Схема подключение двигателя через конденсатор: Подключение электродвигателя 380В на 220В

Содержание

Схема подключения электродвигателя на 220в через конденсатор: рассчитываем необходимую емкость


Автор Aluarius На чтение 6 мин. Просмотров 11.7k. Опубликовано

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Что при этом получается?

  • Скорость вращения не изменяется.
  • Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Схемы подключения

Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:

  • Два контакта подсоединяются к сети.
  • Один через конденсатор к обмотке.

Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.

В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.

Как рассчитать емкость

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Соединение звездой:

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

  • Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
  • Низкая мощность двигателя, значит, емкость занижена.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Подключение пусковых конденсаторов к электродвигателю.

В одной из прошлых статей мы говорили о подборе рабочих
конденсаторов для работы  3 ф.(380 Вольт)
асинхронного электродвигателя от 1 ф. сети (220 Вольт). А именно о подборе рабочих
конденсаторов  по амперметру .
Спасибо Вам мои читатели за  множество
отзывов и благодарностей, ведь если бы не Вы 
уже давно бы забросил это дело.  В
одном из писем  присланных мне на почту
были вопросы: « Почему  не рассказал о
пусковых конденсаторах?», «Почему у меня не запускается двигатель, ведь я всё
сделал, как было написано».  А ведь
правда что не всегда хватает «рабочих» конденсаторов для пуска электродвигателя
под  нагрузкой, и возникает вопрос: «Что
же делать?». А вот что: «Нам нужны пусковые конденсаторы». А вот как их
подобрать правильно мы сейчас поговорим.

И так что мы имеем: 3 фазный электродвигатель, к которому на
основе прошлой статье  мы подобрали ёмкость рабочего конденсатора 60
мкФ. Для пускового конденсатора мы берем емкость в 2 — 2,5 раза больше чем
ёмкость рабочего конденсатора. Таким образом, нам понадобится конденсатор
ёмкостью 120 – 150 мкФ. При этом рабочее
напряжение этих конденсаторов должно быть в 1,5
раза больше напряжения сети. Сейчас у многих
возникает вопрос: « А почему не 300 мкФ или даже 1000 мкФ, ведь кашу маслом не
испортишь?». Но в не этом случае, всего должно быть в меру, при слишком большей
ёмкости пусковых конденсаторов  нечего
очень страшного не случиться, но эффективность пуска электродвигателя будет
хуже. Таким образом не стоит тратить лишние средства на покупку слишком большой
ёмкости.

Но какие, же конденсаторы нужны для пуска электродвигателя?

Если нам нужна небольшая ёмкость пускового конденсатора то
вполне подойдёт конденсаторы того же типа которые мы использовали для рабочих
конденсаторов.  Но если нам нужно
довольно таки  большая ёмкость? Для такой
цели не целесообразно использовать такой тип конденсаторов через их дороговизну
и размеры (при сборе большой батареи конденсаторов размеры её будут
велики).  Для таких целей нам служат
специальные пусковые (стартовые) конденсаторы, которые сейчас присутствуют в продаже,
в большом ассортименте.  Такие
конденсаторы встречаются разных форм и типов, но в их названиях присутствует
маркировка (надпись): «Start»,
«Starting»,  « Motor Start» или что-то в этом роде, все они служат для пуска
электродвигателя. Но для лучшей убедительности лучше спросить у продавца при
покупке, он всегда подскажет.

 

А вот сейчас Вы скажете: «А как же конденсаторы от старых
советских ч/б телевизоров, так называемые «электролиты»?»

Да что я Вам могу сказать по этому поводу. Я сам их не
использую, и Вам не рекомендую и даже отговариваю. Всё потому что их
использование в качестве пусковых конденсаторов не вполне безопасно. Потому что
они могут вздуваться или и того хуже взрываться. К тому же такой тип
конденсаторов со временем высыхает и теряет 
свою номинальную ёмкость, и мы не можем точно знать, какую именно мы
применяем в данный момент.

И так у нас есть электродвигатель, рабочий и пусковой
конденсатор. Как нам всё это подключить?

Для этого нам понадобится кнопка ПНВС.

  

Кнопка ПНВС (пускатель нажимной с пусковым контактом) имеет
три контакта: два крайних –   с фиксацией
и один посередине – без фиксации. Он и служит для включения пускового
конденсатора, а при прекращении нажатия на кнопку возвращается в исходное
положение (пусковой конденсатор «Сп» включается только во время пуска
двигателя, а рабочий конденсатор «Ср» постоянно находиться в работе), другие
два крайних контакта остаются включенными и отключаются при нажатии кнопки
«Стоп». Кнопку «Пуск» нужно удерживаться до тех пор, пока скорость вала не
достигнет максимальных оборотов, и только после её отпустить. Также не стоит
забывать, что конденсатор имеет свойство иметь заряд электрического тока, и Вы
можете попасть под поражения электрическим током. Что бы этого не случилось, по
окончанию работы  отключите
электродвигатель от сети, и включите на одну две секунды кнопку «Пуск», чтобы
конденсаторы могли разрядиться. Либо параллельно пусковому конденсатору
поставьте резистор около 100 килоом, чтобы конденсатор разряжался на него.

У нас с двигателя выходят три провода. Первый и третий  мы подключаем к двум крайним контактам кнопки.
Второй же провод мы подключаем к одному из контактов пускового конденсатора
«Сп», а второй контакт этого конденсатора к средней  клемме копки ПНВС. Ко второму и третьему
проводу, как показано на схеме, подключаем рабочий конденсатор  «Ср». 
С другой стороны кнопки два крайних контакта подключаем к сети, а к
среднему подключаем «перемычку» к контакту, к которому подключен рабочий
конденсатор «Ср».

Схематически это выглядит так:

вариант схемы с реверсом:

Удачи Вам в ваших экспериментах.

Схема Подключения Электродвигателя Через Конденсатор

Затем мотор работает как асинхронный двигатель на основной обмотке. Расчет емкости должен производиться с учетом номинальной мощности ЭД.

Найти требуемую емкость опытным путем — самое правильное решение.

Для запуска электромашины этого типа, может быть использован пусковой резистор. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока.
Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.

При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Подключается все просто, на толстые провода подается в. Они играют роль шунтов, однако действую не мгновенно.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Различные виды двигателей использовались для испытаний на пригодность выполнять функции генератора. В документации описаны способы подключения конденсаторов для реверсирования двигателя.

Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Подключение

Но тогда параметры элементов цепи, которые зависят от мощности и схемы соединения обмоток будет необходимо менять, что не очень удобно в эксплуатации. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. Подключение производится по этой схеме. Подключение трехфазного двигателя по схеме треугольник Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

Для возможности работы электродвигателя в однофазной сети вольт необходимо для начала его обмотки переключить на схему треугольник.

Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

Называют их конденсаторными.

Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности.
Подключение 3-фазного двигателя в сеть 220В через пусковой и рабочий конденсаторы

Навигация по записям

Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Заключение Асинхронники на В широко применяются в быту. В качестве основы для статора и ротора используется электротехническая сталь

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей.

Принцип схемы там очень прост — изменение направления тока в рабочей обмотке С1-С2. А они есть не у всех, даже у электриков. От однофазной сети трехфазные устройства работают с помощью емкостных или индуктивно-емкостных цепей, сдвигающих фазу. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.

Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Главную функцию берут на себя рабочие конденсаторы.

Принцип действия и схема запуска

Конденсаторы, которые находятся в цепи, могут быть заряжены. Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД. И во многих случаях электрооборудование приводится в движение трехфазными двигателями.

Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно Установка и подбор компонентов Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно распределительная коробка на корпусе электродвигателя. Сразу же заниматься расчетами схемы подключения не имеет смысла.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего. Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Подключается все просто, на толстые провода подается в.
подключение двигателя 380 на 220 вольт

Для чего нужен конденсатор

Например, если ток равен 1. Подключение трехфазного двигателя к однофазной сети Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть.

В качестве кнопки так же можно использовать обычный выключатель. Как правильно подобрать конденсаторы Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент.

Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. На какой из них разницы нет, направление вращения от этого не зависит.

Мы не будем изменять направление тока в той или иной обмотке. Трехфазные агрегаты на практике получили большее распространение, чем однофазные. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Еще по теме: Составление сметы и плана электромонтажных работ

Это тоже одна из разновидностей обмоток. При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Она всегда работает короткое время и служит для запуска двигателя. Напряжение на них может достигать больших значений.

Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Статор электродвигателя.

На этом все. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого. Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Были сделаны выводы, что скорость вращения ротора прибора, который используется в качестве генератора, не зависит от напряжения, которое подано на питающую однофазную сеть. Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе.
Как подключить электродвигатель на 220 вольт.

Подключение электродвигателя через конденсатор | Полезные статьи


Понравилось видео? Подписывайтесь на наш канал!

Бытовая техника часто комплектуется таким мотором, как электродвигатель серии АИРЕ. Он представляет собой однофазный силовой агрегат с короткозамкнутым ротором, заниженным пусковым моментом, небольшим КПД и маленькой перегрузочной способностью. Его характеристики существенно ниже, чем у трехфазных двигателей, поэтому любители самодельных станков и оборудования предпочитают использовать подключение электродвигателя через конденсатор к сети 220В. Оно позволяет применить трехфазный двигатель, включив его в обычную бытовую электросеть. Для этого используются пусковые конденсаторы для электродвигателей, включающиеся на период пуска для компенсации обратной составляющей электромагнитного поля. Они имеют небольшие габариты, поэтому следует внимательно отнестись к выбору конденсатора. Определенный состав рабочего электролита, материала прокладки позволит добиться минимального значения тангенса угла потерь и последовательного сопротивления.

Схемы подключения электродвигателя с помощью конденсатора

Трехфазные двигатели отличаются разнообразием вариантов соединения обмоток, поэтому схемы подключения отличаются друг от друга. Самая простоя из них содержит один конденсатор, через который подключаются все обмотки, за исключением фазы двигателя, которая запитывается непосредственно от однофазной сети. В результате фаза сдвигается на +90 градусов, в том случае, если используется катушка индуктивности, то сдвиг происходит на -90 градусов. При этом существует риск, что магнитное поле станет эллиптическим. Чтобы этого не произошло, в схему включается проволочный переменный резистор, подключающийся последовательно к конденсатору. Наиболее популярная схема подключения конденсатора к двигателю – «треугольник», но при ее использовании мощность мотора будет всего 70-755 от номинальной. Поэтому при необходимости приблизить параметры мощности к номинальной применяется схема «звезда», при которой две фазные обмотки подключаются в сеть, а третья через конденсатор к одному из проводов электросети. Выбор конденсатора для электродвигателяОсуществляя подключение электродвигателя через конденсатор, стоит помнить, что на нем напряжение может быть существенно выше напряжения электросети. Действующие нормативы говорят о том, что конденсатор должен выдерживать не менее 20-30 пусков в минуту. Каждый из них должен длиться не менее 2-3 секунд, при этом не допускается никаких перегревов. Как подобрать конденсатор для электродвигателя определенной мощности? Главное, что необходимо учесть, это емкость. Она рассчитывается по довольно простой формуле и равна произведению номинальной мощности электродвигателя на коэффициент, равный 66. зависит емкость от следующих параметров:

  • толщина слоя используемого диэлектрика;
  • площадь обкладки;
  • диэлектрической проницаемости применяемого диэлектрика.

Элементарный расчет демонстрирует, что на каждые 100 Вт мощности потребуется 7 мкФ емкости. Если трехфазный двигатель имеет мощность в 2 кВт, то емкость конденсатора должна равняться 140 мкФ. Можно использовать несколько, параллельно соединенных конденсаторов, способных в итоге обеспечить необходимую суммарную емкость. Размер этого параметра есть на корпусе каждого конденсатора, он закодирован: М1 обозначает, что емкость конденсатора равна 0,1 мкФ. Рабочее напряжение конденсатора не должно превышать напряжение сети более чем в полтора раза. В том случае, когда двигатель запускается под нагрузкой, следует учитывать пусковой момент.

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Содержание статьи

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Как подключить конденсатор к электродвигателю

Асинхронные двигатели получили широкое применение, потому что они малошумны и легки в эксплуатации. Особенно это касается трехфазных короткозамкнутых асинхронников с их прочной конструкцией и неприхотливостью.

Основным условием для преобразования электрической энергии в механическую является факт наличия вращающегося магнитного поля. Для формирования такого поля требуется трехфазная сеть, при этом электрообмотки должны быть смещенными между собой на 1200. Благодаря вращающемуся полю система начнёт работать. Однако бытовая техника, как правило, используется в домах, имеющих лишь однофазную сеть 220 В.

Почему применяется запуск двигателя 220 В через конденсатор?

Для начала определимся с терминологией. Конденсатор (лат. condensatio — «накопление») – это электронный компонент, хранящий электрический заряд и состоящий из двух близкорасположенных проводников (обычно пластин), разделенных диэлектрическим материалом. Пластины накапливают электрический заряд от источника питания. Одна из них накапливает положительный заряд, а другая – отрицательный.

Емкость – это количество электрического заряда, которое хранится в электролите при напряжении 1 Вольт. Емкость измеряется в единицах Фарад (Ф).

Метод подключения двигателя через конденсатор – этот способ применяют для достижения мягкого пуска агрегата. На статоре однофазного движка с короткозамкнутым ротором размещают дополнительно к основной электрообмотке ещё одну. Две обмотки соотнесены между собой на угол 900. Одна из них является рабочей, её предназначение заставить работать мотор от сети 220 В, другая – вспомогательная, нужна для запуска.

Рассмотрим схемы подключения конденсаторов:

  • с выключателем,
  • напрямую, без выключателя;
  • параллельное включение двух электролитов.

1 вариант

К обмотке асинхронника подсоединяется фазосдвигающий конденсатор. Подключение осуществляется в однофазную сеть 220 В по специальной схеме.

Здесь видно, что электрообмотка прямо подключена к линии питания 220 В, вспомогательная соединена последовательно с конденсатором и выключателем. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.

Коммутационный аппарат настроен так, чтобы оставаться закрытым и поддерживать вспомогательную обмотку в эксплуатации до тех пор, пока мотор запускается и разгоняется примерно до 80% от полной нагрузки. На такой скорости, выключатель размыкается, отключая цепь вспомогательной обмотки от источника питания. Затем мотор работает как асинхронный двигатель на основной обмотке.

2 вариант

Схема идентична конденсаторному мотору, но без выключателя. Пусковой момент составляет только 20–30% от полной нагрузки крутящего момента.

Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Возможны различные модификации схем с предварительным расчетом необходимой емкости конденсатора для подсоединения к двигателю 220 В.

Стоит отметить, что обеспечение лучших характеристик нужно при изменении нагрузки мотора. Увеличение емкости ведёт к уменьшению сопротивления в цепи переменного тока. Правда замена емкости электролита несколько усложняет схему.

3 вариант

Схема подключения двух электролитов, подсоединенных параллельно к мотору, приведена ниже. При параллельном соединении общая ёмкость равна сумме емкостей всех подключенных электролитов.

Cs – это пусковой конденсатор. Величина емкостного реактивного сопротивления Х тем меньше, чем больше ёмкость электролита. Она рассчитывается по формуле:

хс = 1/2nfCs.

При этом следует учитывать, что на 1 кВт приходится 0,8 мкФ рабочей емкости, а для пусковой емкости потребуется больше в 2,5 раза. Перед подключением к движку следует «прогнать» конденсатор через мультиметр. Подбирая детали нужно помнить, что пусковой кондер должен быть на напряжение 380 В.

Для управления пусковыми токами (контролем и ограничением их величины) используют преобразователь частоты. Такая схема подключения обеспечивает тихий и плавный ход электродвигателя. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. д. Машины такого типа имеют более высокий КПД и производительность, чем их аналоги, работающие лишь на основной электрообмотке.

Методы подключения трёхфазного электродвигателя

Попытка приспособить некоторое оборудование встречает определённые трудности, так как трёхфазные асинхронники большей частью подключаться должны к 380 В. А в доме у всех сеть на 220 В. Но подключить трёхфазный движок к однофазной сети – это вполне выполнимая задача.

  1. Включение трехфазного асинхронного мотора.
  1. Подключения трехфазного движка к 220 В, с реверсом и кнопкой управления.
  1. Соединение обмоток трехфазного мотора и запуск как однофазного.
  1. Другие возможные способы соединений трёхфазных электродвигателей.

Заключение

Асинхронники на 220 В широко применяются в быту. Исходя из требуемой задачи, существуют различные методы подключения однофазного и трёхфазного мотора через конденсатор: для обеспечения плавного пуска либо улучшения рабочих характеристик. Всегда можно самому легко добиться нужного эффекта.

Как подключить однофазный электродвигатель через конденсатор

В технике нередко используются двигатели асинхронного типа. Такие агрегаты отличаются простотой, хорошими характеристиками, малым уровнем шума, легкостью эксплуатации. Для того, чтобы асинхронный двигатель вращался, необходимо наличие вращающегося магнитного поля.

Такое поле легко создается при наличии трехфазной сети. В этом случае в статоре двигателя достаточно расположить три обмотки, размещенные под углом 120 градусов друг от друга и подключить к ним соответствующее напряжение. И круговое вращающееся поле начнет вращать статор.

Однако бытовые приборы обычно используются в домах, в которых чаще всего имеется только однофазная электрическая сеть. В этом случае обычно применяются однофазные двигатели асинхронного типа.

Почему применяют запуск однофазного двигателя через конденсатор?

Если на статоре двигателя поместить одну обмотку, то при протекании переменного синусоидального тока в ней образуется пульсирующее магнитное поле. Но это поле не сможет заставить ротор вращаться. Чтобы запустить двигатель надо:

  • на статоре разместить дополнительную обмотку под углом около 90° относительно рабочей обмотки;
  • последовательно с дополнительной обмоткой включить фазосдвигающий элемент, например, конденсатор.

В этом случае в двигателе возникнет круговое магнитное поле, а в короткозамкнутом роторе возникнут токи.
Взаимодействие токов и поля статора приведет к вращению ротора. Стоит напомнить, что для регулировки пусковых токов — контроль и ограничение их величины — используют частотный преобразователь для асинхронных двигателей.

Варианты схем включения — какой метод выбрать?

В зависимости от способа подключения конденсатора к двигателю различают такие схемы с:

  • пусковым,
  • рабочим,
  • пусковым и рабочим конденсаторами.

Наиболее распространенной методом является схема с пусковым конденсатором.

В этом случае конденсатор и пусковая обмотка включаются только на момент старта двигателя. Это связано со свойством продолжения агрегатом своего вращения даже после отключения дополнительной обмотки. Для такого включения чаще всего используется кнопка или реле.

Поскольку пуск однофазного двигателя с конденсатором происходит довольно быстро, то дополнительная обмотка работает небольшое время. Это позволяет для экономии выполнять ее из провода с меньшим сечением, нежели основная обмотка. Для предупреждения перегрева дополнительной обмотки в схему часто добавляют центробежный выключатель или термореле. Эти устройства отключают её при наборе двигателем определенной скорости или при сильном нагреве.

Схема с пусковым конденсатором имеет хорошие пусковые характеристики двигателя. Но рабочие характеристики при таком включении ухудшаются.
Это связано с принципом работы асинхронного двигателя, когда вращающееся поле является не круговым, а эллиптическим. В результате этого искажения поля возрастают потери и падает КПД.

Есть несколько вариантов подключения асинхронных двигателей под рабочее напряжение. Соединение звездой и треугольником (а также комбинированный способ) имеют свои преимущества и недостатки. Выбранный метод включения влияет на пусковые характеристики агрегата и его рабочую мощность.

Принцип действия магнитного пускателя основан на возникновении магнитного поля при прохождении электричества через втягивающую катушку. Подробнее об управлении двигателем с реверсированием и без читайте в отдельной статье.

Более хорошие рабочие характеристики можно получить при использовании схемы с рабочим конденсатором.

В этой схеме конденсатор после запуска двигателя не отключается. Правильным подбором конденсатора для однофазного двигателя можно компенсировать искажение поля и повысить КПД агрегата. Но для такой схемы ухудшаются пусковые характеристики. Необходимо также учитывать, что выбор величины емкости конденсатора для однофазного двигателя производится под определенный ток нагрузки.
При изменении тока относительно расчетного значения поле будет переходить от круговой к эллиптической форме и характеристики агрегата ухудшатся. В принципе, для обеспечения хороших характеристик необходимо при изменении нагрузки двигателя менять величину емкости конденсатора. Но это может слишком усложнить схему включения.

Компромиссным решением является выбор схемы с пусковым и рабочим конденсаторами. Для такой схемы рабочие и пусковые характеристики будут средними по сравнению с рассмотренными ранее схемами.

В общем, если при подключении однофазного двигателя через конденсатор требуется большой пусковой момент, то выбирается схема с пусковым элементом, а при отсутствии такой необходимости – с рабочим.

Подключение конденсаторов для запуска однофазных электродвигателей

Перед подключением к двигателю можно проверить конденсатор мультиметром на работоспособность.

При выборе схемы у пользователя всегда есть возможность выбрать именно ту схему, которая ему подходит. Обычно все выводы обмоток и выводы конденсаторов выведены в клеммную коробку двигателя.

Чтобы установить скрытую проводку в деревянном доме, необходимо кроме обладания определенными знаниями оценить все плюсы и минусы данного вида энергоснабжения помещений.

Наличие трехжильной проводки в частном доме предполагает использование системы заземления, которую можно сделать своими руками. Как заменить электропроводку в квартире по типовым схемам, можно узнать здесь.

При необходимости модернизировать схему или самостоятельно сделать расчет конденсатора для однофазного двигателя можно, исходя из того, что на каждый киловатт мощности агрегата требуется емкость в 0,7 — 0,8 мкФ для рабочего типа и в два с половиной раза большая емкость для пускового. При выборе конденсатора необходимо учитывать, что пусковой должен иметь рабочее напряжение не меньше 400 В.
Это связано с тем, что при пуске и остановке двигателя в электрической цепи из-за наличия ЭДС самоиндукции возникает всплеск напряжения, достигающий 300-600 В.

Выводы:

  1. Однофазный асинхронный двигатель широко используется в бытовых приборах.
  2. Для запуска такого агрегата необходима дополнительная (пусковая) обмотка и фазосдвигающий элемент — конденсатор.
  3. Существуют различные схемы подключения однофазного электродвигателя через конденсатор.
  4. Если надо иметь больший пусковой момент, то используется схема с пусковым конденсатором, при необходимости получения хороших рабочих характеристик двигателя используется схема с рабочим конденсатором.

Подробное видео о том, как подключить однофазный двигатель через конденсатор

Как конденсатор работает в цепи двигателя переменного тока 120 В?

Пытаться запустить однофазный двигатель только с одной обмоткой — все равно что пытаться запустить велосипед только с одной педалью. Все в порядке, если у вас все получится, но пытаться получить правильное направление старта и начинать с верхней или нижней мертвой точки неудобно.

смоделировать эту схему — Схема создана с помощью CircuitLab

Асинхронный двигатель с квадратным ротором, поскольку в редакторе схем нет инструмента круга.

Однофазный асинхронный двигатель аналогичен. Чтобы решить эту проблему, к двигателю добавляется вспомогательная, обычно более слабая, обмотка, которая смещена от основной обмотки, скажем, на 30 °. Конденсатор включен последовательно с этой катушкой, и он вызывает сдвиг фазы тока во вспомогательной обмотке относительно фазы основной обмотки. В результате магнитное поле в одной обмотке ведет к другой, и это сообщает ротору вращающую силу, достаточную для:

  • получить его для запуска.
  • старт в правильном направлении.

Некоторые двигатели оснащены центробежным переключателем, который отключает вспомогательную обмотку, когда двигатель превышает определенную скорость, поскольку она больше не требуется. Это экономит немного энергии и снижает нагрев двигателя.

Что такое ток конденсатора

Но не могли бы вы прояснить мне эту часть? Когда крышка полностью
заряжается, когда 120v пересекает ноль, что происходит с накопленным отрицательным
зарядка на насыщенной крышке крышки? Пульсирует ли он вверх по потоку от
предыдущий поток напряжения или он просто там сидит? — Скотт

Обычно мы узнаем о конденсаторах в цепях постоянного тока, где легко визуализировать заряд конденсатора, а затем его разрядку, а напряжение конденсатора следует кривой заряда / разряда RC.Обычно в этих сценариях подаваемое напряжение не меняется выше и ниже нуля вольт. Такой образ мышления не очень помогает нам при анализе цепей переменного тока.

Снова рассмотрим пусковую обмотку. Для простоты мы проигнорируем индуктивность обеих обмоток и будем рассматривать их как резисторы. Используя нашу простую модель:

  • Ток в главной обмотке будет соответствовать напряжению L-N и будет синфазным с ним.
  • Нам нужен фазовый сдвиг тока в ветви L2-C1 для генерации вращения.

Ток конденсатора определяется правилом \ $ I = \ frac {dQ} {dt} \ $, где Q — заряд. Это просто говорит нам о том, что ток будет наибольшим, когда скорость движения заряда наибольшая. Заряд конденсатора определяется как \ $ Q = C \ cdot V \ $, и объединяя их, мы получаем \ $ I = C \ frac {dV} {dt} \ $. Все, что мы здесь говорим, это то, что ток конденсатора пропорционален скорости изменения напряжения .

смоделировать эту схему

Упрощение : Мы снова игнорируем индуктивность и рассматриваем обмотки как резисторы с низким сопротивлением (относительно импеданса конденсатора).

При 270 ° напряжение (красный) максимально отрицательное. Конденсатор заряжен полностью отрицательно, и, поскольку напряжение перестало падать (становиться отрицательным), ток упал до нуля (синяя кривая находится на нуле).

От 270 ° до 0 ° напряжение будет увеличиваться. Скорость изменения будет становиться все быстрее и быстрее по мере приближения к нулю. По этой причине ток будет увеличиваться от нуля до максимального тока при 0 °.

При 0 ° конденсатор полностью разряжен, но скорость изменения напряжения самая высокая (самая крутая на кривой).Это зарядит конденсатор, и, поскольку скорость заряда — ток — пропорциональна скорости изменения напряжения, ток здесь достигает максимума.

Для следующего от 0 ° до 90 ° скорость изменения напряжения уменьшается, и ток уменьшается до нуля.

Тот же рисунок повторяется, но в противоположных направлениях на следующие 180 °.


Примечания:

  • При таком расположении формы сигналов напряжения и тока всегда синусоидальны.Нет внезапных зарядов / разрядов или скачков напряжения или тока.
  • Единственная «бесконечная пауза» — это когда напряжение или ток меняют направление. Это не более чем пауза, чем когда поршень двигателя достигает максимума хода. Скорость = 0 на мгновение, но в этот момент ускорение самое высокое (если я правильно думаю).
  • То, что входит в провод под напряжением / под напряжением на этой ножке, должно выходить на нейтраль на этой ножке.
  • C1, и коммутатор может работать с любой стороны от L2.

Что такое конденсаторный пусковой конденсаторный двигатель? — его фазовая диаграмма и характеристики

Конденсаторный пусковой конденсаторный двигатель имеет ротор с сепаратором, а его статор имеет две обмотки, известные как основная и вспомогательная обмотки. Две обмотки смещены в пространстве на 90 градусов. В этом методе используются два конденсатора, один из которых используется во время пуска и известен как пусковой конденсатор. Другой используется для непрерывной работы двигателя и известен как RUN конденсатор.

Итак, этот двигатель называется Capacitor Start Capacitor Run Motor. Этот двигатель также известен как двухзначный конденсаторный двигатель. Схема подключения двухклапанного конденсаторного двигателя показана ниже

.

В этом двигателе есть два конденсатора, представленные C S и C R . При запуске два конденсатора подключаются параллельно. Конденсатор Cs — это пусковой конденсатор с кратковременным номиналом. Это почти электролитический. Для получения пускового момента требуется большой ток id.Следовательно, значение емкостного реактивного сопротивления X в пусковой обмотке должно быть низким. Поскольку, X A = 1 / 2πfC A , емкость пускового конденсатора должна быть большой.

Номинальный сетевой ток меньше пускового тока при нормальном рабочем состоянии двигателя. Следовательно, значение емкостного реактивного сопротивления должно быть большим. Поскольку, X R = 1 / 2πfC R, , значение рабочего конденсатора должно быть небольшим

Когда двигатель достигает синхронной скорости, пусковой конденсатор Cs отключается от цепи центробежным переключателем Sc.Конденсатор C R постоянно включен в цепь, поэтому он известен как RUN Capacitor. Рабочий конденсатор рассчитан на длительный срок службы и изготовлен из маслонаполненной бумаги.

На рисунке ниже показана диаграмма Phasor конденсаторного пускового конденсаторного рабочего двигателя.

На рис (а) показана векторная диаграмма, когда при пуске оба конденсатора находятся в цепи и ϕ> 90⁰. Рис (b) показывает вектор, когда пусковой конденсатор отключен, и ϕ становится равным 90 °.

Характеристика крутящего момента и скорости двухзначного конденсаторного двигателя показана ниже.

Этот тип двигателя бесшумный и плавный. Они имеют более высокий КПД, чем двигатели, работающие только на основных обмотках. Они используются для нагрузок с более высоким моментом инерции, требующих частых запусков, когда максимальный крутящий момент отрыва и требуемый КПД выше. Двухзначные конденсаторные двигатели используются в насосном оборудовании, холодильном оборудовании, воздушных компрессорах и т. Д.

Что делает конденсатор?

Для электродвигателя переменного тока с постоянным разделением конденсаторов (также известного как электродвигатели переменного тока пускового и пускового конденсатора) для правильной работы требуется конденсатор. Выпейте чашечку кофе, и мы объясним, почему.

Простой эксперимент …

Чтобы показать, насколько важен конденсатор, мы можем начать с простого эксперимента. Используйте однофазный двигатель переменного тока с постоянным разделенным конденсатором и подключите его подводящие провода непосредственно к однофазному источнику питания (без конденсатора).Скорее всего, двигатель не будет работать с нагрузкой, если вал не будет вращаться под действием внешней силы (это намного проще с двигателем с выключенным круглым валом). Это потому, что нам нужны как минимум две фазы для создания вращающегося магнитного поля в статоре. Здесь и вступает в силу конденсатор.

Что делает конденсатор?

Первоначально называемый «конденсатором», конденсатор представляет собой пассивный электронный компонент, который содержит по крайней мере два проводника (пластины), разделенные изолятором (диэлектриком).Проводники могут быть тонкими пленками из металла, алюминиевой фольги или дисков. Изолятор может быть стеклянным, керамическим, полиэтиленовым, воздушным или бумажным. При подключении к источнику напряжения конденсатор сохраняет электрический заряд в виде электростатического поля между своими проводниками.
По сравнению с батареей, батарея использует химические вещества для хранения электрического заряда и медленно разряжает его через цепь. На это могут уйти годы. Конденсатор выделяет свою энергию гораздо быстрее — за секунды или меньше.Типичный пример применения — вспышка вашей камеры.

ВНИМАНИЕ: Поскольку конденсатор держит электрический заряд, никогда не касайтесь его клемм. Если по какой-то причине это необходимо, убедитесь, что электрический заряд полностью разряжен.

Для чего нужен конденсатор для двигателей?

Конденсатор предназначен для создания многофазного источника питания от однофазного источника питания.При многофазном питании двигатель может:

1. Установите направление вращения.
2. Обеспечьте пусковой момент двигателя и увеличивайте крутящий момент во время работы.

Все двигатели переменного тока компании

Oriental Motor представляют собой двигатели с постоянным разделением конденсаторов (конденсаторный пуск и работа). Эти двигатели содержат основную обмотку и вторичную вспомогательную обмотку. Конденсатор включен последовательно со вспомогательной обмоткой, и это приводит к тому, что ток во вспомогательной обмотке отстает по фазе с током в основной обмотке на 90 электрических градусов (четверть всего цикла).Теперь мы создали многофазный блок питания от однофазного блока питания.

Без конденсатора С конденсатором

Какой конденсатор используется в двигателе Oriental Motor?

В

Oriental Motor используются конденсаторы с электродами для осаждения из паровой фазы, признанные UL. В конденсаторах этого типа в качестве элемента используется металлизированная бумага или пластиковая пленка. Этот конденсатор также известен как «самовосстанавливающийся (SH) конденсатор».Хотя в большинстве предыдущих конденсаторов использовались бумажные элементы, в последние годы пластиковый пленочный конденсатор стал широко распространенным благодаря своей компактной конструкции.

Номинальное время проводимости

Номинальное время проводимости — это минимальный расчетный срок службы конденсатора при работе при номинальной нагрузке, номинальном напряжении, номинальной температуре и номинальной частоте. Стандартный срок службы — 40 000 часов. Конденсатор, который ломается в конце срока службы, может задымиться или загореться. Мы рекомендуем заменять конденсатор по истечении расчетного времени проводимости, чтобы избежать потенциальных проблем.

Функция безопасности конденсатора

Некоторые конденсаторы оснащены функцией безопасности, которая позволяет безопасно и полностью удалить конденсатор из цепей для предотвращения дыма и / или возгорания в случае пробоя диэлектрика. В продукции Oriental Motor используются конденсаторы с признанными UL функциями безопасности, которые прошли проверку на ток короткого замыкания UL 810 по стандарту UL 810.

Как оцениваются конденсаторы и почему это важно?

Конденсаторы

имеют номинальную емкость, рабочее напряжение, допуск, ток утечки, рабочую температуру и эквивалентное последовательное сопротивление…так далее. Для согласования двигателя двумя наиболее важными характеристиками являются емкость и рабочее напряжение. Номинальное напряжение обычно примерно в два раза превышает значение номинального входного напряжения двигателя в вольтах (на самом деле есть формула для определения емкости двигателя, но мы сохраним ее на потом). Для наших компактных двигателей переменного тока единицей измерения емкости является «микрофарада» или мкФ. Эти характеристики указаны как на этикетке двигателя, так и на этикетке конденсатора.

Этикетка двигателя с рекомендованным конденсатором Этикетка конденсатора

Использование конденсатора с другой емкостью может увеличить вибрацию двигателя, тепловыделение, потребление энергии, изменение крутящего момента и нестабильную работу.Если емкость слишком велика, крутящий момент двигателя увеличится, но может возникнуть перегрев и чрезмерная вибрация. Если емкость слишком мала, крутящий момент упадет. Использование конденсатора, напряжение которого превышает номинальное, может привести к повреждению, а конденсатор может задымиться или воспламениться.

Нужен ли мне правильный конденсатор для двигателей переменного тока Oriental Motor?

Нет. Каждый однофазный двигатель переменного тока от Oriental Motor включает в себя специальный конденсатор, размер которого рассчитан на работу двигателя с максимальной эффективностью и производительностью.Подбор конденсаторов не требуется.

Что произойдет, если я использую другой конденсатор?

Чтобы двигатель работал с максимальной эффективностью, всегда используйте специальный конденсатор, входящий в комплект поставки двигателя. Выделенный конденсатор создает электрический фазовый сдвиг на 90 от вспомогательной (конденсаторной) фазы к основной фазе. Использование неподходящего конденсатора может сместить это значение в сторону от 90 градусов, и в результате неэффективность может привести к перегреву двигателя с непостоянными характеристиками крутящего момента или скорости.

Размер специального конденсатора рассчитан таким образом, чтобы двигатель создавал идеальную кривую крутящего момента / скорости. Обратите внимание на «Номинальная скорость» и «Номинальный крутящий момент». В этой рабочей точке (где эти две точки пересекаются на кривой) достигается наибольшая эффективность. Каждый двигатель рассчитан на номинальную нагрузку. Вот почему увеличение номинала — не лучший способ подобрать двигатели переменного тока.

Разница в емкости конденсатора повлияет как на номинальную скорость, так и на номинальный крутящий момент, поскольку рабочая точка смещается от максимальной эффективности.Если вы используете два одинаковых двигателя с совершенно разными конденсаторами, вы получите совершенно разные результаты.

При потере максимальной эффективности увеличивается тепловыделение двигателя. Избыточный нагрев может привести к ухудшению качества смазки подшипников и сокращению срока службы двигателя. Однако полезно знать, что если температура обмотки достигает 130 ° F, цепь тепловой защиты внутри двигателя срабатывает и отключает двигатель до тех пор, пока он не остынет.

Как подключить конденсатор?

Для 3-проводного двигателя переменного тока подключите красный и белый провода к противоположным клеммам конденсатора.Подключите черный провод к стороне N (нейтраль) источника питания. Для однонаправленной работы просто подключите L (под напряжением) сторону источника питания к клеммной коробке либо к красному проводнику (по часовой стрелке), либо к белому проводу (против часовой стрелки), чтобы начать вращение. УКАЗАНИЕ: 2 ближайших терминала соединены внутри. Для двунаправленной работы используйте однополюсный двухпозиционный переключатель (SPDT) между проводом под напряжением и клеммами конденсатора для переключения направления.

Однако для переключения направления асинхронного двигателя необходимо дождаться полной остановки двигателя.Для реверсивных двигателей направление может быть переключено мгновенно.

Теперь, когда вы знаете важность конденсаторов, не упускайте их. В этом случае используйте этикетку двигателя, чтобы определить подходящий конденсатор. Следите за новостями, чтобы получить больше советов по устранению неполадок.

Конденсаторный двигатель — обзор

Тесты конденсаторов двигателя

Помимо содержания конденсаторов в чистоте, они требуют незначительного или не требуют профилактического обслуживания.Не допускать попадания пыли, грязи, жира, масла. или любые металлические частицы, собирающиеся между выводами. Это может привести к пробою изоляции между выводами и возникновению дуги. Содержите корпуса в чистоте, чтобы тепло, выделяемое конденсаторами, могло передаваться в окружающий воздух. Большинство конденсаторов двигателей имеют срок службы около 60 000 часов при непрерывной работе при номинальном напряжении и температурах не выше 70 ° C.

Конденсаторы необходимо время от времени наблюдать и проверять в рамках программы планового технического обслуживания.Помните, что конденсатор может сохранять свой заряд даже после отключения питания от цепи. Перед работой с конденсаторами обязательно разряжайте конденсаторы заземляющим стержнем.

Обратите внимание на работу двигателя. Если двигатель набирает обороты, развивает нормальный крутящий момент и работает на скорости, конденсатор, вероятно, в порядке. В противном случае указывается дальнейшая проверка состояния конденсатора.

Осмотрите конденсатор на предмет вздутия корпуса или утечки электролита. Если существует какая-либо из этих проблем, замените конденсатор.

Проверьте конденсатор на короткое замыкание с помощью омметра. Перед подключением измерителя убедитесь, что конденсатор разряжен. Конденсатор может хранить достаточно энергии, чтобы разрушить счетчик.

Установите омметр на максимальное значение. Подключите провода к конденсатору. На обычном конденсаторе измеритель будет отклоняться вверх по шкале и быстро вернется к очень большому оммическому значению. Если конденсатор показывает ноль Ом или очень низкое значение сопротивления, это плохо. Замени это. Полномасштабное показание стандартного омметра составляет 0 Ом (рисунок 10-49).

РИСУНОК 10-49. Проверка конденсатора на короткое замыкание и обрыв с помощью омметра.

Если конденсатор не может отклоняться вверх по шкале, когда омметр установлен на высокий множитель, вероятно, конденсатор открыт. Замени это. С очень маленькими конденсаторами [пикофарады (пФ)] вы можете не получить прогиб. Это нормально. Однако все конденсаторы, используемые с двигателями, намного больше. Если вы повторите тест из-за того, что не наблюдаете за измерителем внимательно, обязательно разрядите конденсатор. Он будет заряжаться до потенциала напряжения батареи счетчика.

Ни один из этих тестов не является абсолютным из-за низкого напряжения, подаваемого омметром. Короткий тест может показать, что конденсатор исправен, но при подаче сетевого напряжения переменного тока происходит большая утечка тока. Кроме того, тест омметром не скажет вам, изменилось ли значение конденсатора.

На рынке имеются коммерческие тестеры конденсаторов Эти тестеры позволяют проводить испытания конденсатора номинальным напряжением при измерении его утечки по току. Кроме того, в этих приборах используется конденсаторная мостовая схема, которая позволяет определять значение конденсатора в фарадах.Когда этот тип устройства станет доступен, научитесь его использовать. В большинстве случаев у вас не будет устройства для проверки конденсаторов, поэтому необходим другой метод.

Настройте схему, как показано на Рисунке 10-50. Рекомендуется установить предохранитель в цепи в случае, если максимальное сопротивление в цепи отсутствует, когда она находится под напряжением, и конденсатор находится в закороченном состоянии.

РИСУНОК 10-50. Схема проверки конденсаторов.

Во время проверки отключите конденсатор от цепи двигателя.Большинство производителей двигателей используют коричневые изолированные проводники для подключения конденсатора к цепи. Один из коричневых проводов может иметь индикаторный цвет по всей длине. Перед подачей питания установите реостат так, чтобы в цепи было максимальное сопротивление.

Если ток, протекающий через конденсатор, и напряжение на нем известны, значение емкости в микрофарадах можно рассчитать по формуле

C = IK / V

K — константа, равная

K = 1 / (2πF × 10−6) = 1 000 0006.28 × 60

Для 60 герц K равно 2650. Эта константа выводится из формулы емкостного реактивного сопротивления. Значение K будет меняться с изменением частоты.

Предполагая 120 В переменного тока на конденсаторе и ток 2 ампера, как показано на рисунке 10-50, емкость конденсатора будет равна

C = (2 A × 2650) / 120 В = 44,16 мкФ

Большинство конденсаторов двигателя иметь допуск 20%. Если экспериментальное значение конденсатора в фарадах не находится в пределах 20% от его номинального значения, замените конденсатор.Допустимый диапазон емкости конденсатора в этом примере составляет плюс-минус 9 мкФ или от 36 до 54 мкФ.

Схемы однофазных электродвигателей

Уважаемый г-н электрик: Где я могу найти схемы подключения однофазного электродвигателя?

Ответ: Я собрал группу схем подключения однофазных внутренних электродвигателей и клеммных соединений, приведенных ниже. Внизу поста также видео о шунтирующих двигателях постоянного тока.ПРИМЕЧАНИЕ. Некоторые текстовые ссылки ниже ведут к соответствующим продуктам на Amazon и EBay.

Клеммы вращения двигателя — одно напряжение

ВРАЩЕНИЕ L1 L2
По часовой стрелке 1,5 4,8
Против часовой стрелки 1,8 4,5

Вращение двигателя — двойное напряжение, только основная обмотка

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1 4, 5 2 и 3 и 8
Высокая CW 1 4, 8 2 и 3 и 5
Низкая Против часовой стрелки 1, 3, 8 2, 4, 5
Низкая CW 1, 3, 5 2, 4, 8

Вращение двигателя — двойное напряжение, основная и вспомогательная обмотки

НАПРЯЖЕНИЕ ВРАЩЕНИЕ L1 L2 СОЕДИНЕНИЕ
Высокая Против часовой стрелки 1, 8 4, 5 2 и 3, 6 и 7
Высокая CW 1, 5 4, 8 2 и 3, 6 и 7
Низкая Против часовой стрелки 1, 3, 6, 8 2, 4, 5, 7
Низкая CW 1, 3, 5, 7 2, 4, 6, 8

Подключения переключателя вспомогательной обмотки должны быть выполнены таким образом, чтобы обе вспомогательные обмотки были обесточены при размыкании переключателя.

СХЕМА ЭЛЕКТРОДВИГАТЕЛЯ

Внутренние электрические схемы электродвигателей малой и малой мощности

Индукция с разделенной фазой
Постоянно подключенный конденсатор с разделенной фазой
Запуск с разделенным фазным конденсатором
Работа с разделенным фазным конденсатором
Запуск с другой разделенной фазой с конденсатором Отталкивание
Индукция начала отталкивания (обратимая)
Затененный полюс
Каркасный затененный полюс
Универсальный

Асинхронный электродвигатель с расщепленной фазой.

Асинхронный электродвигатель с расщепленной фазой оснащен короткозамкнутым ротором для работы с постоянной скоростью и имеет пусковую обмотку с высоким сопротивлением, которая физически смещена в статоре от основной обмотки.

Последовательно с пусковой обмоткой находится центробежный пусковой выключатель, который размыкает пусковую цепь, когда двигатель достигает приблизительно 75-80 процентов синхронной скорости. Функция пускового выключателя заключается в том, чтобы предотвратить потребление двигателем чрезмерного тока, а также защитить пусковую обмотку от чрезмерного нагрева.Двигатель может быть запущен в любом направлении путем реверсирования основной или вспомогательной (пусковой) обмотки.

Эти двигатели подходят для масляных горелок, воздуходувок, рабочих машин, полировальных машин, шлифовальных машин , и т. Д.

Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой.

A Электродвигатель с постоянно подключенным конденсатором с расщепленной фазой также имеет короткозамкнутый ротор с основной и пусковой обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой.Двигатели этого типа запускаются и работают с фиксированным значением емкости последовательно с пусковой обмоткой.

Двигатель получает свой пусковой крутящий момент от вращающегося магнитного поля, создаваемого двумя физически смещенными обмотками статора. Основная обмотка подключается непосредственно к линии, в то время как вспомогательная или пусковая обмотка подключается к линии через конденсатор , обеспечивающий электрический фазовый сдвиг.

Этот двигатель подходит для приводов с прямым подключением, требующих низкого пускового момента, таких как вентиляторы, нагнетатели, некоторые насосы и т. Д.

Электродвигатель для запуска конденсатора с разделенной фазой.

Электродвигатель с пусковым механизмом с разделенным фазным конденсатором можно определить как электродвигатель с расщепленной фазой, в котором конденсатор включен последовательно со вспомогательной обмоткой. Вспомогательная цепь размыкается центробежным переключателем, когда двигатель достигает 70-80 процентов синхронной скорости.

Также известен как асинхронный двигатель с конденсаторным пуском. Ротор представляет собой беличью клетку. Основная обмотка подключается непосредственно через линию, в то время как вспомогательная или пусковая обмотка подключается через конденсатор, который может быть включен в схему через трансформатор с обмоткой соответствующей конструкции и конденсатором таких значений, что две обмотки будут разнесены примерно на 90 градусов. .

Двигатели этого типа подходят для систем кондиционирования и охлаждения, вентиляторы с ременным приводом и т. Д.

Электродвигатель, работающий через конденсатор, разделенный фазой

Электродвигатель, работающий через конденсатор, разделенный фазой. A Конденсатор с разделенной фазой Электродвигатель рабочего типа имеет рабочий конденсатор, постоянно включенный последовательно со вспомогательной обмоткой. Пусковой конденсатор подключен параллельно рабочему конденсатору только во время пускового периода. Двигатель запускается при замкнутом центробежном выключателе.

Amazon продает электродвигатели

Когда двигатель достигает 70–80 процентов синхронной скорости, пусковой выключатель размыкается и отключает пусковой конденсатор. Рабочий конденсатор обычно представляет собой масляно-заполненный конденсатор с промежутками между бумагами, обычно рассчитанный на 330 В переменного тока для непрерывной работы. Они могут варьироваться от 3 до 16 микрофарад.

Пусковой конденсатор обычно электролитического типа и может находиться в диапазоне от 80 до 300 мкФ для двигателей на 110 вольт и частотой 60 Гц.

Эти двигатели подходят для применений, требующих высокого пускового момента, таких как компрессоры, нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Amazon продает центробежные переключатели

Другой электродвигатель, работающий на конденсаторе с расщепленной фазой.

Другой тип электродвигателя с расщепленным фазным конденсатором Тип использует блок конденсаторного трансформатора и представляет собой короткозамкнутый ротор с расщепленной фазой, в котором основная и вспомогательная обмотки физически смещены в статоре.В нем используется однополюсный двухпозиционный переключатель для подачи высокого напряжения на конденсатор во время запуска.

После того, как двигатель достигнет скорости от 70 до 80 процентов синхронной, передаточный переключатель срабатывает для изменения отводов напряжения на трансформаторе. Напряжение, подаваемое на конденсатор с помощью трансформатора, может варьироваться от 600 до 800 вольт во время запуска. Для непрерывной работы выдается около 350 вольт.

Подходит для применений с высоким пусковым моментом, таких как компрессоры , нагруженные конвейеры, поршневые насосы, холодильные компрессоры и т. Д.

Асинхронный электродвигатель (реверсивный), работающий с расщепленным конденсатором.

Асинхронный электродвигатель, работающий с разделенным фазным конденсатором (реверсивный). Когда реверсивный переключатель находится в положении «B», вспомогательная обмотка становится основной обмоткой, а основная обмотка становится вспомогательной. В положении «A» обмотки работают, как показано на схеме.

В двигателях с расщепленной фазой смена обмотки заставляет двигатель работать в обратном направлении. Обе обмотки должны быть идентичны по сечению провода и количеству витков.

Используйте это, если вам нужен реверсивный двигатель конденсаторного типа с переменным номинальным током и высоким крутящим моментом.

Электродвигатель с разделенной фазой и запуском реактора.

Асинхронный электродвигатель с разделенной фазой и запуском реактора. Этот двигатель оснащен вспомогательной обмоткой, смещенной в магнитном положении относительно основной обмотки и включенной параллельно ей. Реактор снижает пусковой ток и увеличивает запаздывание по току в основной обмотке.

При примерно 75% синхронной скорости пусковой выключатель срабатывает, чтобы шунтировать реактор, отключая вспомогательную обмотку от цепи.

Это двигатель постоянной скорости, который лучше всего подходит для легких работающих машин, таких как вентиляторы, небольшие воздуходувки, бизнес-машины, шлифовальные машины и т. Д.

Amazon продает пусковые конденсаторы двигателя

Электродвигатель с однофазным конденсатором с расщепленной фазой (тип двойного напряжения).

Электродвигатель с однофазным конденсатором, разделенный фазой (тип двойного напряжения). Этот двигатель имеет две одинаковые основные обмотки, которые могут быть подключены последовательно или параллельно. При параллельном включении основной обмотки напряжение в сети обычно составляет 240 Ом.Когда основные обмотки соединены последовательно, используется 120 вольт.

Вспомогательная пусковая обмотка смещена в пространстве от основной на 90 градусов. Он также имеет центробежный выключатель и пусковой конденсатор. Обмотка такого типа дает только половину пускового момента при 120 вольт, чем при подключении на 240 вольт.

Электродвигатель отталкивания.

Отталкивающий электродвигатель по определению является однофазным двигателем, который имеет обмотку статора, предназначенную для подключения к источнику энергии, и обмотку ротора, подключенную к коммутатору.Щетки и коммутаторы закорочены и расположены так, чтобы магнитная ось обмотки ротора была наклонена к магнитной оси обмотки статора.

Он имеет изменяющуюся характеристику скорости, высокий пусковой момент и умеренный пусковой ток. Благодаря низкому коэффициенту мощности, за исключением высоких скоростей, он может быть преобразован в двигатель с компенсированным отталкиванием, у которого есть еще один набор щеток, расположенный посередине между короткозамкнутым набором, и этот дополнительный набор соединен последовательно с обмотками статора.

Электродвигатель индукционный с пуском отталкивания (реверсивный).

Асинхронный электродвигатель с отталкиванием (реверсивный) Асинхронный электродвигатель с отталкивающим запуском — это однофазный двигатель, имеющий ту же обмотку, что и отталкивающий двигатель, но при заданной скорости обмотка ротора замкнута накоротко или иным образом соединена, чтобы дать эквивалент обмотка беличьей клетки.

Этот двигатель запускается как отталкивающий двигатель, но работает как асинхронный двигатель с постоянной скоростью.Имеет однофазную обмотку с распределенным возбуждением, ось щеток которой смещена относительно оси обмотки возбуждения. Якорь имеет изолированную обмотку. Ток, индуцированный в якоре, переносится щетками и коммутатором, что приводит к высокому пусковому моменту.

Когда достигается почти синхронная скорость, коммутатор замыкается накоротко, так что якорь по своим функциям аналогичен якорю с короткозамкнутым ротором. На схеме изображен реверсивный тип, в котором две обмотки статора смещены, как показано.Реверс двигателя достигается путем перестановки соединений обмотки возбуждения.

Электродвигатель с экранированными полюсами.

Электродвигатель с экранированными полюсами — это однофазный асинхронный двигатель, снабженный вспомогательной короткозамкнутой обмоткой или обмоткой, смещенной в магнитном положении относительно основной обмотки. Используется несколько различных методов строительства, но основной принцип тот же.

Затеняющая катушка состоит из медных перемычек с низким сопротивлением, встроенных с одной стороны каждого полюса статора и используемых для обеспечения необходимого пускового момента.Когда ток увеличивается в основных катушках, в экранирующих катушках индуцируется ток, который противодействует магнитному полю, которое создается в части полюсных наконечников, которые они окружают.

Когда ток основной катушки уменьшается, ток в затеняющей катушке также уменьшается до тех пор, пока полюсные наконечники не будут намагничены равномерно. По мере того как ток основной катушки и магнитный поток полюсного наконечника продолжают уменьшаться, ток в экранирующих катушках меняется на противоположный и стремится поддерживать магнитный поток в части полюсных наконечников.

Когда ток основной катушки падает до нуля, ток все еще течет в затеняющих катушках, создавая магнитный эффект, который заставляет катушки создавать вращающееся магнитное поле, вызывающее самозапуск двигателя.

Используется там, где требования к питанию невелики, например, в часах, приборах, фенах , небольших вентиляторах и т. Д.

Каркасный электродвигатель с экранированными полюсами

Каркасный электродвигатель с экранированными полюсами. Электродвигатель с экранированными полюсами каркасного типа разработан для приложений, в которых требования к мощности очень малы. Цепь возбуждения с ее обмоткой построена вокруг обычного ротора с короткозамкнутым ротором и состоит из перфораций, которые поочередно уложены друг на друга, образуя перекрывающиеся соединения, так же, как собираются сердечники небольших трансформаторов.

Такие двигатели могут работать только на переменном токе, они просты по конструкции, дешевы и чрезвычайно прочны и надежны. Однако их основными ограничениями являются низкий КПД и низкий пусковой и рабочий крутящий момент.

Двигатель с экранированными полюсами не является реверсивным, если на каждой стороне полюса не предусмотрены экранирующие катушки и не предусмотрены средства для размыкания одной и замыкания другой катушки. По своей сути высокое скольжение двигателя с экранированными полюсами позволяет удобно получать изменение скорости при нагрузке вентилятора, например, за счет снижения напряжения.

Ebay продает ручные пускатели двигателей

Универсальный электродвигатель.

Универсальный электродвигатель разработан для работы от переменного или постоянного тока (AC / DC). Это двигатель с серийным заводом. Он снабжен обмоткой возбуждения на статоре, которая последовательно соединена с коммутирующей обмоткой на роторе. Обычно производится с дробными размерами в лошадиных силах.

Скорость при полной нагрузке обычно колеблется от 5000 до 10 000 об / мин, а на холостом ходу от 12 000 до 18 000 об / мин.Типичное применение — переносные инструменты, офисная техника, электрические чистящие средства, кухонная техника, швейные машины и т. Д.

Скорость универсальных двигателей можно регулировать, последовательно подключив к двигателю сопротивление соответствующего значения. Это делает его подходящим для таких приложений, как швейные машины, которые работают в диапазоне скоростей. Универсальные двигатели могут быть как компенсированными, так и некомпенсированными, причем последний тип используется только для более высоких скоростей и более низких номиналов.

Реверс этого двигателя достигается путем замены проводов щеткодержателя, при этом якорь подключен к нейтрали.В трехпроводном универсальном электродвигателе реверсивного типа с разделением последовательностей одна обмотка статора используется для получения одного направления, а другая обмотка статора — для получения другого направления, причем в цепи одновременно находится только одна обмотка статора. Соединения якоря должны находиться в нейтральном положении, чтобы обеспечить удовлетворительную работу в обоих направлениях вращения.

РАЗМЕР РАМЫ ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ

Ниже приведена таблица размеров корпуса двигателя, которую я нашел в старой книге.

Таблица размеров электродвигателя

Эту информацию о монтажных размерах двигателя я нашел в той же книге.

Таблица монтажных размеров электродвигателя NEMA C и J-Face.

НЕКОТОРЫЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОДВИГАТЕЛЯХ ПОСТОЯННОГО ТОКА

Схема электрических соединений двигателя постоянного тока

Другие электрические схемы можно найти здесь .

Тип двигателей | Бэй Мотор Продактс

Двигатель с экранированными полюсами

Двигатели с экранированными полюсами являются оригинальным типом однофазных асинхронных двигателей переменного тока. Также называется однофазным асинхронным двигателем, просто подключив его к одной линии напряжения, и для его вращения требуется внешний конденсатор.Различные типы однофазных асинхронных двигателей различаются в зависимости от метода их запуска. Четыре основных типа — это разделенная фаза, конденсаторный запуск, постоянный разделенный конденсатор и конденсаторный запуск / работа конденсатора.

Двигатель с расщепленной фазой

Двигатель с расщепленной фазой использует переключающее устройство для отключения пусковой обмотки, когда двигатель достигает 75% своей номинальной скорости. Хотя этот тип имеет простую конструкцию, что делает его менее дорогим для коммерческого использования, он также имеет низкие пусковые моменты и высокие пусковые токи.

Конденсаторный пусковой двигатель

Конденсаторный пусковой двигатель — это конденсаторный двигатель с расщепленной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для создания большего пускового момента. Этот двигатель более дорогой из-за необходимых коммутационных и конденсаторных компонентов.

Постоянный разделенный конденсатор

Двигатель с постоянным разделенным конденсатором не имеет пускового переключателя. Для этого типа конденсатор постоянно подключен к обмотке пускателя. Поскольку для этого требуется конденсатор для непрерывного использования, он не обеспечивает пусковую мощность, поэтому пусковые моменты обычно малы.Эти двигатели не будут работать при высоких пусковых нагрузках. Однако они имеют низкие пусковые токи, более тихую работу и более высокий срок службы / надежность, что делает их хорошим выбором для высоких циклов. Они также являются наиболее надежными конденсаторными двигателями из-за отсутствия пускового переключателя. Различные конструкции обеспечивают более высокий КПД и коэффициент мощности при номинальных нагрузках.

Конденсаторный пусковой двигатель / Конденсаторный двигатель

Конденсаторный пусковой / конденсаторный двигатель имеет как пусковой, так и пусковой конденсатор в цепи.После достижения полного пуска пусковой конденсатор отключается. Этот тип двигателя имеет более высокий пусковой ток, меньшие токи нагрузки и более высокий КПД. Недостатком является стоимость двух конденсаторов и переключающего устройства. Надежность также играет важную роль в механизме переключения.

Технология

Для сравнения, эти типы асинхронных двигателей с разделенным сопротивлением обеспечивают пусковой крутящий момент от низкого до среднего, и это ограничивает их применениями с низким энергопотреблением, для которых они лучше всего подходят.В этих двигателях используется одна вспомогательная обмотка меньшего размера, чем обычно, что создает более низкую скорость индукции и гораздо более высокое сопротивление, чем у других типов. Такие простые модели можно использовать только при небольшой нагрузке и небольшом пусковом приводе.

Для некоторых применений, таких как небольшие вентиляторы, шлифовальные машины и нагреватели, не требуются более высокие пусковые моменты, но в большинстве случаев, чем больше крутящий момент при запуске двигателя, тем большую нагрузку можно приложить к машине. Однофазный двигатель с высоким пусковым крутящим моментом часто бывает дороже, чем более простые двигатели с разделенной индукцией.Однако разница в мощности может окупиться для разных промышленных нужд. От однофазного двигателя с высоким пусковым моментом можно ожидать другого уровня производительности, это может сэкономить время и энергию.

Переменные токи, протекающие в однофазном двигателе, одновременно достигают своих пиковых значений; это составляет одну единственную фазу. В трехфазных системах пиковые значения тока достигаются последовательно, в три отдельных этапа. По сравнению с трехфазными системами, эти двигатели не обладают таким же высоким КПД, но могут работать бесконечно долго при минимальном техническом обслуживании.

Электродвигатели асинхронные

имеют разные классификации в зависимости от источника электроэнергии и типа конструкции. Двигатели асинхронного типа, также называемые асинхронными двигателями, работают с использованием переменного тока (AC), создаваемого электромагнитной индукцией, в отличие от коммутаторов, обычно используемых в двигателях переменного тока других типов. Асинхронные двигатели используются в промышленности, а также в стандартных устройствах, таких как холодильники, стиральные машины, посудомоечные машины и сушилки для одежды.

Электродвигатели индукционного типа были первоначальным двигателем переменного тока, который должен был быть создан; Никола Тесла придумал прототип в 1883 году. Эти асинхронные двигатели имеют очень простую конструкцию и управление по сравнению с современными двигателями переменного тока, но они все еще очень прочные, тихие и долговечные. Асинхронные двигатели отличаются тем, что они используют индуцированный ток в роторе для создания вращательного движения.

Асинхронные двигатели

состоят из двух простых частей: статора с медной обмоткой и узла якоря или ротора.Обмотки статора удерживаются в пазах вокруг статора с соблюдением баланса между количеством северных и южных полюсов. Сборка ротора производится в нескольких вариантах: роторы с короткозамкнутым ротором, роторы с контактным кольцом и роторы со сплошным сердечником.

Эти двигатели лучше всего подходят для нужд малой мощности и приложений, где было бы неэффективно использовать более мощные механизмы. Многие однофазные двигатели идеально подходят для применений с низким моментом инерции, в то время как другие спроектированы с учетом требований к высокому пусковому крутящему моменту.

Энергия в конденсаторе> Лаборатория поддержки лекций по физике и астрономии> USC Dana and David Dornsife College of Letters, Arts and Sciences

C.4 (1) — Driving the Motor

Энергия, накопленная в конденсаторе, используется для приведения в действие небольшого двигателя, который вращает пропеллер. Схема состоит из восьми параллельно включенных конденсаторов с эквивалентной емкостью 30 000 микрофарад, соединенных последовательно с пятью последовательно включенными резисторами 500 Ом . Постоянная времени для контура — 75 секунд .Аппарат подключен к источнику высокого напряжения, установленному на 250 вольт . он установлен на доске размером 25 см x 25 см .

Верх

C.4 (2) — Выгрузка металлическим стержнем

Конденсатор (100 мкФ, 3000 В постоянного тока) заряжается за несколько минут. Конденсатор подключен к источнику питания. После зарядки выключите питание и мультиметр (будьте осторожны при отключении мультиметра).Затем конденсатор замыкается большой металлической перемычкой с изолированной ручкой, вызывая сильную искру.

Нажмите здесь, чтобы посмотреть видео этой демонстрации.

Верх

C.4 (3a) — Wire Exploder (старый)

Большой конденсатор (240 микрофарад, 5000 В) используется в качестве опорной стойки для устройства, которое неожиданно показывает энергию, запасенную в конденсаторе. Листы толстого оргстекла помещаются поверх него и вокруг установки, состоящей из: электромагнитного переключателя, небольшого измерителя, резисторов и стойки, которая надежно удерживает очень тонкий металлический провод, как показано на рисунке.Рядом с ним установлен блок питания и длинный проводной выключатель. Конденсатор заряжается в течение 5-10 минут при 2000 В постоянного тока через резистор R = 1,8 x 106 Ом (или пока счетчик не покажет не менее 15-20 минут). Выключите источник питания. Возьмите выключатель и отойдите от аппарата. Закройте и откройте дистанционный переключатель. Когда цепь замкнута, конденсатор разряжается через тонкую проволоку, измельчая его. Это вызывает сильный взрыв, большую искру и даже немного дыма. Постоянная времени для этой схемы составляет 432 секунды.После зарядки в течение 5 минут на конденсаторе накоплено около 0,24 кулона, а общая энергия, выделяемая в момент взрыва, составляет около 173 Дж. Это очень громко и очень удивительно. Имейте в виду, что конденсатор все еще может быть заряжен, поскольку взрыв провода обычно не разряжает его полностью. Разрядник с длинными ручками используется для полного разряда конденсатора, за которым следуют другие более мелкие взрывы и искры.

Верх

С.4 (3b) — Wire Exploder (новый)

Эта обновленная демонстрация состоит из: большого конденсатора (240 мкФ; 5 кВ), электромагнитного переключателя, небольшого измерителя и стойки, которая прочно удерживает очень тонкий металлический провод, если смотреть через экран из оргстекла. Рядом с ним установлен блок питания и длинный проводной выключатель.

Конденсатор заряжается напрямую до 3 кВ постоянного тока в течение примерно 15 минут. После этого заряд, накопленный на конденсаторе, составляет около 0.24 кулоны, а общая энергия, выделяемая при коротком замыкании, составляет около 173 Дж. Когда цепь замкнута, конденсатор разряжается через тонкий провод, превращая его в пыль. Это вызывает громкий взрыв и большие искры. Имейте в виду, что конденсатор все еще может быть заряжен, поскольку взрыв провода обычно не разряжает его полностью. Разрядник с длинными ручками используется для полного разряда конденсатора.

Можно использовать два типа проволоки:

  • Медный магнитопровод
  • Никель-хромовая проволока неизолированная

Щелкните здесь, чтобы увидеть видео о новой демонстрации Wire Exploder в действии.

Верх

C.4 (4) — Ультраконденсатор

Эта демонстрация состоит из одного конденсатора 16 В / 58 Ф по сравнению с одним ультраконденсатором 16 В / 210000 мкФ. Каждая пара конденсаторов подключена к электрическому вентилятору. Как и ожидалось, вентилятор, подключенный к обычным конденсаторам, остановится через несколько секунд, в то время как вентилятор, подключенный к ультраконденсаторам, прослужит намного дольше. Это демонстрирует, что ультраконденсаторы обладают способностью накапливать больше заряда, чем обычные конденсаторы.

Нажмите здесь, чтобы посмотреть видео этой демонстрации.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *