Подключение трехфазного двигателя через магнитный пускатель
Автор Alexey На чтение 6 мин. Просмотров 761 Опубликовано
Обновлено
Рассмотрение общепринятых схем монтажа магнитного пускателя позволит пользователю самостоятельно подключить трехфазный асинхронный двигатель самостоятельно, избежав при этом распространённых ошибок, не прибегая к услугам профессиональных электриков.
Необходимость в специфическом кнопочном контакте
Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления.
Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный (вспомогательный) контакт шунтирует (подключается параллельно) пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.
Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом.
Исходя из этого, кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC) (см. рис.)
Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».
Простая схема — нереверсивный режим двигателя
Данный режим работы мотора означает, что вращение вала происходит только в одном направлении, запуск осуществляется при помощи кнопки «Пуск», а остановка происходит спустя некоторое время (из-за инерции) после нажатия «Стоп».
Существуют две распространенные разновидности данной схемы подключения – с катушкой управления 220 В и 380 В (подключение между двумя фазами). Схема с применением катушки пускателя с номиналом на 220В требует подсоединения нулевого провода, но применение нуля более привычно для простого пользователя, поэтому вначале будет рассмотрен именно этот вариант подключения.
Подключение эл. двигателя через магнитный пускатель на 220 В
Нужно детально рассмотреть все соединения, чтобы полностью понять принцип работы данной схемы, после чего будет проще разобрать более сложные варианты.
Детальное рассмотрение электромонтажа
Для удобства нужно составить монтажную схему.
Вначале подключается контактор (само собой, напряжение на входном кабеле должно отсутствовать). В приведённой выше схеме напряжение, необходимое для управления, снимается с фазы «В» (L2), но выбор фазного провода в этом случае не имеет никакого значения (как будет удобно).
Проводник, идущий к кнопке «Стоп» подключается вместе с фазным проводом на клемме контактора. Чтобы не было путаницы, общепринято маркировать нормально разомкнутые контакты цифрами «1», «2», а размыкающие соответственно – «3», «4».
Далее нужно установить перемычку в кнопочном посте.
После чего подсоединяется провод, идущий от клеммы «1» пусковой кнопки к выводу А1 управляющей катушки контактора.
От клеммы «2» кнопки запуска нужно подсоединить провод к вспомогательному контакту NO13. В данном случае неважно, к какому выводу подключать данный провод, но лучше придерживаться схемы, чтобы потом не запутаться.
Далее необходимо подсоединить с помощью перемычки вывод NO14 вспомогательного контакта с клеммой А1, где уже подключён провод от кнопочного поста.
Осталось подсоединить вывод А2 катушки управления к нулевой шине.
Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.
Убедившись в работоспособности схемы, можно подсоединять выводы обмоток двигателя к выходным клеммам контактора.
Видео по подключению магнитного пускателя классическим способом:
Использование катушки на 380В и теплового реле
Разумеется, что подключение кнопочного поста и трехфазного двигателя необходимо делать не одиночными проводами, а защищённым кабелем – приведённые выше примеры даны для того, чтобы пошагово объяснить весь процесс монтажа.
Выполняя шаг за шагом данные инструкции пользователь сможет самостоятельно собрать магнитный пускатель, даже не имея опыта в электротехнике.
Набравшись опыта и поняв принцип работы, можно использовать контактор номиналом на 380 В, в этом случае вывод с катушки А2 подключается не на нулевую шину, к одной из двух фаз, к которым не подключена клемма «4» («Стоп»).
Аналогично выглядит схема, если используется трёхфазная сеть с напряжением 220В.
В магнитном пускателе с тепловым реле схема немного меняется за счёт включения размыкающего контакта в разрыв провода от клеммы А2 контактора. Вывод А2 с катушки управления подключается к фазе или нулю через размыкающий контакт данного теплового реле P, подключённого последовательно в силовые цепи обмоток.(см. схему ниже)
Реверсивный электромагнитный пускатель
Для реверса электродвигателя (вращения вала в обратную сторону), необходимо изменить последовательность фаз, для чего применяют два контактора и кнопочный пост с тремя кнопками.
Подключение магнитных пускателей для реверса двигателя
При этом, для блокировки случайного одновременного включения обеих пускателей необходимо цепи управления запуском подключать через размыкающие контакты смежных контакторов.
Если у контакторов данные вспомогательные размыкающие контакты отсутствуют, то необходимо использовать контактную приставку.
Принцип работы, с использованием самоподхвата, остается прежним, но схема немного усложняется за счёт включения новых элементов.
Подключение эл. двигателя через реверсивные магнитные пускатели 220 В
Ключевым моментом является то, что размыкающий контакт контактора КМ2 включён в пусковую цепь КМ1, и наоборот. Необходимо рассмотреть процесс включения с самого начала, когда вспомогательные контактные мостики КМ1 и КМ2 замкнуты, то есть существует возможность запуска двигателя в любую сторону.
Запустим пускатель КМ1, при котором его нормально замкнутый контакт, через который подключёна цепь запуска в обратную сторону, разомкнётся, тем самым делая невозможным реверс до отключения КМ1. Аналогично блокируется КМ1 при работе КМ2. На контакторы устанавливается система перемычек.
Подключение эл. двигателя через реверсивные магнитные пускатели 380 В
Данный принцип сохраняется при использования катушек любого номинала.
Реверс часто используют для торможения двигателя, контролируя его обороты с помощью специального контроллера.
Переключение обмоток двигателя
Известно, что асинхронный электродвигатель потребляет меньшие стартовые токи при подключении обмоток «звездой», но максимум мощности развивает, если используется схема включения по типу «треугольника».
Поэтому, на производстве, для запуска особенно мощных электродвигателей используется переключение обмоток.
Подключение обмоток двигателе по схеме 1.»звезда» и 2.»треугольник»
Электронный прибор контролирует обороты электродвигателя – как только они достигнут номинального значения, инициируется сигнал, переключающий контакторы, вследствие чего обмотки двигателя переключатся от «звезды» к «треугольнику».
Готовый вариант пускателя
Тепловые реле, помимо уставки тока и регулировки выдержки, также имеют рычажок отключения, который часто используют в компактных магнитных пускателях, размещая кнопку «Стоп» на крышке корпуса напротив.
Включение контактора происходит при механической передаче усилия нажатия от стартовой кнопки к специальной кнопочной приставке, прикрепляемой к контактору. Схема подключения остаётся прежней, только в данном случае кнопочный пост совмещён с контактором в едином корпусе магнитного пускателя.
кнопочный пост в одном корпусе с магнитным пускателем
Поскольку подсоединение и монтаж кнопок в данных изделиях осуществляются непосредственно производителем, то пользователю необходимо только подключить питание и нагрузку, и отрегулировать тепловое реле.
Подключить электродвигатель 380 на 220 через пускатель
Широко применяемые на производствах электродвигатели асинхронные соединяют «треугольником» или «звездой». Первый тип в основном используют для моторов продолжительного пуска и работы. Совместное подключение применяют для пуска высокомощных электродвигателей. Подключение «звезда» используют в начале пуска, переходя затем на «треугольник». Применяется также схема подключения трехфазного электродвигателя на 220 вольт.
Разновидностей моторов много, но для всех, главной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к 220в на мотор действуют высокие пусковые токи, снижающие его срок эксплуатации. В промышленности редко используют соединение треугольником Мощные электродвигатели подключают «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 есть несколько вариантов, каждый из которых отличается преимуществами и недостатками.
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам. При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Электромотор должен заработать. Если этого не произошло, или он не вышел на требуемую мощность, необходимо вернуться на первый этап, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Подсоединить потребуется к обмотке батарейку, а к другой — вольтметр.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Главным плюсом соединения трехфазной цепи звездой считают то, что мотор вырабатывает наибольшую мощность.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткое замыкание, которое может приводить к отключению автомата мотора электрического. Во избежание этого, применяют электроблокировку. Работает это так: при включении одного из пускателей, другой отключается, т.е. его контакты размыкаются.
Как работает схема
При включении К1 с помощью реле времени включается К3. Мотор трехфазный, включенный по схеме «звезда» работает с большей мощностью, чем обычно. После некоторого времени, размыкаются контакты реле К3, но запускается К2. Теперь схема работы мотора — «треугольник», а мощность его становится меньше.
Когда требуется отключение питания, запускается К1. Схема повторяется при последующих циклах.
Очень сложное соединение требует навыков и не рекомендуется к реализации новичками.
Другие подключения электродвигателя
Схем несколько:
- Более часто, чем вариант описанный, применяется схема с конденсатором, который поможет значительно уменьшить мощность. Одни из контактов рабочего конденсатора подключается к нулю, второй – к третьему выходу мотора электрического. В результате имеем агрегат малой мощности (1,5 Вт). При большой мощности двигателя, в схему потребуется внесение пускового конденсатора. При однофазном подключении он просто компенсирует третий выход.
- Асинхронный мотор несложно соединить звездой или треугольником при переходе с 380в на 220. У таких моторов обмоток три. Чтобы изменить напряжение, необходимо выходы, идущие к вершинам соединений, поменять местами.
- При подключении электромоторов, важно тщательно изучить паспорта, сертификаты и инструкции, потому что в импортных моделях встречается часто «треугольник», адаптированный под наши 220В. Такие моторы при игнорировании этого и включении «звездой, просто сгорают. Если мощность более 3 кВт, к бытовой сети мотор нельзя. Чревато это коротким замыканием и даже выход из строя автомата УЗО.
Рекомендуем:
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенного к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемом током, идущим в разное время по разным обмоткам. Но, при подключении такого двигателя к цепи однофазной, не возникает вращающий момент, который мог бы вращать ротор. Наиболее простым способом подключения двигателей трехфазных к однофазной цепи является подсоединение его третьего контакта через фазосдвигающий конденсатор.
Включенные в однофазную сеть такой мотор имеет такую же частоту вращения, как при работе от трехфазной сети. Но о мощности нельзя сказать этого: ее потери значительны и зависят они от емкости конденсатора фазосдвигающего, условия работы мотора, выбранной схемы подключения. Потери на ориентировочно достигают 30-50%.
Цепи могут быть двух — , трех-, шестифазными, но наиболее применяемыми являются трехфазные. Под трехфазной цепью понимают совокупность цепей электрических с одинаковой частотой синусоидальной ЭДС, которые отличаются по фазе, но создаются общим источником энергии.
Если нагрузка в фазах одинакова, цепь является симметричной. У трехфазных несимметричных цепей – она разная. Полная мощность складывается из активной мощности трехфазной цепи и реактивной.
Хотя большинство двигателей справляется с работой от однофазной сети, но хорошо работать могут не все. Лучше других в этом смысле двигатели асинхронные, которые рассчитаны на напряжение 380/220 В (первое — для звезды, второе – треугольника).
Это рабочее напряжение всегда указывают в паспорте и на прикрепленной к двигателю табличке. Также там указана схема подключения и варианты ее изменения.
Если присутствует «А», это свидетельствует о том, что использоваться может как схема «треугольник», так и «звезда». «Б» сообщает о том, что подключены обмотки «звездой» и не могут быть соединены по – другому.
Получится в результате должно: при разрыве контактов обмотки с батареей, электрический потенциал той же полярности (т.е. отклонение стрелки происходит в ту же сторону) должен появляться на двух оставшихся обмотках. Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечают и подсоединяют по схеме.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.
Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.
В связи с этим двигатель желательно иметь помощнее.
Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.
Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.
Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.
Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.
Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.
Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.
Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.
Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.
Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.
На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.
На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.
Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.
Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.
Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.
Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.
Расчет конденсаторов. Емкость рабочего конденсатора.
Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.
Емкость пускового конденсатора.
Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.
Особенности подбора конденсаторов.
Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.
Реверс.
Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».
Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Более подробно можно увидеть на рисунке.
Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.
Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.
В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.
Отличие магнитного пускателя от контактора
Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.
В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.
Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.
Устройство и назначение прибора
Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.
Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.
Назначение магнитного пускателя
Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.
Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.
МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.
После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».
Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.
Пускатели, в схему которых включены тепловые реле, охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.
Конструкция и функционирование прибора
Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.
Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.
Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.
Вариантов исполнения четыре:
- открытый;
- защищенный;
- пылеводозащищенный;
- пылебрызгонепроницаемый.
Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.
При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.
Состоит МП из следующих основных узлов:
- сердечника;
- электромагнитной катушки;
- якоря;
- каркаса;
- механических датчиков работы;
- групп контакторов — центральной и дополнительной.
Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.
По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.
Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.
Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.
Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.
Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.
В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.
Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.
Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.
Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.
Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.
Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.
На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Особенности монтажа пускателя
Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.
Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.
Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.
Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.
Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.
Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.
Популярные схемы подключения МП
Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный кабель и два разомкнутых контакта в случае, если устройство выключено.
В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.
При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.
Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.
Тонкости подключения устройства на 220 В
Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.
Особенности силовой цепи
Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.
Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.
Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.
Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.
Изменение цепи управления
Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.
Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.
Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.
Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.
После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.
Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.
Подсоединение к 3-фазной сети
Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.
Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.
Ввод в схему теплового реле
В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.
Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.
Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.
Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на 380 В. Подробнее – переходите по ссылке.
Запуск мотора с реверсным ходом
Для функционирования отдельного оборудование необходимо, чтобы двигатель мог вращаться как влево, так и вправо.
Схема подключения для такого варианта содержит два МП, кнопочный пост либо отдельные три клавиши — две стартовые «Вперед», «Назад» и «Стоп».
От к.з. силовую цепь защищают контакты нормально замкнутые КМ1.2, КМ2.2.
Подготовку схемы к работе осуществляют следующим образом:
- Включают АВ QF1.
- На силовые контакты МП КМ1, КМ2 поступают фазы А, В, С.
- Фаза, которая снабжает цепь управления (А) через SF1 (автомат защиты сигнальных цепей) и клавишу SB1 «Стоп» подается на контакт 3 (клавиши SB2, SB3), контакт 13НО (МП КМ1, КМ2).
Далее схема работает по алгоритму, зависящему от направления вращения мотора.
Управление реверсом двигателя
Вращение начинается при задействовании клавиши SB2. При этом фаза А через КМ2.2 подается на катушку МП КМ1. Начинается включение пускателя с замыканием нормально разомкнутых контактов и размыканием нормально замкнутых.
Замыкание КМ1.1 провоцирует самоподхват, а за смыканием контактов КМ1 следует подача фаз А, В, С на идентичные контакты обмоток двигателя и он начинает вращение.
Предпринятое действие разъединит цепь, на дроссель КМ1 перестанет подаваться управляющая фаза А, а сердечник с контактами, посредством возвратной пружины, восстановится в исходном положении.
Контакты разъединятся, на двигатель М прекратится подача напряжения. Схема будет пребывать в ждущем режиме.
Запускают ее путем нажатия на кнопку SB3. Фаза А через КМ1.2 поступит на КМ2, МП, сработает и через КМ2.1 окажется на самоподхвате.
Далее, МП посредством контактов КМ2 поменяет фазы местами. В результате двигатель М изменит направление вращения. В это время соединение КМ2.2, находящееся в цепи, питающей МП КМ1, рассоединится, не допуская включения КМ1 пока функционирует КМ2.
Работа силовой схемы
Ответственность за переключение фаз для перенаправления вращения двигателя возложена на силовую схему.
При срабатывании контактов МП КМ1 на первую обмотку поступает фаза А, на вторую обмотку — фаза В, а на третью — фаза С. При этом мотор вращается влево.
Когда срабатывает КМ2, передислоцируются фазы В и С. Первая попадает на третью обмотку, вторая — на вторую. Изменений по фазе А не происходит. Двигатель начнет вращаться вправо.
Выводы и полезное видео по теме
Подробности об устройстве и подключении контактора:
Практическая помощь в подключении МП:
По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.
Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.
Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.
Схемы подключения магнитного пускателя на 220 В и 380 В + особенности самостоятельного подключения
Магнитный пускатель — устройство, отвечающее за бесперебойную и соответствующую требованиям стандартов работу оборудования. С его помощью осуществляют распределение питающего напряжения и управляют работой подключенных нагрузок.
Чаще всего через него подают питание на электродвигатели. И через него же осуществляют реверс двигателя, его остановку. Все эти манипуляции позволит осуществить правильная схема подключения магнитного пускателя, которую можно собрать и самостоятельно.
В этом материале мы расскажем об устройстве и принципах работы магнитного пускателя, а также разберемся в тонкостях подключения устройства.
Содержание статьи:
Отличие магнитного пускателя от контактора
Часто при подборе коммутационного устройства возникает путаница между магнитными пускателями (МП) и контакторами. Эти устройства, несмотря на свою схожесть во многих характеристиках, все же разные понятия. Магнитный пускатель объединяет в себе ряд приборов, они соединены в одном управляющем узле.
В МП может быть включено несколько контакторов, плюс защитные устройства, специальные приставки, управляющие элементы. Все это заключено в корпус, имеющий какую-то степень влаго- и пылезащиты. С помощью этих устройств в основном управляют работой асинхронных двигателей.
Предельное напряжение, с которым работает магнитный пускатель, зависит от электромагнитной катушки индуктивности. Бывают МП небольших номиналов — 12, 24, 110 В, но наиболее часто применяют на 220 и 380 В
Контактор — моноблочный прибор с набором функций, предусмотренных конкретной конструкцией. Тогда как пускатели применяют в схемах достаточно сложных, контакторы в основном присутствуют в простых схемах.
Устройство и назначение прибора
Сравнив подключение МП и контактора, можно сделать заключение, что первое устройство отличается от второго тем, что его применяют для запуска электродвигателя. Можно даже сказать, что МП — тот же контактор, с помощью которого управляют электродвигателем.
Отличие это настолько условно, что в последнее время многие производители называют МП контакторами переменного тока, но с малыми габаритами. Да и постоянное усовершенствование контакторов сделало их универсальными, потому они стали многофункциональными.
Назначение магнитного пускателя
Встраивают МП и контакторы в силовые сети, транспортирующие ток с переменным или постоянным напряжением. Действие их базируется на электромагнитной индукции.
Устройство оснащено контактами сигнальными и теми, через которые питание подается. Первые названы вспомогательными, вторые — рабочими.
Стартовые кнопки, которыми оснащают схему, обеспечивают удобную эксплуатацию. Если нужно отключить нагрузку, достаточно задействовать клавишу «Стоп». При этом поступление напряжения на катушку пускателя закончится и цепь разорвется
МП дистанционно управляют электроустановками, в том числе и электродвигателями. Их роль, как защиты, нулевая — только исчезает напряжение или хотя бы падает до предела ниже 50%, силовые контакты размыкаются.
После остановки оборудования, в схему которого вмонтирован контактор, оно никогда не включится самостоятельно. Для этого придется нажать клавишу «Пуск».
Для безопасности это очень важный момент, поскольку полностью исключены аварии, спровоцированные самопроизвольным включением электроустановки.
Пускатели, в схему которых включены , охраняют электродвигатель или другую установку от длительных перегрузок. Эти реле могут быть двухполюсными (ТРН) либо однополюсными (ТРП). Срабатывание наступает под воздействием тока перегрузки двигателя, протекающего по ним.
Конструкция и функционирование прибора
Для корректной работы МП необходимо придерживаться определенных правил монтажа, иметь понятие об основах релейной техники, грамотно выбрать схему питания оборудования.
Поскольку устройства предназначены для функционирования на протяжении небольшого временного промежутка, наиболее популярными являются МП с обычно разомкнутыми контактами. Наибольшим спросом пользуются МП серий ПМЕ, ПАЕ.
Первые встраивают в сигнальные цепи для электродвигателей мощностью 0,27 – 10 кВт. Вторые — мощностью 4 – 75 кВт. Рассчитаны они на напряжение 220, 380 В.
Вариантов исполнения четыре:
- открытый;
- защищенный;
- пылеводозащищенный;
- пылебрызгонепроницаемый.
Пускатели ПМЕ включают в свою конструкцию двухфазное реле ТРН. В пускателе серии ПАЕ количество встраиваемых реле зависит от величины.
Буквы обозначают тип устройства, следующие за ними цифры — от 1 до 6 —величину. Вторая цифра — исполнение. Единица указывает на нереверсивный МП без тепловой защиты, двойка — то же, но с тепловой защитой, три — реверсивный, не имеющий тепловой защиты, четыре — с тепловой защитой, реверсивный
При напряжении около 95% от номинального катушка пускателя способна обеспечить надежную работу.
Состоит МП из следующих основных узлов:
- сердечника;
- электромагнитной катушки;
- якоря;
- каркаса;
- механических датчиков работы;
- групп контакторов — центральной и дополнительной.
Также в конструкцию могут включать в качестве дополнительных элементов, защитное реле, электропредохранители, добавочный комплект клемм, пусковое устройство.
МП включает в свою конструкцию основание (1), контакты неподвижные (2), пружину (3), сердечник (4), дроссель (5), якорь (6), пружину (7), контактный мостик (8), пружину (9), дугогасительную камеру (10), нагревательный элемент (11)
По сути, это реле, но отключающее гораздо больший ток. Поскольку электромагниты у этого устройства довольно мощные, оно отличается большой скоростью срабатывания.
Электромагнит в виде катушки с большим числом витков рассчитан на напряжение 24 – 660 В. Которая размещена на сердечнике, большая мощность нужна для преодоления усилия пружины.
Последняя предназначена для быстрого рассоединения контактов, от скорости которого зависит величина электрической дуги. Чем быстрее произойдет размыкание, тем меньше дуга и в тем лучшем состоянии будут сами контакты.
Нормальное состояние, когда контакты разомкнуты. Пружина при этом удерживает в приподнятом состоянии верхний участок магнитопровода.
Когда на магнитный пускатель поступает питание, через катушку проходит ток и формирует электромагнитное поле. Оно привлекает мобильную часть магнитопровода посредством сжатия пружины. Контакты замыкаются, на нагрузку поступает питание, в результате, она включается в работу.
В случае отключения питания МП электромагнитное поле исчезает. Выпрямляясь, пружина делает толчок, и верхняя часть магнитопровода оказывается вверху. Как следствие, расходятся контакты, и пропадает питание на нагрузку.
Некоторые модели пускателей оснащены ограничителями перенапряжений, которые применяют в полупроводниковых управляющих системах.
Можно вручную проконтролировать работу системы путем нажатия на якорь с целью почувствовать силу сокращения пружины. Как раз усилие сокращения справляется с магнитным полем. При полном опускании якоря, контакты, отбрасываемые пружиной, отключаются
Питание катушки управления после подключения магнитного пускателя реализуется от переменного тока, но для этого устройства род тока не имеет значения.
Пускатели, как правило, оснащены двумя видами контактов: силовыми и блокировочными. Посредством первых подключается нагрузка, а вторые предохраняют от неправильных действий при подключении.
Силовых МП может быть 3 или 4 пары, все зависит от конструкции устройства. В каждой из пар есть как мобильные, так и неподвижные контакты, соединенные с клеммами, находящимися на корпусе, посредством металлических пластин.
Первые отличаются тем, что на нагрузку постоянно поступает питание. Вывод из рабочего состояния происходит только после срабатывания пускателя.
На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Различают два вида контактов блокировки: нормально закрытые, нормально разомкнутые. Первого вида контакт имеет кнопка «Стоп», а нормально открытый — «Пуск»
Нормально замкнутые отличаются тем, что на нагрузку постоянно поступает питание, а отсоединение наступает исключительно после срабатывания пускателя. На контакторы с контактами нормально разомкнутыми подается питание исключительно во время работы пускателя.
Особенности монтажа пускателя
Неправильный монтаж магнитного пускателя, может иметь последствия в виде ложных срабатываний. Чтобы избежать этого, нельзя выбирать участки, подверженные вибрации, ударам, толчкам.
Конструкционно МП устроен так, что его можно монтировать в электрощите, но с соблюдением правил. Устройство будет работать надежно, если местом его установки будет поверхность прямая, плоская и расположенная вертикально.
Тепловые реле не должны подвергаться подогреву от посторонних источников тепла, что отрицательно скажется на функционировании устройства. По этой причине их нельзя размещать в местах, подверженных нагреву.
Устанавливать магнитный пускатель в помещении, где смонтированы устройства с током от 150 А, категорически нельзя. Включение и выключение таких устройств провоцирует быстрый удар.
Провода из меди до подключения нужно залудить. Если они многожильные, их концы перед лужением скручивают. У алюминиевых проводов концы зачищают надфилем, затем покрывают пастой или техническим вазелином
Чтобы не допустить перекоса пружинных шайб, находящихся в контактном зажиме пускателя, конец проводника загибают П-образно или в кольцо. Когда нужно подключить 2 проводника к зажиму, нужно чтобы их концы были прямыми и находились по две стороны зажимного винта.
Включению в работу пускателя должен предшествовать осмотр, проверка исправности всех элементов. Подвижные детали должны перемещаться от руки. Электрические соединения нужно сверить со схемой.
Популярные схемы подключения МП
Наиболее часто используют монтажную схему с одним устройством. Чтобы соединить ее основные элементы используют 3-жильный и два разомкнутых контакта в случае, если устройство выключено.
Это предельно простая схема. Она собирается, когда замыкается выключатель автоматический QF. От КЗ (короткого замыкания) схему управления защищает предохранитель PU
В нормальных обстоятельствах контакт реле Р замкнут. При нажатии клавиши «Пуск» цепь замыкается. Нажатие кнопки «Стоп» разбирает схему. В случае перегрузки тепловой датчик Р сработает и разорвет контакт Р, машина остановится.
При этой схеме большое значение имеет номинальное напряжение катушки. Когда усилие на ней 220 В, двигателя 380 В, в случае соединения в звезду, такая схема не подходит.
Для этого применяют схему с нейтральным проводником. Применять ее целесообразно в случае соединения обмоток двигателя треугольником.
Тонкости подключения устройства на 220 В
Независимо от того, как решено подключить магнитный пускатель, в проекте обязательно присутствуют две цепи — силовая и сигнальная. Через первую подают напряжение, посредством второй управляют работой оборудования.
Особенности силовой цепи
Питание для МП подключают через контакты, обычно обозначаемые символами А1 и А2. На них попадает напряжение 220 В, если сама катушка рассчитана на такое напряжение.
Удобнее «фазу» подключать к А2, хотя принципиальной разницы в подключении нет. Источник питания подключают к контактам, находящимся ниже на корпусе.
Тип напряжения не имеет значения, главное, чтобы номинал не выходил за пределы 220 В.
Через магнитный пускатель, оснащенный катушкой 220 В, возможна подача напряжения от дизель- и ветрогератора, аккумулятора, других источников. Съем его происходит с клемм Т1, Т2, Т3
Минусом этого варианта подключения является тот момент, что для ее включения или отключения нужно совершать манипуляции с вилкой. Схему можно усовершенствовать путем установки перед МП автомата. С его помощью включают и отключают питание.
Изменение цепи управления
Эти изменения не касаются силовой цепи, модернизируется в этом случае лишь цепь управления. Вся схема в целом претерпевает незначительные изменения.
Когда клавиши находятся в одном кожухе, узел называется «кнопочным постом». Любая из них обладает парой входов и парой выходов. У клавиши «Пуск» клеммы нормально разомкнутые (НЗ), у прямо противоположной — нормально замкнутые (NC)
Клавиши встраивают последовательно перед МП. Первая — «Пуск», за ней идет «Стоп». Контактами магнитного пускателя манипулируют посредством управляющего импульса.
Источником его является нажатая пусковая кнопка, открывающая путь для подачи напряжения к управляющей катушке. «Пуск» не обязательно удерживать во включенном состоянии.
Оно поддерживается по принципу самозахвата. Заключается он в том, что параллельно кнопке «Пуск» подключаются добавочные самоблокирующиеся контакты. Они и снабжают напряжением катушку.
После их замыкания, катушка самоподпитывается. Разрыв этой цепи приводит к отключению МП.
Отключающая клавиша «Стоп» обычно красная. Стартовая кнопка может иметь не только надпись «Пуск», но и «Вперед», «Назад». Чаще всего она зеленого цвета, хотя может быть и черного.
Подсоединение к 3-фазной сети
Возможно подключение 3-фазного питания через катушку МП, функционирующей от 220 В. Обычно схему применяют с асинхронным двигателем. Сигнальная цепь при этом не изменяется.
Одну фазу и «ноль» подключают к соответствующим контактам. Проводник фазный прокладывают через стартовую и выключающую клавиши. На контакты NO13, NO14 ставят перемычку между замкнутым и разомкнутым контактами
Силовая цепь имеет отличия, но не очень существенные. Три фазы подают на входы, обозначенные на плане, как L1, L2, L3. Трехфазную нагрузку подключают к T1, T2, T3.
Ввод в схему теплового реле
В промежутке между магнитным пускателем и асинхронным электродвигателем последовательно подсоединяют тепловое реле. Выбор его осуществляют в зависимости от типа мотора.
Тепловое реле обезопасит электрический двигатель от неисправностей и аварийных ситуаций, которые могут возникнуть при пропадании одной из фаз
Подключают реле к выводу с магнитным пускателем. Ток в нем проходит к мотору последовательно, попутно нагревая реле. Верх реле оснащен придаточными контактами, объединенными с катушкой.
Нагреватели реле рассчитывают на предельную величину тока, протекающего через них. Делают это для того, чтобы, когда двигатель окажется в опасности из-за перегрева, реле смогло бы отключить пускатель.
Также рекомендуем прочесть другую нашу статью где мы рассказали о том как выбрать и подключить электромагнитный пускатель на 380 В. Подробнее – переходите по .
Запуск мотора с реверсным ходом
Для функционирования отдельного оборудование необходимо, чтобы двигатель мог вращаться как влево, так и вправо.
Схема подключения для такого варианта содержит два МП, кнопочный пост либо отдельные три клавиши — две стартовые «Вперед», «Назад» и «Стоп».
Для реализации этого варианта в схему с одним МП добавляют еще одну сигнальную цепь. В нее входит клавиша SB3, МП КМ2. Немного изменена и силовая часть
От к.з. силовую цепь защищают контакты нормально замкнутые КМ1.2, КМ2.2.
Подготовку схемы к работе осуществляют следующим образом:
- Включают АВ QF1.
- На силовые контакты МП КМ1, КМ2 поступают фазы А, В, С.
- Фаза, которая снабжает цепь управления (А) через SF1 (автомат защиты сигнальных цепей) и клавишу SB1 «Стоп» подается на контакт 3 (клавиши SB2, SB3), контакт 13НО (МП КМ1, КМ2).
Далее схема работает по алгоритму, зависящему от направления вращения мотора.
Управление реверсом двигателя
Вращение начинается при задействовании клавиши SB2. При этом фаза А через КМ2.2 подается на катушку МП КМ1. Начинается включение пускателя с замыканием нормально разомкнутых контактов и размыканием нормально замкнутых.
Замыкание КМ1.1 провоцирует самоподхват, а за смыканием контактов КМ1 следует подача фаз А, В, С на идентичные контакты обмоток двигателя и он начинает вращение.
Перед запуском мотора в противоположном направлении необходимо остановить заданное прежде вращение посредством кнопки «Стоп». Для кручения в обратном направлении стоит только при помощи пускателя КМ2 поменять дислокацию каких-то двух питающих фаз
Предпринятое действие разъединит цепь, на дроссель КМ1 перестанет подаваться управляющая фаза А, а сердечник с контактами, посредством возвратной пружины, восстановится в исходном положении.
Контакты разъединятся, на двигатель М прекратится подача напряжения. Схема будет пребывать в ждущем режиме.
Запускают ее путем нажатия на кнопку SB3. Фаза А через КМ1.2 поступит на КМ2, МП, сработает и через КМ2.1 окажется на самоподхвате.
Далее, МП посредством контактов КМ2 поменяет фазы местами. В результате двигатель М изменит направление вращения. В это время соединение КМ2.2, находящееся в цепи, питающей МП КМ1, рассоединится, не допуская включения КМ1 пока функционирует КМ2.
Работа силовой схемы
Ответственность за переключение фаз для перенаправления вращения двигателя возложена на силовую схему.
Провод белого цвета заводит фазу А на левый контакт МП КМ1, затем через перемычку заходит на левый контакт КМ2. Выходы пускателей также объединены перекрестной перемычкой и далее через КМ1 на первую обмотку поступает фаза А двигателя
При срабатывании контактов МП КМ1 на первую обмотку поступает фаза А, на вторую обмотку — фаза В, а на третью — фаза С. При этом мотор вращается влево.
Когда срабатывает КМ2, передислоцируются фазы В и С. Первая попадает на третью обмотку, вторая — на вторую. Изменений по фазе А не происходит. Двигатель начнет вращаться вправо.
Выводы и полезное видео по теме
Подробности об устройстве и подключении контактора:
Практическая помощь в подключении МП:
По приведенным схемам можно подключить магнитный пускатель своими руками как к сети 220, так и 380 В.
Необходимо помнить, что сборка не отличается сложностью, но для реверсивной схемы важно наличие двухсторонней защиты, делающей невозможным встречное включение. При этом блокировка может быть как механической, так и посредством блокировочных контактов.
Если у вас появились вопросы по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке. Там же вы можете сообщить интересную информацию или дать совет по подключению магнитных пускателей посетителям нашего сайта.
Схемы подключения магнитного пускателя | Электрик
Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.
Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.
Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.
При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.
Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического «отключения» оборудования при «пропадание» электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка «Пуск».
Схемы подключения магнитного пускателя
Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали –
двигатель включился, кнопку «Стоп» нажали – двигатель отключился.
Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.
В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.
В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.
Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».
При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на «3» контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.
Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.
Если номинал катушки на 380 вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.
При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.
Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.
Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.
В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.
Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.
Как выглядит монтажная (практическая) схема подключения магнитного пускателя?
Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на «3» контакт кнопки «Пуск».
Как подключить магнитный пускатель в однофазной сети
Схема подключения электродвигателя с тепловым реле и защитным автоматом
Как выбрать автоматический выключатель (автомат) для защиты схемы?
Прежде всего выбираем сколько «полюсов», в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.
Следующим важным параметром будет ток сработки.
Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А.
Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.
Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.
Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.
Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.
Например для двигателя на 4кВт, можно ставить автомат на 10А.
Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.
В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.
С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.
Подключение электродвигателя через реверсивный пускатель
Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.
Смена направления вращения реализуется простим способом, меняются местами любые две фазы.
Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед» и «Пуск назад«, выключение — одной, общей кнопкой «Стоп» , как и в схемах без реверса.
В таких схемах запуска всегда должна быть защита от одновременного включения кнопок «вперед» и «назад».
Реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними должен стоять специальный механический блокиратор.
Вторая защита — электрическая. Контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если случайно нажать обе кнопки «пуск», ничего не получится — электродвигатель будет слушаться той кнопки, которая нажата раньше.
Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но так-как пятого контакта, в большинства магнитных пускателей нет, можно поставить дополнительный контакт. Например приставка ПКИ.
с катушкой на 220 вольт
с катушкой на 380 вольт
Схема подключения магнитного пускателя на 220 В, 380 В
Для подачи питания на двигатели или любые другие устройства используют контакторы или магнитные пускатели. Устройства, предназначенные для частого включения и выключения питания. Схема подключения магнитного пускателя для однофазной и трехфазной сети и будет рассмотрена дальше.
Содержание статьи
Контакторы и пускатели — в чем разница
И контакторы и пускатели предназначены для замыкания/размыкания контактов в электрических цепях, обычно — силовых. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до 440 В постоянного тока и до 600 В переменного. Имеют:
- некоторое количество рабочих (силовых) контактов, через которые подается напряжение на подключаемую нагрузку;
- некоторое количество вспомогательных контактов — для организации сигнальных цепей.
Так в чем разница? Чем отличаются контакторы и пускатели. В первую очередь они отличаются степенью защиты. Контакторы имеют мощные дугогасительные камеры. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами. На малые токи — до 10 А — выпускают исключительно пускатели. Они, кстати, на большие токи не выпускаются.
Внешний вид не всегда так сильно отличается, но бывает и так
Есть еще одна конструктивная особенность: пускатели выпускаются в пластиковом корпусе, у них наружу выведены только контактные площадки. Контакторы, в большинстве случаев, корпуса не имеют, потому должны устанавливаться в защитных корпусах или боксах, которые защитят от случайного прикосновения к токоведущим частям, а также от дождя и пыли.
Кроме того, есть некоторое отличие в назначении. Пускатели предназначены для запуска асинхронных трехфазных двигателей. Потому они имеют три пары силовых контактов — для подключения трех фаз, и одну вспомогательную, через которую продолжает поступать питание для работы двигателя после того, как кнопка «пуск» отпущена. Но так как подобный алгоритм работы подходит для многих устройств, то подключают через них самые разнообразные устройства — цепи освещения, различные устройства и приборы.
Видимо потому что «начинка» и функции обоих устройств почти не отличаются, во многих прайсах пускатели называются «малогабаритными контакторами».
Устройство и принцип работы
Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы.
Основа пускателя — магнитопровод и катушка индуктивности. Магнитопровод состоит из двух частей — подвижной и неподвижной. Выполнены они в виде букв «Ш» установленные «ногами» друг к другу.
Нижняя часть закреплена на корпусе и является неподвижной, верхняя подпружинена и может свободно двигаться. В прорези нижней части магнитопровода устанавливается катушка. В зависимости от того, как намотана катушка, меняется номинал контактора. Есть катушки на 12 В, 24 В, 110 В, 220 В и 380 В. На верхней части магнитопровода есть две группы контактов — подвижные и неподвижные.
Устройство магнитного пускателя
При отсутствии питания пружины отжимают верхнюю часть магнитопровода, контакты находятся в исходном состоянии. При появлении напряжения (нажали кнопку пуск, например) катушка генерирует электромагнитное поле, которое притягивает верхнюю часть сердечника. При этом контакты меняют свое положение (на фото картинка справа).
При пропадании напряжения электромагнитное поле тоже исчезает, пружины отжимают подвижную часть магнитопровода вверх, контакты возвращаются в исходное состояние. В этом и состоит принцип работы эклектромагнитного пускателя: при подаче напряжения контакты замыкаются, при пропадании — размыкаются. Подавать на контакты и подключать к ним можно любое напряжение — хоть постоянное, хоть переменное. Важно чтобы его параметры не были больше заявленных производителем.
Так выглядит в разобранном виде
Есть еще один нюанс: контакты пускателя могут быть двух типов: нормально замкнутыми и нормально разомкнутыми. Из названий следует их принцип работы. Нормально замкнутые контакты при срабатывании отключаются, нормально разомкнутые — замыкаются. Для подачи питания используется второй тип, он и есть наиболее распространенным.
Схемы подключения магнитного пускателя с катушкой на 220 В
Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.
Кнопки могут быть в одном корпусе или в разных
С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.
Подключение пускателя с катушкой 220 В к сети
Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.
Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).
Сюда можно подать питание для катушки
Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.
Подключение контактора с катушкой на 220 В
При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть. Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.
Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).
Схема с кнопками «пуск» и «стоп»
Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже. Обратите внимание, что
Схема включения магнитного пускателя с кнопками
Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.
Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата
В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.
Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.
Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.
Подключение асинхронного двигателя на 380 В через пускатель с катушкой на 220 В
Эта схема отличается только тем, что в ней подключаются к контактам L1, L2, L3 три фазы и также три фазы идут на нагрузку. На катушку пускателя — контакты A1 или A2 — заводится одна из фаз. На рисунке это фаза B, но чаще всего это фаза С как менее нагруженная. Второй контакт подсоединяется к нулевому проводу. Также устанавливается перемычка для поддержания электропитания катушки после отпускания кнопки ПУСК.
Схема подключения трехфазного двигателя через пускатель на 220 В
Как видите, схема практически не изменилась. Только в ней добавилось тепловое реле, которое защитит двигатель от перегрева. Порядок сборки — в следующем видео. Отличается только сборка контактной группы — подключаются все три фазы.
Реверсивная схема подключения электродвигателя через пускатели
В некоторых случаях необходимо обеспечить вращение двигателя в обе стороны. Например, для работы лебедки, в некоторых других случаях. Изменение направления вращения происходят за счет переброса фаз — при подключении одного из пускателей две фазы надо поменять местами (например, фазы B и C). Схема состоит из двух одинаковых пускателей и кнопочного блока, который включает общую кнопку «Стоп» и две кнопки «Назад» и «Вперед».
Реверсивная схема подключения трехфазного двигателя через магнитные пускатели
Для повышения безопасности добавлено тепловое реле, через которое проходят две фазы, третья подается напрямую, так как защиты по двум более чем достаточно.
Пускатели могут быть с катушкой на 380 В или на 220 В (указано в характеристиках на крышке). В случае если это 220 В, на контакты катушки подается одна из фаз (любая), а на второй подается «ноль» со щитка. Если катушка на 380 В, на нее подаются две любые фазы.
Также обратите внимание, что провод от кнопки включения (вправо или влево) подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя. Рядом с катушкой пускателей изображены контакты KM1 и KM2. Таким образом реализуется электрическая блокировка, которая не дает одновременно подать питание на два контактора.
Магнитный пускатель с установленной на нем контактной приставкой
Так как нормально замкнутые контакты есть не во всех пускателях, можно их взять, установив дополнительный блок с контактами, который называют еще контактной приставкой. Эта приставка защелкивается в специальные держатели, ее контактные группы работают вместе с группами основного корпуса.
На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен.
Пускатель электромагнитный 380в: функции, характеристики, режимы работы
Пускатель электромагнитный 380в представляет собой специализированное реле и выполняет функцию управления работой трёхфазного асинхронного двигателя. Выполняет он свою работу при подключении обмоток статора к сети и осуществлении разрыва тока в них без предварительного ввода в создающуюся цепь дополнительных сопротивлений.
Управление работой трёхфазным асинхронным двигателем выполняется устройством посредством всего трёх действий: непосредственный запуск двигатель, его остановка, и очень важная защита от возможных перегрузок.
Основные параметры электромагнитных пускателей
В соответствии с главной функцией данным устройством основным его элементом, а в некоторых случаях и единственным, является трёхполюсный электромагнитный контактор переменного тока. С ним и связаны все самые главные параметры пускателя:
- коммутационная способность
- номинальный ток и номинальное напряжение коммутируемой цепи
- износостойкости механического и коммутационного характера.
Электромагнитные пускатели, а также контакторы, являются незаменимыми устройствами в цепях управления силовой нагрузкой.
Из чего состоит пускатель
Чтобы ещё лучше разобраться в работе пускателя электромагнитного 380в, следует подробнее рассмотреть его механизм, устройство. Знание элементов устройства позволит в дальнейшей работе ответить на возникшие вопросы или же избежать неприятных ситуаций.
Итак, из чего же он состоит? Ответ очень простой. Можно выделить три основных элемента:
- Силовые контакты. Как правило, их не больше трёх. Эти контакты выполняют функцию коммутации силовой нагрузки. Нельзя не упомянуть, что номинальный ток устройства относится именно к ним.
- Катушка электромагнитная. Этот элемент предназначен для управления работы пускателя и рассчитан он бывает на 220в или 380в. В нашем случае это 380в.
- Дополнительный контакт. Этот элемент играет свою роль в построении схемы управления. В устройствах, рассчитанных на большие номинальные токи, таких элементов может быть несколько и разных видов: замыкающих или размыкающих. Также дополнительный контакт сигнализирует о состоянии пускателя.
Износостойкость пускателей
К пускателям предъявляются довольно высокие требования к фактору их износостойкости, так как они являются элементами систем автоматического управления. Существует три класса износостойкости у таких устройств, и обозначаются они буквами А, Б и В.
Для того чтобы лучше разбираться в этом аспекте, следует разобраться, о чём говорит наличие у устройства, к примеру, класса А. Дело в том, что устройство с наибольшей степенью износостойкости относят к классу А. А пускатель с наименьшей, соответственно, к классу В. О классе, к которому относится тот или иной электромагнитный пускатель, можно узнать из его технических характеристик, которые обязательно должны указываться в его данных.
Основные характеристики прибора
Основными характеристиками данного устройства являются:
- максимально допустимое значение коммутируемого тока, а также напряжения
- максимальное значение тока дополнительных контактов
- потребляемая мощность управляющей катушки, рабочее напряжение (в основном это 220в или 380в)
- предусмотренное количество циклов включения — выключения. Это значение характеризует износостойкость прибора
Режимы работы прибора
Пускатель электромагнитный 380в, как и устройства, поддерживающие другие напряжения, имеет несколько режимов работы, характеризующиеся разной продолжительностью своей активности. Этих режимов четыре: кратковременный, повторно-кратковременный, прерывисто-продолжительный, продолжительный.
Подключение пускателя электромагнитного 380в
Чтобы подключить данное устройство, следует до начала самой процедуры изучить все схемы подключения и разобраться в работе пускателей. Конструктивные особенности устройства могут послужить вспомогательным фактором при его подключении. Схемы могут показаться чрезвычайно сложными, но при всей кажущейся сложности вся процедура является довольно простой, даже в том случае, если пользователь никогда раньше этим не занимался и никогда подобные подключения не осуществлял.
Пускатели могут осуществлять реверсивное и нереверсивное включение электродвигателей, и иметь различное исполнение. Последний фактор зависит от условий эксплуатации устройства.
Различие приборов на 220В и 380В
Как было указано выше, электромагнитные катушки пускателей могут быть на 220в или 380в. Существуют устройства с катушками, поддерживающими и другие напряжения, но рассматривать их не будем, так как встречаются они довольно редко.
Различие в подключении данных устройств на 220в и 380в заключается в их включении в цепь. Если пользователь попал в неприятную ситуацию, когда все его схемы подключения предназначены для электромагнитных пускателей на 220в, а в руки попал пускатель электромагнитные 380в, то возможно его настроение испортится, и возникнет надобность искать другое устройство. Это в том случае, если пользователь не разбирается в данном вопросе.
На самом деле ситуация совершенно безобидна и даже не стоит потраченных нервов. Никаких трудностей в случае возникновения такого вопроса в процессе подключения не будет. Дело в том, что решение весьма простое. Нужно лишь нижний (по имеющейся схеме ) вывод катушки электромагнитного пускателя 380В подключить к фазе L2 или к фазе L3, а не к нулю, как в случае с подключением устройства на 220в.
Кстати, следует упомянуть тот интересный факт, что использование такого подключения является даже более интересным и предпочтительным для пользователя. Наличие пускателя электромагнитного 380в в цепи позволяет создавать цепь совсем без нуля. Это означает, что, не считая управления, на двигатель уходят и приходят целых три фазы.
Выводы
Пускатель электромагнитный 380в является очень важным звеном цепи, так как именно этот элемент выполняет управление трёхфазного асинхронного двигателя. Очень важно упомянуть, что помимо функций пуска и остановки, прибор выполняет ещё одну немаловажную функцию — защиту от перегрузок двигателя.
Схемы подключения этого прибора довольно просты и с ними может справиться даже пользователь, не имевший до этого какого-либо опыта работы с такими устройствами.
Все технические характеристики, указанные в статье выше, можно найти в данных, приложенных к этому устройству, так что не составит никакого труда узнать о классе устройства и о напряжении, на котором работает его электромагнитная катушка.
Включение в цепь устройства на 380в в некоторых случаях представляется более предпочтительным вариантом, чем использование аналогичного устройства, но на 220в. Никаких трудностей в изменении цепи не наблюдается.
Все схемы для подключения с лёгкостью можно найти в интернете и руководствоваться ими без чьей-либо помощи. Процесс подключения несложен, впрочем, это уже упоминалось выше в статье, так что пользователь сам сможет справиться со всем. Так что удачи.
звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В
Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»
Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).
Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.
Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:
1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.
Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.
В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.
Возможные схемы подключения обмоток электродвигателей
Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.
Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.
Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).
Подключение электродвигателя по схеме звезда
Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.
Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.
Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.
Подключение электродвигателя по схеме треугольник
Название этой схемы также идёт от графического изображения (см. правый рисунок):
Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.
То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).
Подключение электродвигателя к трёхфазной сети на 380 В
Последовательность действий такова:
1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):
Двигатель для однофазной сети 220В
(~ 1, 220В)
Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)
Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)
Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)
3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя
Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.
— использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).
Устройство электромагнитного пускателя:
Магнитный пускатель устроен достаточно просто и состоит из следующих частей:
(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).
При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).
Типовая схема подключения электродвигателя с использованием пускателя:
При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).
5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса
Как подключить поплавковый выключатель к трёхфазному насосу
Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.
Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.
Подключение электродвигателя к однофазной сети 220 В
Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку
Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).
Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.
Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.
Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.
Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.
Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.
Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:
— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.
Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.
Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.
Данные насосы используются в качестве дозирующих насосов на пищевом производстве.
Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).
Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.
Устройство плавного пуска, 40 л.с. (30 кВт), 60 А, 3 фазы, 220 В / 380 В / 480 В
Устройство плавного пуска мощностью 40 л.с., трехфазный пускатель двигателя переменного тока мощностью 30 кВт, 220, 380, 480, 690 В, прямая продажа от производителя.
Модель | GS2-030 (220 В, 240 В), GS3-030 (380 В, 400 В, 415 В), GS4-030 (460 В, 480 В), GS6-030 (690 В). | ||
Вместимость | 40 л.с. (30 кВт) | ||
Текущий | 60 А при 380 В / 480 В, 110 А при 220 В | ||
Масса | 5 кг | ||
Размер | 270 * 146 * 160 мм | ||
Ввод | Напряжение | Трехфазный 240 В, 420 В, 480 В, 660 В переменного тока | |
Частота | 50 Гц / 60 Гц | ||
Адаптивный двигатель | Асинхронный двигатель трехфазный с короткозамкнутым ротором | ||
Время начала | Рекомендуется не превышать 20 раз в час. | ||
485 Связь | Интерфейс DB9, вилка, ① — RS485 +, ⑥ — RS485- | ||
Режим управления |
| ||
Пусковой режим |
| ||
Режим остановки |
| ||
Защитная функция |
| ||
Окружающий | Использованное место | В помещении с хорошей вентиляцией, без агрессивных газов и токопроводящей пыли. | |
Высота | Ниже 1000 м. Он должен увеличивать номинальную мощность устройства плавного пуска, когда высота превышает 1000 м. | ||
Температура | -30 +55 o C | ||
Влажность | 90% относительной влажности без конденсации росы. | ||
Вибрация | <0,5 г | ||
Структура | Корпус | IP 20 | |
Охлаждение | Естественное ветровое охлаждение. |
Советы: Принцип устройства плавного пуска
Плавный пуск — это режим пуска двигателя. По сравнению с жестким пуском, в процессе плавного пуска двигателя напряжение постепенно увеличивается до номинального, пусковой ток постепенно увеличивается до номинального, а затем снижается. При плавном пуске скорость двигателя постепенно увеличивается, при этом не возникает явления ударного крутящего момента, двигатели всегда работают плавно и не имеют повреждений. Плавный пуск двигателя достигается с помощью устройства плавного пуска, которое помещает регулятор напряжения (обычно трехфазный встречно-параллельный тиристор) между источником питания и статором двигателя.Схема подобна полностью управляемой трехфазной мостовой выпрямительной схеме.
Когда выходное напряжение увеличивается до номинального, для достижения плавного пуска и постепенного уменьшения пускового тока, чтобы избежать явления отключения двигателя, вызванного слишком большим пусковым током. Когда скорость увеличивается до номинальной, процесс плавного пуска двигателя заканчивается, устройство плавного пуска автоматически использует байпасный контактор для замены тиристора, чтобы обеспечить напряжение, благодаря чему двигатель неизменно вращается с постоянной скоростью.
Устройство плавного пуска может не только завершить плавный пуск двигателя, но также завершить плавный останов двигателя. Принцип работы устройства плавного пуска полностью противоположен принципу плавного пуска. В основном это постепенное снижение выходного напряжения для снижения его скорости до нуля и до медленной остановки двигателя.
Устройство плавного пуска, 20 л.с. (15 кВт), 240 В / 380 В / 460 В / 690 В
Устройство плавного пуска мощностью 20 л.с., трехфазный двигатель мощностью 240 В, 380 В, 460 В, 690 В переменного тока мощностью 15 кВт, снижение пускового тока и напряжения двигателя, защита двигателя от перенапряжения, перегрузки по току, асимметрии фаз и т. Д.
Бесплатная доставка
Входное напряжение (трехфазное) ± 15%
- —
220В
[+ 69 долларов.00]240 В
[+ 69,00 $]380В
400 В
420 В
440В
[+ $ 20,00]460В
[+ $ 20.00]480 В
[+ $ 20,00]660В
[+ 79,00 $]690 В
[+ 79,00 $] RS485
- —
НиктоВключено
[+ $ 129.00]
Старая цена:
459,00 долл. США
Цена:
$ 389,21
Устройство плавного пуска мощностью 20 л.с., трехфазный пускатель двигателя переменного тока мощностью 15 кВт, 240 В, 380 В, 460 В, 690 В.
Модель | GS2-015 (240 В), GS3-015 (380 В), GS4-015 (460 В), GS6-015 (690 В). | ||
Вместимость | 20 л.с. (15 кВт) | ||
Текущий | 30 А при 380 В / 480 В, 60 А при 220 В | ||
Масса | 5 кг | ||
Размер | 270 * 146 * 160 мм | ||
Ввод | Напряжение | Трехфазный 240 В, 380 В, 460 В, 690 В переменного тока | |
Частота | 50 Гц / 60 Гц | ||
Адаптивный двигатель | Асинхронный двигатель трехфазный с короткозамкнутым ротором | ||
Время начала | Рекомендуется не превышать 20 раз в час. | ||
Связь | Интерфейс DB9, вилка, ① — RS485 +, ⑥ — RS485- | ||
Режим управления | (1) Панель управления. (2) Панель управления + внешнее управление. (3) Внешний контроль. (4) Внешнее управление + управление через COM. (5) Панель управления + внешнее управление + COM. (6) Панель управления + управление через COM. (7) Управление COM. (8) Нет запуска или остановки. | ||
Пусковой режим | (1) Ограничение тока для запуска.(2) Пуск напряжения. (3) Контроль крутящего момента + ограничение тока для запуска. (4) Контроль крутящего момента + линейное изменение напряжения для запуска. (5) Текущая линейная скорость для запуска. (6) Пуск с двойным замкнутым контуром с ограничением по напряжению. | ||
Режим остановки | (1) Плавный останов. (2) Бесплатная остановка. | ||
Защитная функция | (1) Защита от разомкнутого контура для внешних клемм мгновенного останова. (2) Защита устройства плавного пуска от перегрева. (3) Защита от слишком долгого пуска.(4) Защита от обрыва фазы на входе. (5) Защита от обрыва фазы на выходе. (6) Несимметричная трехфазная защита. (7) Пусковая защита от перегрузки по току. (8) Защита от перегрузки. (9) Защита от пониженного напряжения питания. (10) Защита от перенапряжения для напряжения питания. (11) Защита при настройке параметров неисправности устройства плавного пуска. (12) Защита от короткого замыкания нагрузки. (13) Автоматический перезапуск или защита от неправильной проводки. (14) Неправильная защита клемм внешнего управления остановом. | ||
Окружающий | Использованное место | В помещении с хорошей вентиляцией, без агрессивных газов и токопроводящей пыли. | |
Высота | Ниже 1000 м. Он должен увеличивать номинальную мощность устройства плавного пуска, когда высота превышает 1000 м. | ||
Температура | -30 +55 o C | ||
Влажность | 90% относительной влажности без конденсации росы. | ||
Вибрация | <0,5 г | ||
Структура | Корпус | IP20 | |
Охлаждение | Естественное ветровое охлаждение. |
Советы. Выберите устройство плавного пуска для двигателя с фиксированной скоростью.
Частотно-регулируемый привод (VFD) намного дороже устройства плавного пуска и имеет гораздо более высокие потери энергии, поэтому он более дорог в эксплуатации. Для асинхронного двигателя с фиксированной частотой вращения устройство плавного пуска требует меньших капитальных затрат и более низких эксплуатационных затрат, чем ЧРП. VFD может не потребоваться, если не требуется управление скоростью или крутящим моментом. Конечно, если речь не идет о деньгах, частотно-регулируемый привод гораздо лучше устройство плавного пуска, а частотно-регулируемый привод обычно имеет все функции плавного пуска.
Напишите свой отзыв о Устройство плавного пуска, 20 л.с. (15 кВт), 240 В / 380 В / 460 В / 690 В
- Только зарегистрированные пользователи могут оставлять отзывы
50 л.с. (37 кВт) Устройство плавного пуска, 230 В / 380 В / 460 В / 690 В
Недорогое устройство плавного пуска мощностью 50 л.с., трехфазное устройство мощностью 37 кВт, 230 В, 380 В, 460 В, 690 В на выбор, защищает асинхронный двигатель переменного тока от воздействия пускового тока, покупайте напрямую у китайского производителя.
Бесплатная доставка
Дата доставки: 6-12 дней
Входное напряжение (трехфазное) ± 15%
- —
220В
[+ $ 199.00]240 В
[+ $ 199,00]380В
400 В
420 В
440В
[+ $ 29,00]460В
[+ $ 29.00]480 В
[+ $ 29,00]660В
[+ $ 199,00]690 В
[+ $ 199,00] RS485
- —
НиктоВключено
[+ $ 129.00]
Старая цена:
$ 537,00
Цена:
479,12 $
Устройство плавного пуска двигателя переменного тока мощностью 50 л.с., трехфазное напряжение 37 кВт 230 В, 380 В, 460 В, 690 В на выбор.
Модель | GS2-037 (230 В), GS3-037 (380 В), GS4-037 (460 В), GS6-037 (690 В). | ||
Вместимость | 50 л.с. (37 кВт) | ||
Текущий | 75 А при 380 В / 460 В, 150 А при 220 В | ||
Масса | 5 кг | ||
Размер | 270 * 146 * 160 мм | ||
Ввод | Напряжение | 3 фазы 230 В, 380 В, 460 В, 690 В переменного тока | |
Частота | 50 Гц / 60 Гц | ||
Адаптивный двигатель | Асинхронный двигатель трехфазный с короткозамкнутым ротором | ||
Время начала | Рекомендуется не превышать 20 раз в час. | ||
Связь | Интерфейс DB9, вилка, ① — RS485 +, ⑥ — RS485- | ||
Режим управления | (1) Панель управления. (2) Панель управления + внешнее управление. (3) Внешний контроль. (4) Внешнее управление + управление через COM. (5) Панель управления + внешнее управление + COM. (6) Панель управления + управление через COM. (7) Управление COM. (8) Нет запуска или остановки. | ||
Пусковой режим | (1) Ограничение тока для запуска.(2) Пуск напряжения. (3) Контроль крутящего момента + ограничение тока для запуска. (4) Контроль крутящего момента + линейное изменение напряжения для запуска. (5) Текущая линейная скорость для запуска. (6) Пуск с двойным замкнутым контуром с ограничением по напряжению. | ||
Режим остановки | (1) Плавный останов. (2) Бесплатная остановка. | ||
Защитная функция | (1) Защита от разомкнутого контура для внешних клемм мгновенного останова. (2) Защита устройства плавного пуска от перегрева. (3) Защита от слишком долгого пуска.(4) Защита от обрыва фазы на входе. (5) Защита от обрыва фазы на выходе. (6) Несимметричная трехфазная защита. (7) Пусковая защита от перегрузки по току. (8) Защита от перегрузки. (9) Защита от пониженного напряжения питания. (10) Защита от перенапряжения для напряжения питания. (11) Защита при настройке параметров неисправности устройства плавного пуска. (12) Защита от короткого замыкания нагрузки. (13) Автоматический перезапуск или защита от неправильной проводки. (14) Неправильная защита клемм внешнего управления остановом. | ||
Окружающий | Использованное место | В помещении с хорошей вентиляцией, без агрессивных газов и токопроводящей пыли. | |
Высота | Ниже 1000 м. Он должен увеличивать номинальную мощность устройства плавного пуска, когда высота превышает 1000 м. | ||
Температура | -30 +55 o C | ||
Влажность | 90% относительной влажности без конденсации росы. | ||
Вибрация | <0,5 г | ||
Структура | Корпус | IP 20 | |
Охлаждение | Естественное ветровое охлаждение. |
Советы: Выберите между устройством плавного пуска и частотно-регулируемым приводом.
Устройство плавного пуска используется для уменьшения пускового тока асинхронного двигателя и уменьшения напряжения. Однако частотно-регулируемый привод (VFD) используется, когда вам нужно контролировать скорость, крутящий момент … асинхронного двигателя во время процесса. Обычно, когда мы используем устройство плавного пуска для разгона асинхронного двигателя до его рабочей скорости (синхронная скорость 97%), мы обходим устройство плавного пуска в обход.Нормальный режим работы двигателя такой же, как и при поперечном подключении.
Обычно частотно-регулируемый привод используется непрерывно для изменения скорости, тогда как устройства плавного пуска предназначены только для уменьшения пусковых скачков, так что в целом частотно-регулируемый привод выполняет обе цели во время запуска, а также при нормальной работе, если не касается бюджета.
Напишите свой отзыв о Устройство плавного пуска, 50 л.с. (37 кВт), 230 В / 380 В / 460 В / 690 В
- Только зарегистрированные пользователи могут оставлять отзывы
Существующие обзоры
Пожалуйста, уточняйте время доставки этого оборудования.
С наилучшими пожеланиями
по
Клаудио
на 08/04, 2015
Был ли этот обзор полезным?
Да /
№
(0/0)
Eaton Freedom Series — Пускатели электродвигателей
Контакторы и пускатели электродвигателей NEMA серии EATON Freedom
Пускатели
— трехфазные нереверсивные и реверсивные, полное напряжение
Трехфазные нереверсивные и реверсивные,
Пускатели полного напряжения
Описание продукта:
без реверсирования
Трехфазные магнитные пускатели полного напряжения обычно используются для переключения нагрузок электродвигателей переменного тока.Пускатели состоят из выключателя (контактора) с магнитным приводом и реле перегрузки, собранных вместе.
Реверс
Трехфазные магнитные пускатели полного напряжения используются в основном для реверсирования трехфазных двигателей с короткозамкнутым ротором. Они состоят из двух контакторов и одного реле перегрузки, собранных вместе. Контакторы механически и электрически заблокированы для предотвращения короткого замыкания в линии и одновременного включения обоих контакторов.
Особенности, преимущества и функции;
- Биметаллические реле перегрузки с компенсацией внешней среды — доступны в трех основных типоразмерах, охватывающих приложения мощностью до 900 л.с. — сокращает количество различных комбинаций контактор / реле перегрузки, которые должны храниться на складе
Характеристики этих реле перегрузки:
- Выбор ручного или автоматического сброса
- Сменные нагреватели, регулируемые на ± 24% в соответствии с номинальной мощностью двигателя и откалиброванные для 1.0 и 1,15 коэффициенты обслуживания. Блоки нагревателей для реле перегрузки меньшего размера будут устанавливаться в реле перегрузки большего размера — полезно при снижении номинальных характеристик, таких как толчковый режим
- Грузовые проушины встроены в основание реле
- Однофазная защита, класс 20 или класс 10, время срабатывания
- Индикация отключения по перегрузке
- Электрически изолированные контакты NO-NC (для проверки нажмите кнопку RESET)
- C440 — это надежная электронная перегрузка с автономным питанием, предназначенная для интегрированного использования с контакторами Freedom NEMA.
- Многоуровневый набор функций для обеспечения покрытия, специфичного для вашего приложения
- Широкий диапазон FLA 5: 1 для максимальной гибкости
- Покрытие от 0.05–1500A для всех ваших потребностей
- Долговечный двойной разрыв, контакты из оксида кадмия серебра — обеспечивают отличную проводимость и превосходную стойкость к сварке и дуговой эрозии. Большой размер для низкого сопротивления и холодной работы
- Рассчитан на 3 000 000 электрических операций при максимальной мощности до 25 л.с. при 600 В
- Стальная монтажная пластина стандартная для всех пускателей открытого типа
- Проводное соединение для отдельного или общего управления Нереверсивное управление
- Контакт (ы) цепи удержания входят в стандартную комплектацию
- Типоразмеры 00–3 имеют блок дополнительных замыкающих контактов, установленный с правой стороны (на типоразмере 00 контакт занимает 4-ю позицию полюса мощности — без увеличения ширины).
- Типоразмеры 4–5 имеют замыкающий контактный блок, установленный с левой стороны.
- Типоразмеры 6–7 имеют контактный блок 2НО / 2НЗ слева вверху.
- Размер 8 имеет НО / НЗ контактный блок вверху слева сзади и НР вверху справа сзади
Реверс
- Каждый контактор (размер 00–8) в стандартной комплектации поставляется с одним контактным блоком, установленным на стороне NO-NC.Контакты NC имеют электрическую блокировку
Тип AN16 / AN56 NEMA — реле перегрузки с ручным или автоматическим сбросом — нереверсивное и нереверсивное
(1)
Стартер нереверсивный, размер 0
Реверсивный стартер типоразмера 1
Магнитные катушки — переменного или постоянного тока
Катушки контактора
, перечисленные в этом разделе, также имеют номинальную мощность 50 Гц, как показано в разделе «Код напряжения катушки».Выберите нужный контактор по номеру детали и замените буквенное обозначение катушки магнита в номере детали (A) на соответствующий код напряжения катушки.
Для размеров 00–2 буквенное обозначение катушки магнита будет рядом с последней цифрой указанного номера детали.
ПРИМЕР: Для катушки 380 В, 50 Гц замените CN15AN3_B на CN15AN3LB. Для всех других размеров буквенное обозначение катушки магнита будет последней цифрой указанного номера детали.
Катушка Вольт и Герц | Суффикс кода | Катушка Вольт и Герц | Суффикс кода | |
120/60 или 110/50 | А | 380-415 / 50 | л | |
240/60 или 220/50 | Б | 550/50 | N | |
480/60 или 440/50 | С | 24/60, 24/50 | т | |
600/60 или 550/50 | D | 24/50 | U | |
208/60 | E | 32/50 | В | |
277/60 | H | 48/60 | Вт | |
208-240 / 60 | Дж | 48/50 | Я | |
240/50 | К | 48/50 | Я |
(1) В номера деталей стартера не включены нагреватели.Выберите одну коробку из трех нагревателей. Выбор блока нагревателя
(2) Максимальная мощность стартеров для приложений 380 В, 50 Гц:
Размер NEMA | 00 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Мощность | 1.5 | 5 | 10 | 25 | 50 | 75 | 150 | 300 | 600 | 900 |
(3) ЗОЛОТОЙ ТЕКСТ (A) указывает на требуемый суффикс катушки. Вставьте правильный суффикс катушки для ваших нужд, см. Таблицу суффиксов переменного тока.
(4) Номинальные значения рабочего предельного тока представляют собой максимальный действующий ток в амперах, который контроллеру разрешается выдерживать в течение продолжительных периодов при нормальной работе.При номинальных значениях рабочего предельного тока допускается превышение температурных значений, превышающих значения, полученные при испытании контроллера при его номинальном постоянном токе. Номинальный ток реле перегрузки или ток срабатывания других используемых устройств защиты двигателя не должен превышать номинальный рабочий предельный ток контроллера.
(5) Общий контроль. Для отдельного управления 120 В вставьте букву D в 7-ю позицию номера детали в списке. Пример: AN56VND0CB.
(6) NEMA Только размеры 00 и 0.
(7) NEMA Только размеры 00 и 0. Размеры 1–8 — только 24/60.
Отдельная обмотка — максимальная мощность — 60/50 Гц
(1)
Двухобмоточный AN700DN022
Цены на стартеры не включают обогреватели.
Выберите два блока (два реле перегрузки, по одному для каждой скорости). Выбор блока нагревателя.
(1) Если защитное устройство параллельной цепи составляет 45 А или больше, для защиты цепи в соответствии с NEC 530-072 может потребоваться комплект предохранителей C320FBR1.
(2) Только NEMA размеров 00 и 0. Размеры 1–5 только 24/60.
Повторно подключаемая обмотка
(1) — Максимальная мощность — 60/50 Гц
Однообмоточный AN700BN0218
Цены на стартеры не включают обогреватели.
Выберите два блока (два реле перегрузки, по одному для каждой скорости). Выбор пакета нагревателя.
(1) Если защитное устройство параллельной цепи составляет 45 А или больше, для защиты цепи в соответствии с NEC 530-072 может потребоваться комплект предохранителей C320FBR1.
(2) Только NEMA размеров 00 и 0. Размеры 1–5 только 24/60.
Катушка Вольт и Герц | Суффикс кода | Катушка Вольт и Герц | Суффикс кода | |
120/60 или 110/50 | А | 380-415 / 50 | л | |
240/60 или 220/50 | Б | 550/50 | N | |
480/60 или 440/50 | С | 24/60, 24/50 | т | |
600/60 или 550/50 | D | 24/50 | U | |
208/60 | E | 32/50 | В | |
277/60 | H | 48/60 | Вт | |
208-240 / 60 | Дж | 48/50 | Я | |
240/50 | К | 48/50 | Я |
Выбор блока нагревателя
Нагревательные блоки от h3001B до h3017B и от h3101B до h3117B должны использоваться только с реле перегрузки серии B с номерами деталей C306DN3B (арт.10-7016) и C306GN3B (номер детали 10-7020). Проушины нагрузки встроены в основание реле перегрузки, чтобы обеспечить возможность подключения проводки нагрузки до установки блока нагревателя. Нагреватель предыдущей конструкции имел встроенные проушины. Нагреватели серии B электрически эквивалентны обогревателям предыдущей конструкции. Подогреватели х3018-3 на х3024-3 не меняли.
NEMA-AN Тип | IEC-AE Тип | ||
Размер | серии | Размер | серии |
00-0 | С | A — F | С |
1-2 | Б | г — к | Б |
5 | Б | г — к | Б |
6 | С | г — к | Б |
7–8 | Б | г — к | Б |
(1) Серия стартера — это последняя цифра указанного номера детали.Пример: AN16DN0AB.
Пускатели
— однофазные нереверсивные, полное напряжение, биметаллические перегрузки
Размер 1 NEMA — BN15DN0AB
Описание продукта:
Однофазные магнитные пускатели полного напряжения подключают двигатель непосредственно к линии, позволяя ему потреблять полный пусковой ток во время пуска. Эти стартеры чаще всего используются для управления однофазными двигателями с самозапуском до 15 л.с. при 230 В.Они состоят из двухполюсного электромагнитного контактора, замыкающего и размыкающего силовую цепь двигателя, и реле перегрузки для обеспечения защиты от перегрузки во время работы. В таблице перечислены стартеры:
- Двухполюсный контактор серии Freedom с долгим сроком службы двойным разрывом, контактами из оксида кадмия серебра. Большой размер для низкого сопротивления и прохладной работы. Рассчитан на 3 миллиона электрических операций при максимальной мощности и 30 миллионов механических операций для размера 0, 10 миллионов операций для размера 2 и 6 миллионов операций для размера 3
- Трехполюсная перегрузка серии Freedom с последовательным соединением двух и трех полюсов для защиты двигателя от перегрузки.Эта перегрузка компенсируется окружающей средой, выбирается ручной или автоматический сброс, сменные нагреватели класса 10 или 20, возможность выбора коэффициента обслуживания 1,0 или 1,15, индикация отключения по перегрузке и электрически изолированные контакты NO-NC (нажмите кнопку RESET для проверки)
- Цепь удержания НО вспомогательный контакт входит в стандартную комплектацию. На типоразмере 00 контакт занимает 4-ю позицию полюса питания. Типоразмеры 0–3 имеют вспомогательную нормально разомкнутую цепь, установленную на правой стороне контактора
- Стальная монтажная пластина в стандартной комплектации для всех пускателей открытого типа.Проводка для отдельного или общего управления
.
Тип BN16 NEMA — реле перегрузки с ручным или автоматическим сбросом
BN16DM0AB
Номера деталей стартера не включают комплекты нагревателей. Выберите одну коробку из трех нагревателей. Выбор блока подогревателя.
(1) Для отдельной цепи управления 120 В. Для получения максимальной мощности при указанном напряжении двигателя используйте параметры других пускателей того же размера.
PowerControlProducts.book
% PDF-1.6
%
1 0 obj
>
эндобдж
5 0 obj
> / Шрифт >>> / Поля [] >>
эндобдж
2 0 obj
> поток
2017-02-28T22: 18: 57-05: 002017-02-28T22: 18: 57-05: 002017-02-28T22: 18: 57-05: 00FrameMaker 12.0.2application / pdf
uuid: ad4fa3cc-14c9-9941-a92c-2d79b765a936uuid: befd110c-34bb-e04c-961c-0349bca83521 Элементы Acrobat 11.0 (Windows)
конечный поток
эндобдж
6 0 obj
>
эндобдж
3 0 obj
>
эндобдж
11 0 объект
>
эндобдж
12 0 объект
>
эндобдж
13 0 объект
>
эндобдж
14 0 объект
>
эндобдж
15 0 объект
>
эндобдж
16 0 объект
>
эндобдж
43 0 объект
>
эндобдж
44 0 объект
>
эндобдж
45 0 объект
>
эндобдж
46 0 объект
>
эндобдж
47 0 объект
>
эндобдж
68 0 объект
>
эндобдж
69 0 объект
>
эндобдж
70 0 объект
>
эндобдж
71 0 объект
>
эндобдж
72 0 объект
>
эндобдж
99 0 объект
> поток
h [K60) A5mkc & ݫ 9 xPkUV]? | «K & b # e» 3H @ o% 7 yN%> B TNU-nxTV ܭ o * (‘Y | pU 릸 +6.]) ה-> gQ_p_ ᅯ u ~ w ~ [VVx t, o
380В 50 / 60Гц контактор переменного тока 12а Катушка реле стартера трехфазного двигателя Продажа
Способы доставки
Общее примерное время, необходимое для получения вашего заказа, показано ниже:
- Вы размещаете заказ
- (Время обработки)
- Отправляем Ваш заказ
- (время доставки)
- Доставка!
Общее расчетное время доставки
Общее время доставки рассчитывается с момента размещения вашего заказа до момента его доставки вам.Общее время доставки делится на время обработки и время доставки.
Время обработки: Время, необходимое для подготовки вашего товара (ов) к отправке с нашего склада. Это включает в себя подготовку ваших товаров, выполнение проверки качества и упаковку для отправки.
Время доставки: Время, в течение которого ваш товар (-ы) дойдет с нашего склада до пункта назначения.
Ниже приведены рекомендуемые способы доставки для вашей страны / региона:
Адрес доставки:
Корабль из
Этот склад не может быть доставлен к вам.
Способ (ы) доставки | Время доставки | Информация для отслеживания |
---|
Примечание:
(1) Вышеупомянутое время доставки относится к расчетному времени в рабочих днях, которое займет отгрузка после отправки заказа.
(2) Рабочие дни не включают субботу / воскресенье и праздничные дни.
(3) Эти оценки основаны на нормальных обстоятельствах и не являются гарантией сроков доставки.
(4) Мы не несем ответственности за сбои или задержки в доставке в результате любых форс-мажорных обстоятельств, таких как стихийное бедствие, плохая погода, война, таможенные проблемы и любые другие события, находящиеся вне нашего прямого контроля.
(5) Ускоренная доставка не может быть использована для почтовых ящиков
Расчетные налоги: Может взиматься налог на товары и услуги (GST).
Способы оплаты
Мы поддерживаем следующие способы оплаты.Нажмите, чтобы получить дополнительную информацию, если вы не знаете, как платить.
* В настоящее время мы предлагаем оплату наложенным платежом для Саудовской Аравии, Объединенных Арабских Эмиратов, Кувейта, Омана, Бахрейна, Катара, Таиланда, Сингапура, Малайзии, Филиппин, Индонезии, Вьетнама, Индии. Мы отправим код подтверждения на ваш мобильный телефон, чтобы проверить правильность ваших контактных данных. Убедитесь, что вы следуете всем инструкциям, содержащимся в сообщении.
* Оплата в рассрочку (кредитная карта) или Boleto Bancário доступна только для заказов с адресами доставки в Бразилии.
Таблица размеров пускателя двигателя для однофазных и трехфазных двигателей
Таблица размеров пускателя двигателя для однофазных и трехфазных двигателей
Таблица размеров стартера двигателя — Для однофазных и трехфазных двигателей |
Мотор стартеры |
СВЯЖИТЕСЬ С НАМИ ДЛЯ ПОМОЩИ ПО ТРЕБОВАНИЯМ ВАШЕГО СТАРТЕРА МОТОРА
МАКСИМАЛЬНАЯ МОЩНОСТЬ ОДНОФАЗНЫЕ ДВИГАТЕЛИ | ||
РАЗМЕР NEMA | 115 Вольт | 230 Вольт |
00 | 1/3 | 1 |
0 | 1 | 2 |
1 | 2 | 3 |
1 1/2 | 3 | 5 |
2 | 7 | |
3 | 7 1/2 | |
15 |
МАКСИМАЛЬНАЯ МОЩНОСТЬ ТРЕХФАЗНЫЕ ДВИГАТЕЛИ | ||||||||||||
Полное напряжение Начиная с | Автотрансформатор Начиная с | Деталь обмотки Начиная с | WYE — Дельта Начиная с | |||||||||
NEMA РАЗМЕР | 200 В | 230 В | 460В 575V | 200 В | 230 В | 460В 575V | 200 В | 230 В | 460В 575V | 200 В | 230 В | 460В 575V |
00 | 1.5 | 1,5 | 2 | – | – | – | – | – | – | – | – | – |
0 | 3 | 3 | 5 | – | – | – | – | – | – | – | – | – |
1 | 7.5 | 7,5 | 10 | 7,5 | 7,5 | 10 | 10 | 10 | 15 | 10 | 10 | 15 |
2 | 10 | 15 | 25 | 10 | 15 | 25 | 20 | 25 | 40 | 20 | 25 | 40 |
3 | 25 | 30 | 50 | 25 | 30 | 50 | 40 | 50 | 75 | 40 | 50 | 75 |
4 | 40 | 50 | 100 | 40 | 50 | 100 | 75 | 75 | 150 | 60 | 75 | 150 |
5 | 75 | 100 | 200 | 75 | 100 | 120 | 150 | 150 | 350 | 150 | 150 | 300 |
6 | 150 | 200 | 400 | 150 | 200 | 400 | – | 300 | 600 | 300 | 350 | 700 |
[Посетите наш сайт электронной торговли: www.