных устройств.Хорошо спроектированное зарядное устройство NiMH включает плато напряжения, NDV, дельта-температуру, таймеры тайм-аута в алгоритме обнаружения полного заряда и температурный порог.

Никель-кадмиевые батареи более прочные, поэтому заряжать их с помощью никель-металлгидридного зарядного устройства не так опасно. Но очень важно и необходимо следить за временем, проведенным недозарядом, потому что конец цепи заряда может не обнаружить, что никель-кадмиевые батареи полностью заряжены, поэтому он также может перезарядить их, что может серьезно повредить батареи.Следовательно, зарядное устройство NiMH может заряжать NiCd батареи, а зарядное устройство NiCd может перезарядить NiMH.

Никель-кадмиевые батареи более устойчивы и прочны, чем никель-металлгидридные батареи той же емкости, поэтому, если зарядное устройство предназначено для никель-металлгидридных батарей, оно будет работать с никель-кадмиевыми батареями и в режиме непрерывной зарядки.

Как заряжать никель-кадмиевый аккумулятор

Никель-кадмиевые аккумуляторы

являются одними из трудно подзаряжаемых элементов. Зарядка в никель-кадмиевых батареях основана на пропускании тока через батареи.Как и в других батареях, напряжение для этого не зафиксировано в камне. Это затрудняет зарядку никель-кадмиевых аккумуляторов, особенно при параллельной зарядке, поскольку вы не можете быть уверены в том, что каждая ячейка имеет одинаковое сопротивление, и, следовательно, некоторые из никель-кадмиевых аккумуляторов потребляют больше тока, даже если они полностью заряжены.

Кулонометрическая эффективность заряда никель-кадмиевых аккумуляторов

составляет около 83% для быстрой зарядки (от C / 1 до C / 0,24) и около 63% для заряда C / 5. Это означает, что для C / 1 вы должны вложить 120 ампер-часов на каждые 100 ампер-часов, которые вы получите взамен.На С / 10 это 55%, а на С / 20 будет меньше 50%.

Если вы выберете зарядку аккумулятора в ночное время, то самый дешевый способ зарядки никель-кадмиевых аккумуляторов — это зарядка при C / 10 в течение примерно 16 часов. В таком случае аккумулятор емкостью 100 мАч будет заряжаться при токе 10 мА в течение 16 часов. Этот метод зарядки обеспечивает полную зарядку и не требует датчика окончания заряда.

Если вы выберете более быструю зарядку, то некоторые никель-кадмиевые батареи рассчитаны на быструю зарядку. В таком случае никель-кадмиевые батареи необходимо заряжать при C / 3 в течение примерно 5 часов или при C / 5 в течение примерно 8 часов.Это довольно рискованно, потому что перед зарядкой аккумулятор необходимо полностью разрядить.

Если вы выберете самую быструю зарядку, то в этом случае, если используется монитор напряжения или температуры, никель-кадмиевые батареи можно заряжать со скоростью до 1C, что означает, что 100% емкости батареи в ампер-часах в течение 1,5 часов. .

Как купить хорошее зарядное устройство для никель-кадмиевых аккумуляторов

Зарядка любой батареи требует осторожности, поэтому все аккумуляторные батареи должны быть заряжены надлежащим образом; в противном случае они могут быть повреждены.То же самое и с никель-кадмиевыми батареями. Если никель-кадмиевые батареи заряжены правильно, то эти батареи прослужат дольше, сохраняя и принимая полный уровень заряда. Неправильная зарядка этих батарей может привести к сокращению срока службы и даже стать причиной пожара или взрыва. Поэтому просто необходимо купить хорошее зарядное устройство для никель-кадмиевых аккумуляторов.

При покупке никель-кадмиевого зарядного устройства, независимо от того, используется ли оно для медленной или быстрой зарядки, важно убедиться, что никель-кадмиевые батареи не перезаряжены, что, в свою очередь, требует определения окончания заряда.Вот хорошие никель-кадмиевые зарядные устройства или методы:

Зарядные устройства Basic

Истекшее время / Зарядные устройства с таймером

Зарядные устройства NiCd с сигнатурой напряжения

Повышение температуры

Всегда следует помнить, что если никель-кадмиевые батареи заряжаются аккуратно и правильно, то они будут хорошо работать в течение более длительного периода, будучи работоспособными в течение более длительного периода, обеспечивая отличный сервис.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *