Схема подключения счетчика через трансформаторы тока: Подключение счетчика через трансформаторы

Содержание

Способы подключения электросчетчиков к электросетям

По способу подключения к сети счетчики разделяют на 3 группы:
Счетчики непосредственного включения (прямого включения) — подключаются к сети напрямую, без измерительных трансформаторов. Выпускаются однофазные и трехфазные модели, для сетей 0,4/0,23 кВ на токи до 100 А.

Счетчики полукосвенного включения — подключаются к сети напрямую только обмотками напряжения, токовые обмотками подключаются через трансформаторы тока. Выпускаются только трехфазные модели (для электротранспорта существуют и однофазные) на напряжение 0,4 кВ. Величина измеряемого тока зависит от характеристик подключенных трансформаторов тока.

Счетчики косвенного включенияподключаются к сети через трансформаторы тока и трансформаторы напряжения. Выпускаются только трехфазные модели. Величина измеряемого тока и напряжения зависит от характеристик подключенных трансформаторов. Область применения — сети от 6 кВ и выше.

Схемы включения индукционных и электронных электросчётчиков абсолютно идентичны.

Схемы прямого (непосредственного) подключения электросчетчиков

Схема прямого подключения однофазного электросчетчика


 

Схема прямого подключения трехфазного электросчетчика к сети TNS


 

Схема прямого подключения трехфазного электросчетчика к сети TNС


 

 

Схемы полукосвенного (трансформаторного) подключения электросчетчиков

Схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS (без испытательной коробки)


 

8-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS через испытательную коробку


 

10-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS через испытательную коробку


 

Схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC (без испытательной коробки)


8-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку


10-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку


 

Схема полукосвенного (2-х трансформаторного) подключения трехфазного электросчетчика к сети TNS (без испытательной коробки)


 

Схема полукосвенного (2-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку


Схемы косвенного (трансформаторного) подключения электросчетчиков

Схема косвенного подключения трехфазного электросчетчика (без испытательной коробки)


8-проводная схема косвенного подключения трехфазного электросчетчика через испытательную коробку


10-проводная схема косвенного подключения трехфазного электросчетчика через испытательную коробку


 

 

Подключение счетчика через трансформаторы тока

Добрый день, уважаемые читатели сайта «Заметки электрика».

Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).

В статье про схемы подключения электросчетчиков прямого включения мы познакомились с подключением однофазных и трехфазных электросчетчиков прямого, или его еще называют, непосредственного включения в сеть. В той же статье я упоминал, что существует способ подключения электросчетчиков и через трансформаторы тока и напряжения.

Давайте рассмотрим на примере трехфазных счетчиков самые распространенные схемы.

Счетчики необходимы для учета электроэнергии потребителями в трехпроводных и четырехпроводных сетях переменного тока с частотой 50 (Гц).

Трехфазные счетчики электрической энергии выпускаются на напряжение 3х57,7/100 (В) или 3х230/400 (В).

Подключение счетчиков электрической энергии к вышеперечисленным сетям осуществляется через измерительные трансформаторы тока (ТТ) со вторичным током 5 (А) и трансформаторы напряжения (ТН) со вторичным напряжением 100 (В).

При подключении счетчика необходимо строго следить за полярностью начала и конца обмоток трансформаторов тока, как первичной (Л1 и Л2), так и вторичной (И1 и И2). Также необходимо соблюдать полярность обмоток трансформатора напряжения (подробнее об этом Вы можете почитать в статье про трансформатор напряжения НТМИ-10).

Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.

О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.

Итак, приступим.

 

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.

Пунктиром на схеме показано соединение, которое может отсутствовать.

Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.

 

Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока

ТТ1 — ТТ3 — трансформаторы тока. 

Пунктиром на схеме показано соединение, которое может отсутствовать.

Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик ЦЭ6803В 3х220/380 (В), 1-7,5 (А).

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моей статьи про схему подключения трехфазного счетчика ПСЧ-4ТМ.05.04 в четырехпроводную сеть напряжением 380/220 (В) с помощью 3 трансформаторов тока.

 

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока

ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.

 

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 3 трансформаторов напряжения

ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:

Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 2 трансформаторов напряжения

ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.

Подключение счетчика через трансформаторы тока. Выводы

В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.

Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.

Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.

Рекомендую Вам при подключении счетчиков электроэнергии обязательно применять цифровую и буквенную маркировку проводов вторичных цепей, чтобы облегчить Вам и Вашим коллегам дальнейшую эксплуатацию и обслуживание.

P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.

Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.

Следите за обновлениями или подпишитесь на новости сайта.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Схема Подключения Счетчика Через Трансформаторы Тока Меркурий

Важно также выбрать оптимальное место в здании для монтажа счетчика.

Было решено провести электрификацию домов.

Не понял, как защищаются цепи напряжения счетчика? В том то все и дело, что председатель со своим электриком лоханулись и после установки шкафа не проверили схему подключения и не опламбировали счетчик.
Ноль в счётчик нельзя! Подключение PEN строго по ПУЭ.

Десятипроводная схема подключения считается наиболее распространенной. Основной ее плюс — гальваническая развязка измерительных и силовых цепей.

Подключить счетчик «Меркурий» АМ таким способом можно по различным схемам, в каждой из которых трансформаторы тока будут использоваться как своеобразный источник информации. К таковым относятся атомные, гидравлические и тепловые электростанции.

К ним можно провести монтаж проводов, у которых сечение составляет 15 м2. К таковым относятся атомные, гидравлические и тепловые электростанции.

Неисправности схемы присоединения: Окисление, а также ослабление контактов на выводах ТТ.

При выборе подходящего варианта подключения электросчетчика Меркурий в первую очередь исходят из соображений безопасности.

Подключение счетчика через трансформаторы тока своими руками

Схема подключения трансформатора тока

Обрыв или излом фазных проводников в цепях Uвтор. На эти клеммы приходит провод, который подключен к шинам питания V, а потом идет на прибор учета через перемычки.

По истечении определенного времени их следует проверять.

Аппарат не заменим при подключении эталонного или образцового прибора учета и позволяет с легкостью производить замену или поверку без отключения нагрузки на сеть. Подписывайтесь на наш канал!

Данные от клемм трансформаторов поступают на прибор учета, фиксирующий объем выработанной электрической энергии.

КИП также обладает функцией отключения цепи по каждой фазе.

Последние монтируют на крупных промышленных предприятиях, где присутствует высоковольтное соединение.

Также используется схема присоединения электросчетчика посредством трех ТН и двух ТТ.
Сборка трехфазного щита учета

Преимущества установки и эксплуатации изделия Меркурий 230

Каждая из них несет на себе информацию срока последней поверки с обозначением года и квартала, а также имеет печать поверяющей организации. Четные номера проводов соответствуют нагрузке, нечетные — вводу.

Мы обязательно Вам ответим. Для схемы обязательно присоединение всех трех элементов измерения счетчика с обязательным строгим соблюдением полярности и с чередованием фаз в прямом порядке относительно соответствующему U. При нарушении функции памяти необходимо выяснить сопутствующий код и перепрограммировать опцию.

Характеристики надежности электросчетчика «Меркурий» О качестве продукции ООО «НПК «Инкотекс» могут говорить следующие технические характеристики надежности: Минимальная наработка на отказ до часов; Интервал между поверками: 10 лет; Средний срок службы прибора— 30 лет; Гарантийный срок эксплуатации «Меркурий» составляет 3 года с даты выпуска. Показатели снимают в одном и в двух направлениях. Показатель именно этого напряжения фиксируется прибором учета.

Подключение трехфазного счетчика Меркурий через трансформаторы тока осуществляется по следующей схеме: Подключение «Меркурий » через трансформаторы тока Подключение электросчетчика «Меркурий » через ТТ Счетчик «Меркурий» имеет возможность тарифного учёта электроэнергии по зонам суток, учитывает потери и передает измерения и накопленную информацию об энергопотреблении по цифровым интерфейсным каналам. ИКК снабжена защитной прозрачной крышкой и устройством для опломбирования, винт со сквозным отверстием. Моно нотировать изменения при анализе журнала событий.

К таковым относятся атомные, гидравлические и тепловые электростанции. Наличие колодки существенно облегчает монтаж.

Важные ссылки

Счетчик «Меркурий»: подключение косвенное Подобный вариант подключения прибора учета не используется в бытовой сфере. Виды трехфазных электросчетчиков Различают 3 основных вида данного типа устройств: Косвенного подключения. В первом случае к распределительной коробке счетчика подводятся три провода от каждой из фазных линий плюс нейтраль и по две жилы от 3-х ТТ. Это помогает осуществлять замену и проверку схемы присоединения прибора, позволяет определить погрешность в измерениях непосредственно на месте установки электросчетчика при наличии нагрузочного тока без отключения потребителей. Наличие колодки существенно облегчает монтаж.

Что касается минусов, то это габаритные размеры и необходимость иметь опыт и навыки для установки оборудования данного типа. На сегодняшний день он устарел окончательно, несмотря на то что его можно встретить в реальных условиях. Счетчик подключается как прямым, так и трансформаторным способом: подключение трансформаторов тока к счетчику «Меркурий » позволяет учитывать электроэнергию на объектах, где высока токовая нагрузка. Прибор проводит фиксацию напряжения, появляющегося во время протекания электричества по вторичной обмотке. При работе с электрическими приборами, стоит использовать индикаторные отвертки, резиновые перчатки.

Легко переделать работу поможет небольшой запас в пределах мм при присоединении проводов к зажимам. При уровне напряжения более 6 кВ и выше применяются два трансформатора тока, это так по всей стране.
Подключение испытательной коробки (КИП). Схема #1

Подключение «Меркурий 230» через трансформаторы тока

Подключение электросчетчика через трансформаторы тока выполняется при помощи десятипроводного кабеля. Это помогает осуществлять замену и проверку схемы присоединения прибора, позволяет определить погрешность в измерениях непосредственно на месте установки электросчетчика при наличии нагрузочного тока без отключения потребителей.

Далее демонтируется старый счетчик.

Тем же способом крепятся два оставшихся контакта.

Данные от клемм трансформаторов поступают на прибор учета, фиксирующий объем выработанной электрической энергии. Одна из них — подсоединение посредством десяти отдельных проводящих жил. Как правило цепи напряжения выполняются тем же сечением, что и токовые цепи Как было написано выше цепи учета необходимо выводить на сборки зажимов или испытательные блоки, так что же представляет из себя испытательный блок?

Технические характеристики

Они возникают при неправильно собранной схеме. Напоминаем, что электромонтажные работы следует проводить только с полным соблюдением требований техники безопасности. На сегодняшний день он устарел окончательно, несмотря на то что его можно встретить в реальных условиях. При уровне напряжения более 6 кВ и выше применяются два трансформатора тока, это так по всей стране.

Различают однофазные и трехфазные, бытовые и промышленные приборы учета электроэнергии. По общему показателю тарифов и каждому отдельно из них индикация и информация фиксируются несколькими временными сроками. Это помогает осуществлять замену и проверку схемы присоединения прибора, позволяет определить погрешность в измерениях непосредственно на месте установки электросчетчика при наличии нагрузочного тока без отключения потребителей.

Александр, в примере 1 применяется трансформатор тока с двумя вторичными обмотками, поэтому и маркировка соответствующая. Трудно выявить во время работы электрический пробой внутри ТТ. Они бывают временные или носят постоянный характер.

Счетчик «Меркурий»: подключение косвенное Подобный вариант подключения прибора учета не используется в бытовой сфере. Для монтажа счетчика в разрыв цепи трансформаторов используют клеммы Л1 и Л2.
Как правильно установить и подключить трансформаторы тока

Как подключить счётчик через трансформатор тока

Не во всех случаях есть возможность измерять израсходованную электроэнергию с помощью простого подключения устройства учёта, то есть счётчика, в сеть. В электрических цепях с переменным напряжением 0,4 кВ (380 Вольт), силой тока больше чем 100 Ампер и с потреблением мощности соответственно больше 60 кВт применяется подключение трёхфазного электросчётчика через измерительный трансформатор тока. Такое подключение называется косвенным и только оно даёт точные показатели при измерении таких мощностей. Для начала перед рассмотрением самих схем соединения, нужно разобраться в принципе работы измерительного трансформатора.

Принцип работы измерительных трансформаторов

Принцип измерительного и обычного трансформатора тока (ТТ) не имеют различия кроме точности передачи тока во вторичной обмотке. Не измерительные ТТ применяются в цепях токовой релейной защиты, однако, в любом случае принцип их работы одинаков. По первичной обмотке, включенной последовательно в линию, будет протекать электрический ток такой же, как и в нагрузке. Иногда, это зависит от конструкции ТТ, первичной обмоткой может служить алюминиевая или медная шина, идущая от источника энергии, к потребителю. За счёт прохождения тока и наличия магнитопровода во вторичной обмотке возникает тоже ток но уже меньшей величины, который уже можно измерять с помощью обычных измерительных приборов, или же счётчиков. При расчете израсходованной электроэнергии нужно учитывать коэффициент, определяющий окончательную величину затрат. Фазный ток, протекающий по линии, будет в разы больше чем ток вторичной обмотки, и зависит он от коэффициента трансформации.

Таким образом, данная манипуляция и установленный трансформатор тока обеспечивает не только возможность измерять большие тока, но и способствуют безопасности проведения таких измерений.

Интересным является тот факт что все ТТ выдают при определённом номинале, на который он рассчитан в первичной обмотке, всего лишь 5 Ампер во вторичной. Например, если номинальный ток первичной обмотки будет 100А, то во вторичной будет 5 А. Если оборудование более мощное и выбирается измерительный трансформатор 500А, то всё равно коэффициент трансформации выбран таким образом, что во вторичной обмотке будет опять-таки 5 Ампер. Поэтому выбор счётчика здесь очевиден и несложен, главное, чтоб он был рассчитан на 5 Ампер. Вся ответственность лежит на выборе именно измерительного трансформатора. Ещё один важный фактор работы такой цепочки это частота переменного напряжения, она должна быть строго 50 Гц. Это стандартная величина частоты, которая чётко контролируется компанией поставщиком электроэнергии и её отклонение недопустимо для работы любого, применяемого в странах постсоветского пространства стандартного электрооборудования. По всей плане эта частота регламентируется другими величинами.

Одной из важных особенностей ТТ является также невозможность работы его без нагрузки, а когда это необходимо какими-либо мероприятиями, то стоит закоротить концы вторичной обмотки, чтобы не было пробоя.

Схема подключения к трёхфазной цепи

Существует несколько схем предназначенных для подключения счетчика через трансформаторы тока, вот самая распространённая из них

Как видно, измерительный трансформатор имеет клеммы, которые обозначены Л1 и Л2. Л1 обязательно подключается к источнику электроэнергии, а Л2 к нагрузке. Перепутывать их и переставлять местами нельзя.

А также имеются и клеммы идущие непосредственные на подключение непосредственно к счётчику, они обозначены как И1 и И2. Для цепей измерительного трансформатора рекомендуется использовать провода с сечением не меньше 2,5 мм2. Желательно иметь и выполнять монтаж соответствующего цвета проводами, для упрощения их коммутации. Стандартная раскраска жил и токоведущих шин:

  • Жёлтый — это фаза А;
  • Зелёный — В;
  • Красный — С;
  • Синий проводник или чёрный обозначает земляной или нулевой провод.

При монтаже лучше использовать клеммные коробки для соединения, чтобы было легче в случае неисправности производить диагностику или замену какого-либо узла или элемента. Это связано с тем что сами счётчики пломбируются.

Схема подключения соединенных ТТ звездой также применяется в электроустановках, как видно вторичная обмотка подлежит заземлению. Это делается для того, чтобы обезопасить, и устройства учета, и персонал обслуживающий их от возможного появления, в результате пробоя во вторичных цепях, высокого напряжения.

Недостатки такого подключения

  1. Ни в коем случае в трёхфазной цепи нельзя использовать трансформаторы с разными коэффициентами трансформации, подключаемые к одному и тому же счётчику.
  2. Существенный недостаток, который был замечен при применении устаревших индукционных электросчётчиков. При низких показателях тока в первичной цепи его вращающийся механизм может оставаться без движения, а значить не учитывать электроэнергию. Такой эффект получается из-за того, что сам индукционный прибор имеет значительное потребление и возникающий в его цепи ток уходил в его электромагнитный поток. С цифровыми современными приборами учёта такая ситуация невозможна.

Как подключить через ТТ счётчик в однофазной цепи

Очень редко появляется необходимость подключать счетчик через трансформаторы тока в однофазных сетях, так как токи в них не достигают больших величин. Но всё же если такая необходимость есть нужно воспользоваться схемой, приведённой ниже.

На рисунке «а» изображено обычное прямое подключение счётчика, на рисунке «б» через измерительный ТТ. Катушки напряжения в этих схемах подключены идентично, а вот токовые цепи подключаются через трансформатор тока. В таком случае производится гальваническая развязка, за счёт которой и возможно данное подключение.

В любом случае измерение затраченной электроэнергии необходимо, так как только так можно законно покупать этот вид продукции.

Подключение счетчика электроэнергии в низковольтную сеть большой мощности

Для подключения счетчика в сеть большой мощности (с большими токами) необходимо применять специальные устройства — измерительные трансформаторы тока. Речь идет о низковольтных сетях до 0,66 кВ, где уровень номинального тока 100 А и выше. Счетчики прямого включения не предназначены для использования в таких мощных сетях, поэтому и требуется снизить уровень рабочего тока до величины, удобной для измерения приборами учета — 5 А.

Способ подключения в сеть счетчика, при котором токовые обмотки счетчика подключаются к измерительным выводам трансформатора тока называют полукосвенным. При этом способе подключения счетчика используется рабочее напряжение сети (обмотки напряжения подключаются к электросчетчику напрямую).

Существует также и косвенный способ подключения счетчика, однако он применяется для учета электроэнергии в установках с напряжением более 1 кВ. При косвенном подключении счетчика кроме трансформаторов тока применяются трансформаторы напряжения, снижающие высокое значение напряжение до 100 В.

Класс точности и его значение для учета электроэнергии

Правила Устройства Электроустановок (сокращенно ПУЭ) устанавливают классы точности для трансформаторов тока различных категорий применений. Так, для коммерческого учета должны устанавливаться трансформаторы тока с классом точности не более 0,5, а для технического учета необходим класс точности не выше 1,0.

Также встречаются трансформаторы тока с практически одинаковыми классами точности 0,5 и 0,5S. В чем заключается между ними разница? Погрешность обмотки ТТ с классом точности 0,5 не нормируется ниже 5%. Это значит, что при нагрузке в главной цепи ниже 5% электрическая энергия не будет учитываться. Класс точности 0,5S говорит о том, что трансформатор тока будет передавать сигнал на счетчик при уровне нагрузки не ниже 1%.

Схемы подключения счетчика через трансформаторы тока

Подключить трехфазный счетчик электроэнергии в мощную низковольтную сеть с глухозаземленной нейтралью можно по приведенным ниже схемам.

Цепи тока и напряжения в этой схеме, которую еще называют «десятипроводной» (по количеству используемых проводов), разделены. Подобное разделение цепей напряжения и тока позволяет повысить электробезопасность и легко проверять правильность подключения.

Следующая схема, в которой все выводы И2 измерительных трансформаторов тока соединяются в общую точку и присоединяются к нулевому проводнику, называется «звезда» (т. к. трансформаторы тока соединены по одноименной схеме). Она экономична с точки зрения использования проводов, однако усложняет проверку схемы включения счетчика представителями энергоснабжающих организаций.

«Семипроводная» схема на сегодняшний день является устаревшей, но так или иначе до сих пор встречается. Эта схема, будучи самой экономичной, опасна для обслуживающего персонала и потому должна быть модернизирована до десятипроводной.

Подключения счетчика электроэнергии через переходную испытательную коробку (КИП)

Как указано в ПУЭ (п 1.5.23.), подключать трехфазные счетчики электроэнергии следует через испытательные коробки, упомянутые выше. Они (коробки испытательные переходные) позволяют производить замену счетчика, не отключая нагрузку, так как все необходимые переключения можно произвести в КИП.

Также встречаются низковольтные сети с изолированной нейтралью (система IT). Если быть более точным, то в сети с такой системой заземления нейтральный проводник может быть как полностью изолирован, так и заземлен при помощи специальных приборов, обладающих большим электрическим сопротивлением.

Такая система (IT) применяется на объектах, к которым предъявляются высокие требования по надежности и безопасности электроснабжения. Например, изолированная система IT применяется для электрических установок угольных шахт, для мобильных дизельных и бензиновых электростанций, а также для аварийного освещения и электроснабжения больниц. Подключить счетчик электроэнергии к трансформаторам тока в сеть с изолированной нейтралью можно по следующей схеме.

Измерительные трансформаторы тока — это устройства, преобразующие большие значения тока главных цепей до величины 5 А, удобной для измерения счетчиками электроэнергии. Именно это и определяет их основное назначение: питание цепей учета электроэнергии (коммерческий и технический) в мощных установках, там где счетчики прямого включения просто не могут применяться.

По материалам КЭАЗ

Схема подключения счетчика Меркурий 230 через трансформаторы тока

На чтение 6 мин. Просмотров 379 Опубликовано Обновлено

Для учета электроэнергии в трехфазных цепях применяются счетчики особой конструкции, регистрирующие ее расход по каждой из фаз. Особенности рабочих режимов в силовых линиях вынуждают применять для снятия показаний специальные преобразователи – трансформаторы тока (ТТ). Прямое подключение трехфазного счетчика Меркурий, например, в такую цепь допускается лишь при одном условии. Наличие ограничений объясняется тем, что протекающие в контролируемой линии токи не должны превышать предельного значения в 60 Ампер.

Преимущества установки и эксплуатации изделия Меркурий 230

Трансформатор тока Меркурий 230

Электросчетчики рассматриваемого класса представляют собой приборы учета, с помощью которых удается замерять расходуемую в трехфазных цепях энергию. К преимуществам этого типа электронных устройств относят:

  • возможность учета электроэнергии по различным тарифам;
  • допустимость эксплуатации в трехфазных сетях, включение в которые осуществляется напрямую или через трансформаторы тока;
  • возможность работы в индивидуальном режиме или в составе диспетчерского оборудования;
  • расширенный функционал, обеспечиваемый особенностями включения в общую энергосистему.

Приборы успешно эксплуатируются не только на промышленных предприятиях и других производственных объектах, но и в частных домах, где три питающих фазы используются довольно часто.

Потребность в питании 380 Вольт объясняется применением силового оборудования, в состав которого входят электродвигатели. Они успешно работают только при наличии трех фазных напряжений и применяются в скважных насосах, станках и других образцах техники, используемой в личных целях.

Характеристики электросчетчика

К эксплуатационным показателям прибора Меркурий 230, полностью характеризующим его в качестве устройства учета, относят следующие возможности:

  • Отображение на дисплее данных по потребленной электроэнергии для любого из предусмотренных режимов работы: ночного, дневного, льготного и т. п.
  • Учет энергопотребления по одному из 4-х тарифных режимов с 16-ю зонами перекрытия по времени.
  • Подсчет и регистрация токовых и частотных параметров.
  • Контроль потребления через интерфейс (с центрального диспетчерского пункта).
  • Сохранение в памяти устройства до 10-ти важнейших событий, а также моментов пропадания отдельных фаз, превышения ими допустимых значений, дат вскрытия и изменений тарифного режима.

В счетчике также предусмотрен особый вид защиты, исключающий возможность несанкционированного проникновения при попытках хищения электроэнергии. В этих приборах снятие показаний ведется по алгоритму «с нарастающим итогом», не зависящим от мгновенного направления тока.

Зачем нужны ТТ

Подключение трехфазных счетчиков через трансформаторы тока Меркурий дает возможность расширить диапазон измеряемых параметров до нескольких сотен Ампер. Достичь этого удается за счет применения преобразующих устройств с фиксированным коэффициентом трансформации (чаще всего он равен 20-ти). Поскольку счетчики типа Меркурий рассчитаны на токи не более 60-ти Ампер – использование трансформатора позволяет снимать показания при их значениях в питающих цепях, достигающих многих сотен Ампер.

У других моделей ТТ коэффициент трансформации имеет «свои» значения (5, 30, 40 и т. д.).

Выбор конкретного образца преобразователя зависит от расчетного уровня токовой нагрузки в потребительской сети. Если значение тока не превышает 60-ти Ампер, что случается крайне редко, допускается прямое подсоединение счетчика в контролируемую цепь.

Схемы подключения

Схема полукосвенного подключения

Схема подключения счетчика через трансформаторы тока Меркурий 230 предусматривает несколько способов его включения, отличающихся коммутацией линейных проводников: полукосвенное подключение; прямое включение; косвенный способ.

Полукосвенное включение

Полукосвенным называется вид подсоединения, при котором для снятия показаний применяется только один преобразователь – трансформатор тока, изготавливаемый в виде отдельного модуля. Это прибор позволяет понизить значение токовой составляющей, непосредственно воздействующей на исполнительный узел электросчетчика. С его помощью удается расширить диапазон мощностей, подлежащих учету в действующих электрических сетях. Кроме того, их применение гарантирует нормальное функционирование подключенного к ним оборудования.

Прямое подключение

В простейшей схеме подключения счетчиков Меркурий 230 используется принцип прямого подсоединения его рабочих обмоток в разрыв фазных питающих проводов. Подключать таким способом электрические счетчики допускается лишь при условии, что ток, протекающий в контролируемых цепях, не превышает значения 60-ти Ампер. Это ограничение касается каждой из фаз, подлежащих обязательному учету.

Используется этот способ крайне редко, поскольку при трехфазном питании пусковые токи в электродвигателях, например, достигают нередко сотен Ампер.

Косвенное включение

Косвенное подключение посредством 10 проводящих жил

При косвенном соединении электрический счетчик включается в контролируемую цепь по нескольким схемам, разработанным специально для данного способа. Одна из них – подсоединение посредством десяти отдельных проводящих жил. С ее помощью удается реализовать раздельный учет тока и напряжения, что повышает эффективность и безопасность работы прибора во всех режимах. Недостатком этого способа считается большое количество коммутационных элементов, снижающих надежность выполнения счетчиком своих функций.

К данной категории относится схема, позволяющая подключить счетчик к трехфазной трехпроводной сети посредством 2-х трансформаторов тока и 2-х преобразователей напряжения. При ее применении удается несколько сократить число необходимых коммутаций и повысить надежность и безопасность эксплуатации учетного оборудования.

Нюансы подключения счетчика через ТТ

При самом распространенном (полукосвенном) методе цепочки снятия показаний напряжения включаются напрямую, а токовые – через ТТ. В указанной ситуации важно научиться различать следующие способы коммутации:

  • Десятипроводная схема.
  • Семипроводный ее аналог.
  • Схема с совмещенными цепями.

В первом случае к распределительной коробке счетчика подводятся три провода от каждой из фазных линий плюс нейтраль и по две жилы от 3-х ТТ. К достоинствам этого подхода относят необязательность отключения питающей линии при необходимости замены электросчетчика или при проведении ремонтных работ. Кроме того, при этом способе коммутации повышается надежность его функционирования и безопасность эксплуатации. Недостаток этого метода – больше количество соединительных проводов.

При применении семипроводной схемы три ответных конца трансформаторов тока объединяются и соединяются с «землей» (10-3=7). Одновременно с удобством ремонта электрооборудования в данном случае уменьшается число коммутируемых проводов. Это упрощает монтаж и ремонт электрооборудования и заметно снижает риски при его эксплуатации в нормальных режимах. Подключить электрический счетчик можно и по совмещенной схеме, когда цепи напряжения объединяют с токовыми отводами за счет установки перемычек в соответствующих точках трансформаторов. Обычно они устраиваются между отводами И1 трансформаторов тока и соответствующей фазной линией. Число соединительных проводников в этом случае остается тем же – семь жил.

При выборе подходящего варианта подключения электросчетчика Меркурий 230 в первую очередь исходят из соображений безопасности. Лишь после выполнения этого требования рассматриваются вопросы экономичности и удобства обслуживания или ремонта.

Схемы подключения счетчика через трансформаторы тока | Энергофиксик

Мы все знакомы с прямым подключением приборов учета. Ведь все однофазные и множество трехфазных счетчиков в частном секторе именно так и подключены. Но в случае того, если потребление электроэнергии превышает показатель в 100 Ампер, то прямое включение не подойдет. В таких случаях прибор учета подсоединяется через трансформаторы тока.

В данном материале я покажу наиболее распространенные схемы подключения счетчиков электроэнергии через трансформаторы тока и трансформаторы напряжения.

Схема подключения трехфазного электрического счетчика через три ТТ (трансформатор тока) и три ТН (трансформатор напряжения).

Под обозначением ТН1-ТН3 подразумеваются трансформаторы напряжения, а соответственно ТТ1-ТТ3 — это трансформаторы тока. Также посмотрите на пунктирное обозначение: так показана общая точка заземления трансформаторов, которая выполняется с целью обеспечения безопасности, но она может также и отсутствовать.

Схема присоединения трехфазного счетчика через три ТТ

На этой схеме также пунктиром обозначено соединение, которое может и не быть.

Схема соединения счетчика с применением двух трансформаторов тока

Схема присоединения счетчика через парочку трансформаторов тока и тройку трансформаторов напряжения

Схема присоединения прибора учета через два ТТ и два ТН

Схемы взяты с сайта zametkielectrika.ru

Выводы

Выше были приведены самые распространенные схемы присоединения приборов учета. Но хочу так же напомнить, что у подавляющего числа приборов учета (непосредственно на крышке или же в паспорте) присутствует схема подключения.

Еще важно учесть, что токовые цепи монтируются медными проводами с минимальным сечением в 2,5 квадрата, а цепи напряжения допустимо выполнять проводами сечением 1,5 квадрата. Причем использовать алюминий категорически запрещено.

Если статья оказалась вам полезна, то ставьте палец вверх.

Спасибо за внимание!

Трансформаторы тока для измерения | Подсказка Energy Sentry Tech

Есть два типа электросчетчиков: автономные (с прямым приводом) и
трансформатор номинальный.

Большинство счетчиков, используемых в домах или на фермах, являются автономными. Вся использованная электроэнергия проходит через счетчик. Эти счетчики предназначены для использования в сетях до 200 ампер. Трансформаторы тока содержатся внутри.

При потреблении тока более 200 ампер используются счетчики с трансформаторным номиналом.Как следует из названия, в этих типах счетчиков используются трансформаторы тока (ТТ) для измерения тока или общей потребляемой мощности. Информация регистрируется счетчиком.

В трансформаторах тока типа «пончик» есть два проводника или обмотки. Первичная обмотка — это линейный проводник, проходящий через центр трансформатора тока. Вторичная обмотка представляет собой множество витков магнитной проволоки вокруг сердечника.

Трансформатор трансформатора тока преобразует первичный ток линейного проводника в меньший, более легко управляемый ток, который подается на измеритель, который прямо пропорционален первичному току.Этот ток обратно пропорционален количеству вторичных витков провода вокруг железного сердечника.

Для ТТ на 200: 5А коэффициент трансформации составляет 40: 1, что дает вторичный ток 1/40 первичного тока. Для трансформатора тока на 400: 5 А коэффициент трансформации составляет 80: 1, что дает вторичный ток, составляющий 1/80 первичного тока.

Номинальная нагрузка (B) — это полное сопротивление цепи, подключенной к вторичной обмотке. Этот импеданс является полным противодействием протеканию тока в цепи переменного тока.Рейтинг нагрузки — это максимальное значение импеданса перед превышением минимальных пределов точности.

Разница в коэффициенте тока между фактическим (первичным) и измеренным (вторичным) током приводит к тому, что обычно называют множителем. Поправочный коэффициент — это коэффициент, на который необходимо умножить показания ваттметра, чтобы скорректировать влияние коэффициента ошибок и фазового угла трансформатора тока.

Ищете ТТ измерительного класса для вашей программы измерения теплового расхода?

У нас есть решение!

Измерительные трансформаторы тока высокого качества

Если ваша программа расчета теплового коэффициента требует учета накопленного тепла, тепла плинтуса, двойного топлива или любого другого электрического тепла, низкокачественные трансформаторы тока просто не подходят.

Наши измерительные трансформаторы тока изготовлены из сердечников из многослойной кремнеземной стали высшего качества и соответствуют стандарту IEEE C57.13. стандарты.

Доступные передаточные числа Точность при BO.1 / 60 Гц Номинальный коэффициент Частота Класс изоляции
100: 5A 1,2 1,5 @ 30 ° C 50-400 Гц 600 В
200: 5A.03 1,5 @ 30 ° C 50-400 Гц 600 В

Следующий технический совет: трансформаторы тока для контроллеров нагрузки

CT Установка и подключение — Continental Control Systems, LLC

ПРЕДУПРЕЖДЕНИЕ ПО БЕЗОПАСНОСТИ! Трансформаторы тока (ТТ) обычно устанавливаются в электрооборудование со смертельно опасным высоким уровнем напряжения. Прежде чем пытаться установить трансформаторы тока, прочтите страницу безопасности при установке трансформаторов тока.

ВНИМАНИЕ! Счетчики WattNode предназначены для работы только с трансформаторами тока, имеющими 0.Выход 333 В переменного тока. Этот тип ТТ имеет встроенный нагрузочный резистор, который выдает безопасный выходной сигнал низкого напряжения. Использование трансформаторов тока любого другого типа приведет к неправильным измерениям мощности и может необратимо повредить измеритель WattNode.

  • В отличие от трансформаторов тока с передаточными числами с токовыми выходами, эти трансформаторы тока имеют внутреннюю нагрузку для обеспечения безопасного выходного напряжения 0,333 В переменного тока, поэтому закорачивающие блоки не требуются.

Ключевые моменты

  • Установите трансформаторы тока на фазный провод, соответствующий фазе входного напряжения.
  • Установите трансформаторы тока так, чтобы стрелка или этикетка «Эта сторона по направлению к источнику» была обращена к выключателю, питающему нагрузку.
  • Подключите белый и черный выводы ТТ к соответствующим входным клеммам ТТ с белыми и черными точками.

Загрузить: Инструкция по установке и подключению ТТ (AN-130) (PDF, 3 страницы)

Открытие и закрытие CT

ТТ Accu-CT Series с разъемным сердечником открываются, сжимая рифленые панели, чтобы освободить защелку и потянуть / повернуть верхнюю часть.Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность. Оберните трансформатор тока вокруг проводника и поверните верхнюю часть обратно в закрытое положение, пока защелка не закроется. Закрепите проводник в нижней части U-образной секции ТТ, используя кабельную стяжку через окно ТТ и вокруг проводника.

CTML Series CTML с разъемным сердечником открываются, потянув за защелку. Убедитесь, что сопрягаемые поверхности чистые. Обломки увеличивают зазор, снижая точность.Оберните трансформатор тока вокруг проводника и сожмите его до тех пор, пока не услышите щелчок защелки.

Модели ТТ с разъемным сердечником серии CTS и CTBL серии можно открывать для установки вокруг проводника или шины. Эти трансформаторы тока состоят из двух частей: C-образного корпуса и I-образной секции, которая снимается для установки. Чтобы открыть ТТ с разъемным сердечником модели CTS, вытяните I-образную секцию прямо из C-образного корпуса. Чтобы открыть трансформатор тока шины модели CTBL, сначала удалите винты с накатанной головкой, которыми крепится I-образная секция.Требуется сильное усилие, особенно если ТТ новый.

Съемная секция подходит только для одной стороны, поэтому при ее снятии обратите внимание на то, как части стального сердечника подходят друг к другу. При закрытии ТТ обязательно совместите концы таким же образом. Если кажется, что ТТ заклинивает и не закрывается, возможно, детали стального сердечника выровнены неправильно. Не применяйте чрезмерную силу! Вместо этого переставьте или покачайте съемную часть, пока ТТ не закроется без чрезмерного усилия.

После сборки трансформатора тока с разъемным сердечником модели CTS по периметру трансформатора тока можно закрепить нейлоновую кабельную стяжку, чтобы предотвратить случайное открывание.На моделях шин CTBL установите на место нейлоновые винты и затяните их пальцами. Не используйте отвертку!

Обратите внимание, что С-образный корпус и съемная I-образная секция ТТ с открыванием калибруются как единое целое. Для обеспечения максимальной точности эти части не следует заменять местами с другими трансформаторами тока.

ТТ с твердым сердечником требуют, чтобы измеряемый фазный провод был отключен на одном конце, чтобы его можно было пропустить через отверстие в ТТ. Это несложно, когда калибр провода небольшой, но становится непрактичным с проводами большего калибра и несколькими параллельными проводниками.

Фазовые проводники

Для правильных измерений трансформаторы тока должны быть установлены на фазном проводе, соответствующем подключению входа напряжения. Подключения входа напряжения находятся на пятипозиционной зеленой клеммной колодке с винтовыми зажимами. Например, трансформатор тока ØA должен быть установлен на том же фазовом проводе, который подключен к входу напряжения ØA. Аналогично, ØB CT устанавливается на той же фазе, что и вход ØB Voltage, а вход ØC CT устанавливается на входе ØC Voltage. Для идентификации проводов может помочь использование цветной ленты или этикеток.

Чтобы уменьшить магнитные помехи между трансформаторами тока на соседних фазах, рекомендуется разделять их примерно на 1 дюйм (25 мм). Это также помогает предотвратить образование перемычки между выводами фазных проводов или шин и пылью и мусором, что может вызвать пробой дуги.

Для обеспечения максимальной точности отверстие ТТ не должно быть больше чем на 50% больше, чем фазовый провод. Если отверстие ТТ намного больше, чем проводник, расположите провод по центру отверстия ТТ.Если это невозможно, попробуйте расположить проводник в нижней части U-образной половины трансформатора тока, подальше от конца отверстия, где происходит утечка магнитного потока.

Пластиковые кабельные стяжки могут использоваться для фиксации положения ТТ на фазном проводе. Кабельная стяжка также может быть закреплена по периметру некоторых моделей трансформаторов тока, чтобы предотвратить их случайное размыкание. Проводник находится вдали от открытого конца трансформатора тока.

См. Страницу выбора ТТ для получения дополнительной информации о выборе ТТ.

Ориентация и полярность

ТТ

помечены символом (стрелкой) или этикеткой, которые указывают на правильную механическую ориентацию ТТ на измеряемом проводе. Найдите на ТТ стрелку или метку «Эта сторона по направлению к источнику» и установите ТТ этикеткой или стрелкой в ​​сторону источника тока: обычно счетчика электросети или автоматического выключателя.

В дополнение к установке трансформаторов тока с правильной механической ориентацией, электрическая полярность, на что указывают их белый и черный провода, также должна быть правильной.Каждая пара проводов ТТ подключается к соответствующей клемме на черной шестипозиционной клеммной колодке с винтовыми зажимами. Клеммы обозначены ØA CT, ØB CT и ØC CT. Полярность каждой пары клемм обозначена белой и черной точкой на этикетке. Обязательно подключите белый провод к фазной клемме, совмещенной с белой точкой, а черный провод — к клемме с черной точкой.

Помните, что для правильной работы и физическая ориентация, и электрическая полярность каждой фазы должны быть правильными.Если фаза перевернута электрически или механически, и ток течет в обратном направлении, измеритель WattNode будет измерять, в зависимости от модели, нулевую или отрицательную энергию для этой фазы.

Провода отведения ТТ

Если подводящие провода ТТ длиннее, чем необходимо, их можно укоротить. Короткие подводящие провода ТТ помогают свести к минимуму электрические помехи. Если подводящие провода ТТ должны быть длиннее 8 футов, их можно удлинить. Как правило, лучше установить WattNode рядом с измеряемыми проводниками, а не удлинять провода трансформатора тока.

Однако можно удлинить провода трансформатора тока на 100 футов (30 м) или более, используя экранированный кабель витой пары. Чтобы свести к минимуму шум линии электропередачи от помех чувствительным сигналам трансформатора тока, удлинительные провода следует прокладывать в кабелепроводах (кабелепроводах) без каких-либо проводов питания. Дополнительную информацию см. На странице «Удлинение провода трансформатора тока».

Диаметр выводных проводов витой пары ТТ составляет около 0,213 дюйма. Это примерно диаметр изолированного проводника №8 AWG THWN или THHN.Три витые пары подойдут для кабелепровода диаметром 1/2 дюйма, но если вы бежите на любое расстояние и имеете изгибы, кабельный канал диаметром 3/4 дюйма может быть лучшим выбором.

Выполнение подключений

Поскольку входы CT датчика WattNode чувствительны к повреждению из-за электростатического разряда (ESD), всегда заземляйте себя на мгновение, прикоснувшись к электрическому корпусу или другому заземленному металлическому объекту, прежде чем прикасаться к датчику. Это хорошая практика для всего электронного оборудования, чувствительного к электростатическому разряду.

Для подключения выводных проводов ТТ к входным клеммам ТТ сначала снимите примерно 6 мм изоляции с конца одного из проводов, скрутите оголенные жилы вместе, вставьте конец в клеммную колодку и надежно затяните винт. Подключить провода к клеммной колодке будет проще, если сначала вставить колодку в счетчик.

Неиспользуемые входы ТТ могут вызвать электрические помехи, поэтому рекомендуется закоротить неиспользуемые входные клеммы ТТ, подключив проволочную перемычку длиной около 1 дюйма между белой и черной клеммами ТТ.Обычно это не вызывает беспокойства, если к соответствующей входной клемме напряжения не подключено сетевое напряжение.

См. Также


Ключевые слова: ТТ, трансформатор тока, установка, электромонтаж, подключение

Что такое трансформатор тока (ТТ)? Определение, построение, векторная диаграмма и типы

Определение: Трансформатор тока — это устройство, которое используется для преобразования тока с более высокого значения в пропорциональный ток к более низкому значению.Он преобразует ток высокого напряжения в ток низкого напряжения, благодаря чему сильный ток, протекающий по линиям передачи, надежно контролируется амперметром.

Трансформатор тока используется с прибором переменного тока, измерителями или контрольной аппаратурой, где измеряемый ток имеет такую ​​величину, что измеритель или приборную катушку невозможно сделать с достаточной пропускной способностью по току. Трансформатор тока показан на рисунке ниже.

Первичный и вторичный ток трансформаторов тока пропорциональны друг другу.Трансформатор тока используется для измерения тока высокого напряжения из-за сложности с недостаточной изоляцией самого счетчика. Трансформатор тока используется в счетчиках для измерения силы тока до 100 ампер.

Строительство трансформаторов тока

Сердечник трансформатора тока изготовлен из слоистой кремнистой стали. Для получения высокой степени точности для изготовления стержней используется Permalloy или Mumetal. Первичные обмотки трансформаторов тока пропускают измеряемый ток, и он подключен к главной цепи.Вторичные обмотки трансформатора пропускают ток, пропорциональный измеряемому току, и он подключается к токовым обмоткам счетчиков или приборов.

Первичная и вторичная обмотки изолированы от сердечников и друг от друга. Первичная обмотка — это однооборотная обмотка (также называемая стержневой первичной обмоткой), по которой проходит полный ток нагрузки. Вторичная обмотка трансформаторов имеет большое количество витков.

Отношение первичного тока и вторичного тока известно как коэффициент трансформатора тока цепи .Коэффициент текучести трансформатора обычно высокий. Номинальные значения вторичного тока составляют 5, 1 и 0,1 А. Текущие номинальные значения первичной обмотки варьируются от 10 А до 3000 А или более. Символическое изображение трансформатора тока показано на рисунке ниже.

Принцип работы трансформатора тока немного отличается от силового трансформатора. В трансформаторе тока сопротивление нагрузки или нагрузка на вторичной обмотке немного отличается от силовых трансформаторов.Таким образом, трансформатор тока работает в условиях вторичной цепи.

Нагрузка на груз

Нагрузка трансформатора тока — это величина нагрузки, подключенной ко вторичному трансформатору. Он выражается как мощность в вольт-амперах (ВА). Номинальная нагрузка — это величина нагрузки, указанная на паспортной табличке ТТ. Номинальная нагрузка — это произведение напряжения и тока на вторичной обмотке, когда трансформатор тока подает на прибор или реле максимальное номинальное значение тока.

Влияние открытых вторичных обмоток трансформатора тока

В нормальных условиях эксплуатации вторичная обмотка ТТ подключена к его нагрузке и всегда замкнута. Когда ток течет через первичные обмотки, он всегда течет через вторичные обмотки, и ампер-витки каждой обмотки соответственно равны и противоположны.

Количество витков вторичной обмотки будет на 1% и 2% меньше, чем витков первичной обмотки, и разница будет использоваться в намагничивающем сердечнике. Таким образом, если вторичная обмотка разомкнута и ток течет через первичные обмотки, то размагничивающего потока из-за вторичного тока не будет.

Из-за отсутствия противоамперных витков вторичной обмотки несопротивляющийся первичный MMF создаст аномально высокий магнитный поток в сердечнике. Этот поток вызовет потери в сердечнике с последующим нагревом, и на вторичном выводе будет индуцировано высокое напряжение.

Это напряжение вызвало пробой изоляции, а в будущем может произойти потеря точности, потому что чрезмерная MMF оставляет остаточный магнетизм в сердечнике. Таким образом, вторичная обмотка ТТ никогда не может быть разомкнута, когда по первичной обмотке проходит ток.

Векторная диаграмма трансформатора тока

Векторная диаграмма трансформатора тока показана на рисунке ниже. Основной поток взят за эталон. Наведенные напряжения в первичной и вторичной обмотках отстают от основного потока на 90º. Величина первичного и вторичного напряжений зависит от количества витков на обмотках. Ток возбуждения индуцируется составляющими намагничивающего и рабочего тока.

где, I s — вторичный ток
E s — вторичное индуцированное напряжение
I p — первичный ток
E p — первичное индуцированное напряжение
K t — коэффициент передачи, количество вторичных витков / число первичных витков
I 0 — ток возбуждения
I м — ток намагничивания
I w — рабочий элемент
Φ s — главный поток

Вторичный ток отстает от вторичного наведенного напряжения на угол θº.Вторичный ток перемещается в первичную обмотку путем реверсирования вторичного тока и умножения на коэффициент трансформации. Ток, протекающий через первичную обмотку, является суммой возбуждающего тока I 0 и произведения коэффициента трансформации и вторичного тока K t I s.

Ошибка соотношения и фазового угла CT

Трансформатор тока имеет две ошибки — ошибку соотношения и ошибку угла сдвига фаз.

Ошибки соотношения тока — Трансформатор тока в основном обусловлен энергетической составляющей тока возбуждения и обозначается как

Где I p — первичный ток.K t — передаточное число и вторичный ток.

Ошибка фазового угла — В идеальном трансформаторе тока векторный угол между первичным и обратным вторичным током равен нулю. Но в реальном трансформаторе тока существует разница фаз между первичным и вторичным токами, потому что первичный ток также обеспечивает составляющую тока возбуждения. Таким образом, разница между двумя фазами называется ошибкой фазового угла.

Типы трансформаторов тока

Трансформаторы тока в основном подразделяются на три типа, т.е.е., трансформатор тока намотки, трансформатор тока тороидальный и трансформаторы стержневого типа.

1. Трансформатор с обмоткой — В этом трансформаторе первичная обмотка расположена внутри трансформатора. Первичная обмотка имела один виток и была подключена последовательно с проводником, измеряющим ток. Трансформатор с обмоткой в ​​основном используется для измерения тока от 1 до 100 ампер.

2. Штыревой трансформатор тока — Штыревой трансформатор имеет только вторичную обмотку.Проводник, на котором установлен трансформатор, будет действовать как первичная обмотка трансформаторов тока.

3. Тороидальный трансформатор тока — Этот трансформатор не содержит первичных обмоток. Линия, по которой протекает ток в сети, подключается через отверстие или окно трансформаторов. Основным преимуществом этого трансформатора является то, что трансформатор имеет симметричную форму, благодаря чему он имеет низкий поток рассеяния, а значит, и меньшие электромагнитные помехи.

Разница между трансформатором тока (CT) и трансформатором потенциала (PT)

Электрические инструменты не подключаются напрямую к счетчикам или контрольным приборам высокого напряжения в целях безопасности. Измерительные трансформаторы, такие как трансформатор напряжения и трансформатор тока, используются для подключения электрических приборов к измерительным приборам. Эти трансформаторы снижают напряжение и ток от высокого значения до низкого значения, которое можно измерить обычными приборами.

Конструкция трансформатора тока и напряжения аналогична, поскольку оба имеют магнитную цепь в первичной и вторичной обмотках. Но они разные по способу работы. Существует несколько типов различий между трансформатором напряжения и трансформатором тока.

Одно из основных различий между ними состоит в том, что трансформатор тока преобразует высокое значение тока в низкое значение, тогда как трансформатор напряжения или напряжения преобразует высокое значение напряжения в низкое напряжение.Некоторые другие различия между трансформатором тока и трансформатором напряжения поясняются ниже в сравнительной таблице.

Содержание: Трансформатор тока против потенциала

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Запомните

Сравнительная таблица

Основа для сравнения Трансформатор тока Трансформатор потенциала
Определение Преобразование тока с высокого значения на низкое. Преобразование напряжения с высокого значения на низкое.
Обозначение цепи
Сердечник Обычно состоит из слоистой кремнистой стали. Изготовлен из высококачественной стали, работающей с низкой плотностью флюса.
Первичная обмотка Переносит измеряемый ток Переносит измеряемое напряжение.
Вторичная обмотка Подключается к токовой обмотке прибора. Он подключен к счетчику или прибору.
Подключение Подключено последовательно с прибором Подключено параллельно с прибором.
Первичный контур Имеет малое число витков Имеет большое число витков
Вторичная цепь Имеет большое количество витков и не может быть разомкнутой цепи. Имеет малое количество витков и может быть обрывом.
Диапазон 5A или 1A 110 В
Коэффициент трансформации Высокий Низкий
Нагрузка Не зависит от вторичной нагрузки Зависит от вторичной нагрузки
Вход Постоянный ток Постоянное напряжение
Полный линейный ток Первичная обмотка состоит из полного линейного тока. Первичная обмотка состоит из полного линейного напряжения.
Типы Два типа (намотанный и закрытый сердечник) Два типа (электромагнитное и конденсаторное напряжение)
Импеданс Низкий Высокий
Приложения Измерение тока и мощности, контроль работы электросети, для срабатывания защитного реле, Измерение, источник питания, срабатывание защитного реле,

Определение трансформатора тока

Трансформатор тока — это устройство, которое используется для преобразования тока с более высоким значением в более низкое значение по отношению к потенциалу земли.Он используется с приборами переменного тока для измерения высокого значения тока.

Линейный ток слишком велик, и его очень сложно измерить напрямую. Таким образом, используется трансформатор тока, который уменьшает высокое значение тока до дробного значения, которое легко измерить прибором.

Первичная обмотка трансформатора тока подключается непосредственно к линии, значение которой необходимо измерить. Вторичная обмотка трансформатора тока подключается к амперметру или измерителю, который измеряет линейное значение в долях.

Определение трансформатора потенциала

Трансформатор напряжения — это тип измерительного трансформатора, который используется для преобразования напряжения от более высокого значения к более низкому значению.

Первичная клемма трансформатора напряжения подключена к линии измерения линейного напряжения. Трансформатор напряжения снизил высокое значение напряжения до небольшого значения, которое можно легко измерить с помощью вольтметра или измерителя.

Основные различия между трансформаторами тока и потенциала

  1. Трансформатор тока преобразует высокое значение тока в низкое значение, чтобы его можно было удобно измерить прибором, в то время как трансформатор напряжения преобразует высокое значение напряжения в низкое значение.
  2. Первичная обмотка трансформатора тока подключена последовательно с линией передачи, ток которой должен измеряться, а трансформатор напряжения подключен параллельно с линией.
  3. Сердечник трансформатора тока состоит из пластин из нержавеющей стали. Сердечник трансформатора напряжения состоит из высокопроизводительного сердечника, работающего при низких плотностях магнитного потока.
  4. Первичная обмотка трансформатора тока несет измеряемый ток, а первичная обмотка трансформатора напряжения — напряжение.
  5. Первичная обмотка трансформаторов тока имеет небольшое количество витков, тогда как в трансформаторе напряжения первичная обмотка имеет большое количество витков.
  6. Вторичная обмотка трансформатора тока имеет большое количество витков, и ее нельзя замкнуть, когда она находится в рабочем состоянии. Вторичная обмотка трансформатора напряжения имеет небольшое количество витков, и во время обслуживания она может быть разомкнута.
  7. Нормальный диапазон трансформатора тока для измерения тока составляет 5 А или 1 А, тогда как стандартное напряжение на вторичной обмотке трансформатора напряжения составляет до 110 В.
  8. Коэффициент трансформации трансформатора тока всегда остается высоким, тогда как для трансформатора напряжения он остается низким.
    • Примечание : Коэффициент трансформации трансформатора тока и напряжения определяется как отношение номинального первичного напряжения к номинальному вторичному напряжению.
  9. Вход трансформатора тока — постоянный ток, а вход трансформатора напряжения — постоянное напряжение.
  10. Первичная обмотка трансформатора тока не зависит от нагрузки вторичной обмотки трансформатора; это зависит от тока, протекающего в первичных обмотках, тогда как первичная обмотка трансформатора напряжения зависит от нагрузки вторичной обмотки.
    • Примечание : Нагрузка — это вторичная нагрузка трансформатора.
  11. Первичная обмотка трансформатора тока напрямую подключена к полному линейному току, ток которого должен быть измерен, тогда как в трансформаторе напряжения полное линейное напряжение напрямую подключается к первичной клемме.
  12. Полное сопротивление первичной обмотки трансформатора очень низкое по сравнению с вторичной обмоткой, тогда как в трансформаторе напряжения полное сопротивление первичной обмотки велико.
    • Примечание : Импеданс — это противодействие току, подаваемому цепью, когда на них подается напряжение.
  13. Трансформатор тока в основном используется для измерения такой величины тока, что измеритель или прибор не может удобно измерить, тогда как трансформатор напряжения используется для измерения высокого напряжения тока.

Запомните: Трансформатор тока в основном используется для схемы релейной защиты, поскольку он снижает большую величину первичного тока до значения, подходящего для работы реле.Трансформатор тока также обеспечивает изоляцию от высокого напряжения силовой цепи и, следовательно, защищает оборудование и персонал от высокого напряжения.

Понимание соотношения, полярности и класса

Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное течению тока. Фото: Викимедиа.

Основная функция трансформатора тока — обеспечивать управляемый уровень напряжения и тока, пропорциональный току, протекающему через его первичную обмотку, для работы измерительных или защитных устройств.

В своей основной форме трансформатор тока состоит из многослойного стального сердечника, вторичной обмотки вокруг сердечника и изоляционного материала, окружающего обмотки.

Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле, перпендикулярное течению тока.

Если этот ток проходит через первичную обмотку трансформатора тока, внутренний железный сердечник намагничивается, что вызывает напряжение во вторичных обмотках.Если вторичная цепь замкнута, через вторичную обмотку будет протекать ток, пропорциональный коэффициенту трансформатора тока.

ТТ с разомкнутой цепью

ОПАСНОСТЬ: Трансформаторы тока должны оставаться закороченными до тех пор, пока не будут подключены к вторичной цепи. Трансформаторы тока обычно подключаются к клеммной колодке, где можно установить закорачивающие винты, чтобы связать изолированные точки вместе.

Важно, чтобы к трансформатору тока всегда была подключена нагрузка или нагрузка, когда он не используется, в противном случае на клеммах вторичной обмотки может возникнуть опасно высокое вторичное напряжение.


Типы трансформаторов тока

Существует четыре типичных типа трансформаторов тока: оконные, проходные, стержневые и обмотанные . Первичная обмотка может состоять просто из первичного проводника тока, проходящего один раз через отверстие в сердечнике трансформатора тока (оконного или стержневого типа), или она может состоять из двух или более витков, намотанных на сердечник вместе с вторичной обмоткой (намотанная тип).

Оконные и линейные трансформаторы тока

являются наиболее распространенными трансформаторами тока, встречающимися в полевых условиях.Фото: ABB

1. Окно CT

Оконные трансформаторы тока

имеют конструкцию без первичной обмотки и могут иметь конструкцию со сплошным или разъемным сердечником. Эти трансформаторы тока устанавливаются вокруг проводника и являются наиболее распространенным типом трансформаторов тока в полевых условиях.

При установке оконных трансформаторов тока со сплошной сердцевиной необходимо отключить первичный провод. Трансформаторные трансформаторы тока с оконным разделением сердечника могут быть установлены без предварительного отключения первичного проводника и обычно используются в приложениях для мониторинга и измерения мощности.

ТТ нулевой последовательности — это тип оконного ТТ, который обычно используется для обнаружения замыкания на землю в цепи путем суммирования тока по всем проводникам одновременно. В нормальном режиме работы эти токи будут векторно равны нулю.

Оконный трансформатор тока нулевой последовательности

Когда происходит замыкание на землю, поскольку часть тока идет на землю и не возвращается на другие фазы или нейтраль, трансформатор тока обнаружит этот дисбаланс и отправит сигнал вторичного тока на реле.ТТ нулевой последовательности устраняют необходимость в использовании ТТ с несколькими окнами, выходы которых суммируются, за счет использования одного ТТ, окружающего все проводники.

2. Стержневой CT

Трансформаторы тока типа

работают по тому же принципу, что и оконные трансформаторы тока, но имеют постоянную шину, установленную в качестве первичного проводника. Доступны типы стержней с более высоким уровнем изоляции и обычно привинчиваются непосредственно к текущему устройству ухода.

Трансформатор тока стержневого типа

3.Втулка CT

Трансформаторы тока проходного изоляционного типа

в основном представляют собой оконные трансформаторы тока, специально разработанные для установки вокруг высоковольтного ввода. Обычно к этим трансформаторам тока нет прямого доступа, и их паспортные таблички находятся на шкафу управления трансформатором или выключателем.

SF6 вводные трансформаторы тока 110 кВ. Фото: Викимедиа

4. Рана КТ

Трансформаторы тока с обмоткой имеют первичную обмотку и вторичную обмотку , как и обычный трансформатор. Эти трансформаторы тока встречаются редко и обычно используются при очень низких коэффициентах передачи и токах, как правило, во вторичных цепях трансформатора тока для компенсации малых токов, согласования различных соотношений трансформаторов тока в суммирующих приложениях или для изоляции различных цепей трансформатора тока.

Этот тип трансформаторов тока имеет очень высокую нагрузку , поэтому при использовании трансформаторов тока с обмоткой следует уделять особое внимание нагрузке на ТТ источника.


Класс напряжения ТТ

Класс напряжения ТТ определяет максимальное напряжение , с которым ТТ может контактировать напрямую. Например, оконный трансформатор тока 600 В не может быть установлен на оголенном проводе 2400 В или вокруг него, однако оконный трансформатор тока на 600 В может быть установлен вокруг кабеля 2400 В, если трансформатор тока установлен вокруг изолированной части кабеля и изоляция рассчитана правильно.


Коэффициент CT

Коэффициент трансформации ТТ — это отношение входного первичного тока к выходному вторичному току при полной нагрузке. Например, трансформатор тока с соотношением 300: 5 рассчитан на 300 ампер первичной обмотки при полной нагрузке и будет производить 5 ампер вторичного тока , когда через первичную обмотку протекает 300 ампер.

Если первичный ток изменится, вторичный ток на выходе изменится соответствующим образом. Например, если через первичную обмотку номиналом 300 А протекает 150 А, вторичный ток будет равен 2.5 ампер.

Коэффициент передачи трансформатора тока эквивалентен коэффициенту напряжения трансформаторов напряжения. Фото: TestGuy.

В прошлом для измерения тока обычно использовались два основных значения вторичного тока. В Соединенных Штатах инженеры обычно используют выход на 5 ампер . В других странах принят выход на 1 ампер .

С появлением микропроцессорных счетчиков и реле в промышленности наблюдается замена вторичной обмотки на 5 или 1 ампер на вторичную мА .Обычно устройства с мА-выходом называются «датчиками тока », в отличие от трансформаторов тока.

Примечание. Коэффициент ТТ выражает номинальный ток ТТ, а не просто отношение первичного тока к вторичному. Например, ТТ 100/5 не будет выполнять функцию ТТ 20/1 или 10 / 0,5.


CT Полярность

Полярность трансформатора тока определяется направлением, в котором катушки намотаны вокруг сердечника ТТ (по часовой стрелке или против часовой стрелки), и тем, каким образом вторичные выводы выводятся из корпуса трансформатора.

Все трансформаторы тока имеют вычитающую полярность и имеют следующие обозначения для правильной установки:

  • h2 — Первичный ток, направление линии
  • h3 — Первичный ток, направление нагрузки
  • X1 — вторичный ток (многоскоростные трансформаторы тока имеют дополнительные вторичные клеммы)

ТТ с разъемным сердечником, рассчитанный на 200 А. Обратите внимание на маркировку полярности в центре сердечника, указывающую направление источника.Фото: Continental Control Systems, LLC

В трансформаторах с вычитающей полярностью провод первичной обмотки h2 и вывод вторичной обмотки X1 находятся на одной стороне трансформатора. Полярность ТТ иногда указывается стрелкой, эти ТТ следует устанавливать так, чтобы стрелка указывала в направлении протекания тока.

Очень важно соблюдать правильную полярность при установке и подключении трансформаторов тока к реле измерения мощности и защитных реле.

Условные обозначения на электрическом чертеже полярности CT

Обозначение полярности на электрических чертежах и схемах трансформаторов тока может быть выполнено несколькими различными способами. Три наиболее распространенных условных обозначения схем — это точки, квадраты и косые черты. Маркировка полярности на электрических чертежах обозначает угол h2, который должен быть обращен к источнику.

Как проверить полярность CT

Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность ТТ в полевых условиях с батареей 9 В, используя следующую процедуру тестирования:

  1. Отключите все питание перед тестированием и подключите аналоговый вольтметр к вторичной клемме проверяемого ТТ. Положительная клемма измерителя подключена к клемме X1 ТТ, а отрицательная клемма подключена к X2 .
  2. Пропустите кусок провода через верхнюю сторону окна ТТ и на мгновение коснитесь положительным концом 9-вольтовой батареи со стороной h2 (иногда отмеченной точкой) и отрицательным концом , чтобы сторона h3 .Важно избегать постоянного контакта, который может привести к короткому замыканию аккумулятора.
  3. Если полярность правильная, мгновенный контакт вызывает небольшое отклонение аналогового измерителя в положительном направлении . Если отклонение отрицательное, полярность трансформатора тока меняется на обратную. Клеммы X1 и X2 необходимо переключить, и можно провести тест.

Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность ТТ в полевых условиях, используя 9-вольтовую батарею.

Связано: Объяснение 6 электрических испытаний трансформаторов тока


CT Класс точности

Поскольку идеальных трансформаторов не существует, возникают небольшие потери энергии, такие как вихревые токи и тепло, вызванное током, протекающим через обмотки. Вторичный ток, который возникает в этих ситуациях, не полностью воспроизводит форму волны тока в энергосистеме.

Степень, в которой величина вторичного тока отличается от расчетного значения, ожидаемого в силу соотношения ТТ, определяется классом точности ТТ.Чем больше число, используемое для определения класса, тем больше допустимое отклонение вторичного тока от расчетного значения (погрешность).

За исключением классов с наименьшей точностью, класс точности ТТ также определяет допустимое смещение фазового угла между первичным и вторичным токами. В зависимости от класса точности трансформаторы тока делятся на Точность измерения или Точность защиты (реле) . CT может иметь рейтинги для обеих групп.

Точность измерения ТТ

Точность измерения

ТТ рассчитана на указанные стандартные нагрузки и рассчитана на высокую точность от очень низкого тока до максимального номинального тока ТТ. Из-за своей высокой степени точности эти трансформаторы тока обычно используются коммунальными предприятиями для выставления счетов .

ТТ точности реле

Точность реле

не так точна, как ТТ точности измерения. Они разработаны для работы с разумной степенью точности в более широком диапазоне токов.Эти трансформаторы тока обычно используются для подачи тока на реле защиты. Более широкий диапазон значений тока позволяет защитному реле работать при различных уровнях неисправности.

Класс точности ТТ можно найти на паспортной табличке или на этикетке производителя. Класс точности ТТ состоит из комбинации цифр, букв и цифр, как указано в ANSI C57.13 , и разбит на три части:

  1. номинальное соотношение рейтинг точность
  2. рейтинг класса
  3. максимальная нагрузка

Класс точности ТТ состоит из комбинации цифр и букв, как указано в ANSI C57.13

1. Номинальное соотношение Рейтинг точности

Это число является просто номинальным коэффициентом точности , выраженным в процентах . Например, трансформатор тока с классом точности 0,3B0,1 сертифицирован производителем как имеющий точность в пределах 0,3 процента от его номинального значения коэффициента для первичного тока 100 процентов от номинального коэффициента.

2. Рейтинг класса

Вторая часть класса точности ТТ — это буква, обозначающая приложение, для которого рассчитан ТТ.Трансформатор тока может иметь двойные номиналы и использоваться для измерения или защиты, если оба номинала указаны на паспортной табличке.

  • C — Указывает, что ТТ имеет низкий поток утечки, что означает, что точность может быть рассчитана до производства
  • T — Указывает, что ТТ может иметь значительный поток утечки, и точность должна определяться на заводе.
  • H — Указывает, что точность ТТ применима во всем диапазоне вторичных токов от пяти до 20-кратного номинального значения ТТ.Обычно это трансформаторы тока с обмоткой.
  • L — Указывает, что точность ТТ применяется при максимальной номинальной вторичной нагрузке только при 20 номинальных значениях. Точность передаточного числа может быть в четыре раза больше указанного значения, в зависимости от подключенной нагрузки и тока короткого замыкания. Обычно это оконные, проходные или стержневые трансформаторы тока.

3. Максимальная нагрузка

Третья часть класса точности ТТ — это максимальная нагрузка, разрешенная для ТТ. Как и все трансформаторы, трансформатор тока может преобразовывать только конечное количество энергии.Ограничение энергии ТТ называется максимальной нагрузкой. Если этот предел превышен, точность ТТ не гарантируется.

Для ТТ измерительного класса нагрузка выражается как сопротивление Ом . Например, коэффициент трансформатора тока с номиналом 0,3B0,1 соответствует 0,3 процента , если сопротивление подключенной вторичной нагрузки не превышает 0,1 Ом . ТТ класса измерения 0,6B8 будет работать с точностью 0,6 процента , если вторичная нагрузка не превышает 8.0 Ом .

Нагрузка трансформатора тока класса реле выражается как вольт-ампер, и отображается как максимальное допустимое вторичное напряжение, если через вторичный контур протекает 20-кратное номинальное значение трансформатора тока (100 А для вторичного трансформатора тока 5 А). Например, защитный ТТ 2,5C100 имеет точность в пределах 2,5 процента , если вторичная нагрузка меньше 1 Ом (100 вольт / 100 ампер).

Как рассчитать нагрузку на трансформатор тока
  1. Определите нагрузку устройства, подключенного к ТТ, в ВА или сопротивлении Ом.Эта информация обычно находится на паспортной табличке устройства или в техническом паспорте.
  2. Добавьте импеданс вторичного провода. Измерьте длину провода между трансформатором тока и нагрузкой устройства, подключенного к вторичной цепи (найдено на шаге 1).
  3. Убедитесь, что общая нагрузка не превышает указанные пределы для ТТ.

Комментарии

Всего комментариев 3

Оставить комментарий

Войдите или зарегистрируйтесь, чтобы комментировать.

Подбор трансформатора тока | Выберите подходящий трансформатор тока

Главная »Новости» Как правильно подобрать трансформатор тока

Отправлено: автор: Weschler Instruments

Трансформатор тока (CT) используется для измерения переменного тока в однофазных или трехфазных цепях. В базовом трансформаторе тока приборного класса один первичный проводник проходит через сердечник.

Вторичная обмотка имеет несколько витков для обеспечения более низкого выходного тока, как показано на схеме. Это позволяет размещать измеритель вдали от сильноточной цепи. КИП обычно имеет вторичную обмотку переменного тока 1 А или 5 А, которая подключается к амперметру, измерителю мощности или счетчику энергии. ТТ доступны в различных размерах и стилях со стандартными соотношениями от 50: 5 до 4000: 5. Модели с разъемным сердечником легко модернизируются вокруг существующей проводки. Модели с твердым сердечником предлагают более низкую стоимость.

Трансформаторы тока различаются по размеру (номинальная мощность в ВА), коэффициенту передачи и точности. Рейтинг VA определяет максимальное вторичное полное сопротивление (нагрузку), которое может работать с заявленной точностью.

Типичный аналоговый амперметр с трансформаторным номиналом имеет движение 5 А переменного тока (M). Провода от входных клемм (t1 и t2) вносят небольшое дополнительное последовательное сопротивление. Для работы 50 или 60 Гц измерения сопротивления от t1 до t2 достаточно для определения нагрузки амперметра. Добавьте два сопротивления проводов, чтобы получить полную нагрузку ТТ.Некоторые аналоговые измерители заменяют механизм 5A небольшим внутренним трансформатором тока и электронной схемой, которая управляет механизмом. Тот же метод используется для измерения нагрузки амперметра в этих устройствах.

Во многих цифровых счетчиках аналоговый измерительный элемент (M) заменен шунтирующим резистором (обычно 0,01 Ом) и электронной измерительной схемой. Некоторые цифровые измерители могут заменить шунтирующий резистор внутренним трансформатором тока для изоляции. В обоих случаях измерение сопротивления измерителя и общей нагрузки трансформатора тока такое же, как указано выше.

В «Таблице длины проводов трансформатора тока» ниже указана максимальная общая длина подводящих проводов (Rlead1 + Rlead2) по номиналу ВА для ТТ с вторичной обмоткой 5A. Если расстояние от измерителя составляет 10 футов, то общая длина провода для диаграммы составляет 20 футов. Указанные значения основаны на многожильном проводе, сопротивлении 0,02 Ом метра и температуре 50 ° C. Более высокие температуры увеличивают сопротивление свинца (0,4% / ° C для меди). Обратите внимание, что клеммы на трансформаторе тока также вносят вклад в нагрузку на трансформатор тока, поэтому предполагается подключение с низким сопротивлением.

Компания Weschler Instruments предлагает широкий выбор трансформаторов тока как с твердым сердечником, так и с разъемным сердечником. Все еще не уверены, какой стиль или соотношение сторон подходят для вашего приложения? Свяжитесь с нами сегодня и расскажите о своих потребностях, и один из наших высококвалифицированных продавцов поможет вам.

Как подключить трансформаторы тока?

Как подключить трансформаторы тока?

Первичная обмотка трансформатора тока обычно имеет только один виток.На самом деле это не виток или виток вокруг сердечника, а просто проводник или шина, проходящая через «окно». У первичной обмотки никогда не бывает больше нескольких витков, в то время как вторичная обмотка может иметь очень много витков, в зависимости от того, насколько ток должен быть понижен. В большинстве случаев первичная обмотка трансформатора тока представляет собой одиночный провод или шину , а вторичная обмотка намотана на многослойный магнитный сердечник, размещенный вокруг проводника, в котором необходимо измерить ток, как показано на рисунке 1.

Если первичный ток существует и вторичная цепь ТТ замкнута, обмотка создает и поддерживает противодействующую или обратную ЭДС по отношению к первичной намагничивающей силе.

Если вторичная обмотка размыкается током первичной обмотки, счетчик ЭДС снимается; а сила намагничивания первичной обмотки создает во вторичной обмотке чрезвычайно высокое напряжение, которое опасно для персонала и может вывести из строя трансформатор тока.

Рисунок 1 — Трансформатор тока ВНИМАНИЕ:
По этой причине вторичная обмотка трансформатора тока всегда должна быть закорочена перед извлечением реле из его корпуса или удалением любого другого устройства, с которым работает ТТ.Это защищает ТТ от перенапряжения .

Трансформаторы тока используются с амперметрами, ваттметрами, измерителями коэффициента мощности, ватт-часами, компенсаторами, защитными и регулирующими реле и катушками отключения автоматических выключателей. Один трансформатор тока может использоваться для управления несколькими приборами, при условии, что совокупные нагрузки приборов не превышают тех, на которые рассчитан трансформатор тока.

Вторичные обмотки обычно рассчитаны на 5 ампер. На рисунке 2 показаны различные трансформаторы тока.Часто трансформаторы тока имеют несколько ответвлений на вторичной обмотке для регулировки диапазона тока, который можно измерить на первичной обмотке.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован.