Сварка нержавейки и черного металла электродом: Сварка нержавейки и черного металла

Содержание

Сварка нержавейки и черного металла

Никогда не возникает вопросов, когда производится сварка идентичных по составу металлов. Проблемы возникают, когда свариваются две разные заготовки. И, скорее всего, не проблемы, а трудности, касающиеся правильного подбора технологий и режимов сварки, а также расходных к ним материалов. К примеру, сварка нержавейки и черного металла. Вроде бы две стали, но с разными техническими свойствами. Поэтому правильно варить два этих сплава – это значит, точно подобрать параметры сварочного процесса. Ведь сваренный шов будет держать обе заготовки прочно лишь в том случае, если он состоит из того же металла, что и свариваемые детали.

С черным металлом все более или менее понятно. Это самый распространенный материал, который легко поддается свариванию любыми видами сварки. С нержавеющей сталью все намного сложнее.

Особенности сварки нержавейки

Есть четыре технические характеристики нержавеющей стали, которые делают ее сварку особенной.

  1. Низкая теплопроводность металла. Если сравнить данный показатель с черной сталью, то она у нержавейки в два раза ниже. Это говорит о том, что в процессе нагревания металла он не отводит тепловую энергию, а накапливает в себе. А это чревато повышением температуры на определенном участке, что при сварке обязательно приведет к прожогам. Эту проблему можно решить просто – нужно уменьшить силу тока на 20-30%.
  2. Линейное расширение у нержавейки выше, чем у черного металла. Почему так важно данное значение. Все дело в том, что после большого расширения при нагреве будет происходить обратный процесс – усадка на туже величину, что и расширение. То есть, две заготовки могут порвать сварочный шов, или в нем появятся трещины в большом количестве. Выход из положения – большой зазор между свариваемыми деталями.
  3. Электрическое сопротивление. Этот показатель у нержавейки тоже большой. Он влияет на электрод, а точнее на его перегрев в процессе сварки нержавейки и стали. Поэтому необходимо длину расходника уменьшить до предела 35 см, не больше.
  4. Нержавеющая сталь под действием высоких температур меняет свои качества. То есть, из нержавейки она превращается в обычную сталь. Поэтому очень важно ее не перегревать. При +500С на зернах металла образуется карбидное соединение, которое и снижает антикоррозионные свойства нержавейки. По сути, коррозия начинает происходить на межкристаллических связях. Решается данная проблема по-разному, например, свариваемые детали охлаждаются водой.

Сварка нержавейки с черным металлом

Можно ли, и как сварить нержавейку с черным металлом? Вопрос, который требует особого подхода. Главное – правильно выбрать технология сваривания. Чтобы ее провести, можно использовать:

  • Ручную дуговую сварку плавящимся электродом.
  • Неплавящимся вольфрамовым электродом в среде защитных газов с присадкой или без таковой.

Кстати, в качестве присадочного материала нужно использовать нержавеющую проволоку.

Сказать, что первый способ сварки лучше, а второй нет, или наоборот, нельзя. В каждой технологии есть свои особенности и нюансы. К примеру, чтобы сварной шов при ручной электродуговой сварки был качественным, нужно использовать электроды, с помощью которой можно варить саму нержавейку. Вторая технология предопределяет использование присадки только из нержавейки. Причем в ее состав обязательно должны входить легированные добавки: никель и марганец, редко хром. Но в сварочном шве все же должно быть больше нержавеющей стали. Идеальный шов, если в составе его металла входит 40% чистой нержавейки.

Что касается плавящихся электродов, то они подбираются с учетом состава обоих свариваемых металлов: нержавейки и обычной стали. Все дело в том, что две заготовки могут отличаться не только техническими и механическими параметрами, но и разной степенью свариваемости, наличием или отсутствием легированных материалов, их процентным содержанием.

К тому же присутствие никеля в двух сплавах делит их на несколько категорий: легированные, низко- или высоколегированные, углеродистые или теплоустойчивые. Поэтому, выбирая электрод, придется все это учитывать. Хотя существует определенное правило сварки нержавейки и черной стали. Если хотите получить качественный шов без внутренних трещин – используйте расходник, который используется для сварки высоколегированных сталей. Стержень таких электродов обладает высокими прочностными характеристиками.

Марки каких электродов подойдут для сварки черной стали и стали нержавеющей:

  • НИАТ-5 – прекрасно варит аустенитных металлов.
  • ЦТ-28 – для нержавейки.
  • Э50А – для сплавов с высоким показателем теплоустойчивости.
  • ОЗЛ-25Б – для жаропрочных металлов.

Особенности сварки черного металла с нержавейкой

Особенность соединения двух разноплановых видов сталей заключается в том, что в процессе их нагрева происходит расплав. Металлы становятся мягкими, но нержавейка в этом плане становится текучей, как вода, а черная сталь приобретает вязкую консистенцию. Это и есть большая проблема. Решить ее можно только одним способом – использовать для соединения электрод для сварки нержавейки. К примеру, ОК61.30 – это универсальная марка, или ОК67.45 – этот электрод обычно используется в самых сложных ситуациях, к которым относится сварка нержавеющей стали и стали из черного металла.

Кстати, ручная электродуговая сварка плавящимся электродом в данной ситуации является самой простой по сравнению с другими технологиями. Но использование газосварки считается более качественным вариантом в плане получения шва высокого качества. Все дело в том, что присадочная проволока из нержавеющей стали снижает текучесть основного металла почти в три раза. Из этого можно сделать вывод:

  • Если вам необходимо соединить детали из нержавейки и черного металла в домашних условиях, то выбирайте электродуговую сварку.
  • Если нужно, чтобы соединение смогло выдержать приличные нагрузки, тогда лучше воспользоваться сваркой в среде защитного газа.

Кстати, аргоновую сварку часто для этих целей лучше не использовать, слишком дорого обойдется такое соединение. Можно ее заменить обычной газосваркой, используя в качестве присадки нержавеющую проволоку. Идеально будет, если зону сварки защитить флюсом. Но и его также придется выбирать из расчета сваривания двух разных сплавов.

Режимы для сварки

Толщина соединяемых заготовок, ммДиаметр электрода, ммРод токаСила сварочного тока, А
12постоянный30-60
23постоянный50-80
44постоянный90-130

Технология сварки

Как и во всех сварочных процессах, свариваемые заготовки необходимо подготовить: очистить кромки или торцы металлической щеткой до блеска, обезжирить, если есть такая необходимость. Для обезжиривания можно использовать растворитель или спирт. Если буде производится газосварка, то в стык укладывается флюс.

Сваривать черный металл и нержавеющую сталь лучше в нижнем положении. Таким образом, предотвращается растекание металла. Сваривание плавящим электродом должна производиться с соблюдением точных движений рук сварщика. В основном электрод должен располагаться ближе к черному металлу, потому что он меньше, чем нержавейка, становиться текучим.

При газосварке все эти же процесс происходят точно также, только медленнее. Шов надо формировать глубоким и широким. Чем больше однородного металла между заготовками, тем лучше. Самое главное никаких быстрых способов охлаждения, металл сварочного шва должен остывать медленно.

Конечно, чтобы добиться качества конечного результат, надо иметь опыт сваривания разнородных металлов. Поэтому после завершения сварочной процедуре рекомендуется провести контроль качества шва. Это можно сделать несколькими способами.

  1. С помощью обычного керосина. Его наносят на поверхность шва, а с другой стороны проверяют, не прошел ли он сквозь соединение заготовок. Если керосина с обратной стороны нет, то сварка прошла на высоком уровне.
  2. То же самое можно сделать, используя ацетон. Можно его подкрасить пигментом для лучшего проявления с обратной стороны сварного шва.
  3. Существует так называемый гидравлический способ контроля. Обычно с его помощью проверяется шов на прочность. Если чисто визуально были обнаружены дефекты стыка, то этот вариант проверки качества лучше не использовать.

Становится понятным, что приварить нержавейку к обычной стали, это достаточно ответственный процесс. Не зная тонкостей сварочной технологии, не зная правил выбора расходных материалов, сделать стальной стык качественным не получится. Самое главное, как показывает практика, это поймать ту середину, когда расплавленная нержавейка не стала сильной текучей. А при этом черный металл не остался твердым.

Поделись с друзьями

1

0

0

0

Сварка нержавейки с черным металлом: технология, безопасность, трудности

Электродуговая сварка является, пожалуй, одним из самых распространённых методов соединения металлических деталей. Технологически процесс сваривания металла выглядит таким образом: под действием электрической дуги, металл в зоне варки плавится и, смешиваясь, соединяет детали. Фактически получается одна целая деталь, поэтому сварочное соединение по характеристикам равно цельнометаллической детали.

Сварка нержавейки с черным металлом

Разные сплавы имеют разную температуру плавления и текучесть, поэтому иногда появляются сложности, когда требуется сварить два разных вида металла. Например, нержавейку и чёрный металл.

Можно ли сварить чёрный металл с нержавейкой

Ещё на заре зарождения электродуговой сварки, изобретатель Николай Гаврилович Славянов представил публике небезызвестный «Стакан Славянова». Этот стакан примечателен тем, что он состоит из семи металлов, которые нельзя сплавить естественными методами. Несмотря на различные характеристики чёрного металла и нержавейки, сварить их, тем не менее можно. О том, как происходит сварка нержавейки с простым чёрным металлом, основных трудностях процесса и способах их решения будет рассказано ниже.

Схема сварки нержавейки с черным металлом

Трудности в сварке разнородных сталей

Как говорилось выше, при варке сплавов разных сортов, а также во время сваривания сталей разных марок, могут возникнуть некоторые сложности. Основные трудности, которые могут возникнуть:

  • Разная теплопроводность. Может служить причиной прожога деталей во время сварочного процесса. Чем хуже металл отводит тепло от сварочной ванны, тем выше её температура. Уменьшение сварочного тока снижает температуру, но может привести к непровару в соединении.
  • Разное линейное расширение. При нагреве все тела увеличиваются в размерах, при остывании, соответственно принимают прежние размеры. Таким образом, изменение размера в процессе остывания могут послужить причиной разрыва сварочного шва или образованием в нём трещин.
  • Разница в электрическом сопротивлении. Влияет на перегрев электрода во время сварочного процесса. Это также сказывается на прочности шва.

Разнородные слои при сварке

Перегрев некоторых видов металлов ведёт к печальным последствиям. Нержавейка, например, при температуре свыше 500 градусов теряет свои свойства. То есть из нержавейки она превращается в обычный чёрный металл. Сварка приводит к перегреву стали в месте шва, поэтому на месте сварочного шва часто выступает ржавчина. Несмотря на кажущиеся трудности, сварка нержавейки и чёрного металла возможна при соблюдении ряда определённых правил.

Технологии сварки нержавейки и чёрного металла

Перед тем как ответить на вопрос «как сварить нержавейку с обычным чёрным металлом», следует рассмотреть существующие способы получения сварного соединения. Наиболее распространены следующие способы:

  • MMA. Ручная электродуговая сварка при помощи электрода в специальной обмазке.
  • MIG. Полуавтоматическая сварка в среде защитного газа с применением специальной проволоки.
  • TIG. Сварка в среде инертного газа неплавящимся вольфрамовым электродом.

MMA-сварка

Практически все виды металлов, в том числе и нержавейку с чёрным можно сваривать электродом, однако, потребуется подобрать электрод, обладающий определёнными характеристиками. В принципе, при этом получается неплохое соединение, однако, в промышленных условиях сварка разнородных сталей нержавеющей обычной производится в среде защитного газа. Это обусловлено тем, что сварной шов, при контакте с воздухом, насыщается азотом и становится довольно хрупким. Что является недопустимым при создании ответственных или несущих конструкций, поэтому, например, способы сварки швеллеров между собой предусматривают исключение попадания воздуха к остывающему сварному шву. При сварке большинства изделий, изготовленных из нержавейки, в качестве защитного газа используется аргон. Он обладает большой инертностью и не вступает в реакцию с расплавленным металлом в зоне шва. Также аргон имеет молекулярную массу выше, чем у воздуха, поэтому полностью вытесняет его из зоны сварки.

Технология сварки нержавейки с черным металлом

В процессе сваривания, плавится больше нержавеющая сталь, а чёрный только-только становится вязким. Для равномерного распределения расплавленного металла и получения прочного и красивого шва, свариваемые детали необходимо расположить строго горизонтально. В принципе, этого требуют все методы сварки нержавейки.

Дополнительно стоит упомянуть, что во время процесса сваривания, электрод должен находиться строго перпендикулярно свариваемой поверхности.

Сварку всегда ведут только при постоянном токе, переменка при варке нержавейки и чёрной стали – недопустима. Всё это позволит достичь высокого качества и прочности сварных швов. Помимо техники, немаловажным фактором, играющим большую роль в получении прочного шва, является правильный выбор присадочной проволоки или электрода.

Применяемые электроды

Разобравшись с технологией сварки, можно переходить к вопросу какими электродами и присадочной проволокой следует воспользоваться для сварки чёрного металла и нержавейки. Проволока, применяемая в процессе сваривания двух различных сталей должна содержать не менее 30% основного материала. Степень его легирования должна быть такой же или выше, как у свариваемых металлов. В случае с нержавейкой и чёрным – основным материалом является нержавеющая сталь (как имеющая наиболее высокую степень легирования). Остальную долю в присадочном материале занимает никель и марганец.

Электроды для сварки

В принципе, хорошее сварное соединение для не сильно ответственных конструкций, можно получить и без применения специальных расходных материалов. Чаще всего применяются для соединения нержавеющей и обычной стали нержавеющий электрод или нержавеющая присадочная проволока. Такие электроды содержат повышенное количество легирующих компонентов, позволяющих компенсировать их выгорание в процессе нагрева.

Если необходимо сварить какую-либо ответственную конструкцию, следует обратить внимание на специальные переходные электроды для варки разнородных или трудно свариваемых сталей. При их использовании наплавляется специальный промежуточный (или буферный) слой, который и позволяет соединить детали. Наиболее часто используются электроды ОЗЛ-312 (в случае, когда химический состав сталей вообще неизвестен) и НИИ-48Г.

Как проконтролировать качество соединения

Проверку полученного шва проводят после полного его остывания. В первую очередь производят визуальный осмотр поверхности на наличие трещин или прожига деталей. Если требуется герметичность соединения, то проверку продолжают с применением керосина или аммиака. С помощью керосина проверяются микротрещины, которые могли возникнуть в процессе сваривания. Для этого с одной стороны проверяемого шва наносят меловой раствор, а с другой стороны — керосин, подкрашенный красителем. Если меловой раствор изменил цвет – герметичность шва отсутствует. В том месте, где произошло окрашивание и отсутствует герметичность. Эффект окрашивания основан на капиллярном проникновении керосина по микротрещинам. Именно керосин также выбран неслучайно, эта жидкость имеет очень большую текучесть. Проверка аммиаком не отличается от проверки с помощью керосина, только в этом случае меловой раствор заменяют специальными индикаторами, меняющими цвет.

Качество соединения шва

Ответственные замкнутые конструкции можно также проверить и на герметичность, и на прочность одновременно. Для этого используется искусственно создаваемое гидравлическое давление.

Важно помнить, что если есть подозрение в заведомо слабом сварном шве, то применять этот способ категорически запрещено.

Проверка качества шва позволит быть уверенным, что удалось качественно сварить детали.

Правила безопасности

При проведении любых сварочных работ всегда необходимо соблюдать правила техники безопасности. Особенно это касается процесса сваривания нержавейки и чёрной стали.

Техника безопасности

Нержавейка очень текуча в расплавленном состоянии и может сильно разбрызгиваться, поэтому всегда необходимо надевать защитный костюм сварщика и рукавицы.

Сварочную маску также желательно выбирать закрытого типа.

Сварка нержавейки с черным металлом: технологии

С процессом сваривания нержавеющей стали может справиться далеко не каждый сварщик. Связано это с техническими характеристиками этого материала. Больше сложностей возникает при сварке нержавейки с черным металлом. Чтобы создать прочное соединение между этими материалами, необходимо правильно выбрать режим сваривания и учитывать ряд особенностей.

Сварка трубы из разных металлов

Если говорить о производстве, технологии сваривания нержавеющей стали с черным металлом, то она является изначально неправильной из-за разности материалов, их свойств, технических характеристик. Однако выполнить соединение можно.

Поскольку на предприятиях требуется соблюдение ГОСТов, такой способ соединения металлов востребован в небольших мастерских. Но для получения хорошего соединения нужно знать химический состав свариваемых компонентов, иметь практический опыт работы с ними.

Трудности в сварке разнородных сталей

Сварка нержавейки с черным металлом вызывает определенные трудности. Связано это с отличиями в технических характеристиках, химическом составе двух сталей. К ним относятся:

  1. Наиболее слабым местом после проведения работ является стык спайки. Объясняется это тем, что у двух материалов есть различие по коэффициенту линейного расширения. Из-за этого после процесса сваривания остаются внутренние напряжения.
  2. Неравномерность проплавки возникает из-за разницы в показателе теплопроводности. Это негативно влияет на прочность готового шва.
  3. Эффект миграции углерода. Ухудшает антикоррозийную защиту готового изделия. Из-за этого шов быстрее покроется слоем ржавчины.

Инструмент

Для проведения работ необходимо подготовить сварочный аппарат, дополнительные инструменты, расходники, проволоку определенного химического состава. Список требуемых приспособлений, материалов:

  1. Инверторный сварочный аппарат.
  2. Присадочная проволока из нержавеющей стали.
  3. Электроды (количество зависит от размеров шва, количества свариваемых деталей).

Отдельно необходимо поговорить о выборе электродов. Существует несколько основных типов расходных металлических стержней с особым покрытием:

  1. ОЗЛ-25Б — применяется для соединения жаропрочных сталей.
  2. НИАТ-5 — используется при сварке аустенитних материалов.
  3. ЦТ-28 — применяется для сваривания сплавов на основе никеля.
  4. Э50Ф — используется для соединения теплоустойчивых металлов.

Нельзя забывать про настройку сварочного материала. Принципы выбора режимов:

  1. При толщине детали в 1 мм, применяют постоянный ток силой до 60 А (электрод 2 мм по диаметру).
  2. При толщине заготовки 2 мм, выставляют переменный ток силой до 80 А (электрод 3 мм по диаметру).
  3. При толщине детали 4 мм, применяют постоянный ток силой до 130 А (электрод 4 мм).

Если сила тока будет слишком большой, материалы повредятся.

Инвертор с маской и электродами

Технологии сварки нержавейки и черного металла

Существует несколько особенностей сваривания нержавеющей стали с черным металлом:

  1. Нержавейка имеет высокий коэффициент линейного расширения. Из-за этого между соединяемыми заготовками требуется делать большие зазоры.
  2. Нужно быстро охлаждать свариваемые металлы, чтобы сохранить коррозийную устойчивость.
  3. Следует работать только короткими электродами, длиной до 350 мм. Использование длинных стержней с покрытием приведет к их перегреву при проведении рабочего процесса.
  4. Сила сварочного тока должна снижаться на 20% из-за низкой теплопроводности нержавейки. Это поможет сохранить технические характеристики готового изделия.

Приварить нержавейку к черному металлу можно путем использования:

  1. Электродов из высоколегированной стали, чтобы заполнить шов. Допускается применять стержни с никелевым покрытием.
  2. Легированных электродов для наплавки кромок из черной стали. После этого шов создается с помощью плакированной стали, которая заполняет шов.

Перед свариванием нужно:

  1. Подготовить расходники, изготовленные на никелевой основе.
  2. Прокалить электроды. Оптимальная температура до 210 градусов в течение 1 часа.
  3. Подключить постоянный ток.
  4. Зачистить металлические поверхности от грязи, налета, палы, ржавчины.

Рекомендации:

  1. Если применяется газовая сварка, нельзя выполнять быстрое охлаждение готового шва. Деталь должна остывать самостоятельно.
  2. Рекомендуется наносить флюс на рабочую зону, чтобы сделать более качественное соединение.
  3. При использовании вольфрамового стержня, не забывать затачивать его наконечник.
  4. Сварка в среде защитного газа является предпочтительной, поскольку готовый шов будет более прочным.
  5. При сваривании нужно захватывать больше черного металла. Это позволит создать более прочный шов на молекулярном уровне.
  6. Движения должны быть аккуратными, неторопливыми.

Как проконтролировать качество соединения?

Существует три способа проверки шва:

  1. Покрыть поверхность соединения керосином. Нельзя жалеть количества жидкости во время проверки. Если керосин выступил с другой стороны — шов плохой.
  2. Второй вариант попытки — применение ацетона. Он наносится точно так же, как и керосин. Проступившие на другую сторону шва капельки говорят о наличии микротрещин, сквозных отверстий.
  3. Промышленный метод проверки прочности швов — гидравлический способ. После его проведения, требуется осмотреть соединение визуально. Если появились дефекты, деталь бракуется.

Если мастер знает, что соединение получилось слабым, он не будет применять методы проверки, связанные с разрушением деталей. Любые неровности, трещины, углубления указывают на неправильное проведение работ.

Ацетон для проверки шва

Меры безопасности

Сварочные работы выполняются со строгим соблюдением правил техники безопасности:

  1. Никогда не применять неисправное оборудование. Проверять аппарат заранее, осматривать рабочие элементы, провода на наличие возможных пробоев.
  2. Электроды должны быть новыми, со сохранившимся рабочим слоем. Нельзя использовать треснутые стержни.
  3. Подготавливать рабочее место заранее. Убрать все горючие смеси подальше, очистить стол от ненужных предметов, которые могут помешать проведению сварочных работ.
  4. Сварка считается вредным технологическим процессом. Поэтому нужно использовать маску сварщика, защитный комбинезон, перчатки, прочную обувь.
  5. Под ноги положить резиновый коврик, чтобы исключить удары током.
  6. Помещение, в котором проводятся сварочные работы, должно быть оборудовано хорошей системой вентиляции.
  7. Для удобства желательно проводить работы на металлическом рабочем столе.

Работая с баллонами, наполненными инертными газами или кислородом, необходимо вытирать любые подтеки масла в рабочей зоне.

Любой сварщик знает, как сложно сваривать детали из нержавейки между собой. Процесс усложняется, если нужно соединить нержавеющую сталь с черным металлом. Поэтому необходимо точно определить компоненты материалов, подобрать электроды, рабочий режим аппарата. Во время рабочего процесса нужно учитывать советы профессионалов.

Сварка нержавейки с черным металлом: способы, технология и оборудование

Основная сложность процесса сварки черных металлов (Ст3, Ст20) и нержавеющей стали (12Х18Н9, 12Х18Н10) заключается в том, что эти материалы хоть и являются разновидностью стали, но при этом абсолютно разные по техническим свойствам. Чтобы получить высококачественное соединение в процессе сваривания, в первую очередь, надо ответственно подойти к выбору электродов.

Особенности и сложности сварки нержавейки с черным металлом

Среди свойств, которые влияют на процесс сварки, следует выделить:

  1. Сопротивление. Для того чтобы электрод не перегревался вследствие высокого сопротивления нержавейки к подающемуся току, сердцевина электрода изготавливается из сплава хрома и никеля.
  2. Теплопроводность. Нержавейка имеет маленькую теплопроводность, что позволяет улучшить проплавление материала в зоне формирования шва. Вследствие этого перед процессом сваривания нужно правильно рассчитать силу сварочного тока.
  3. Повышенная подверженность коррозии. Нержавеющая сталь, подвергаясь температурам свыше 500°С, полностью меняет свои свойства, по сути, превращаясь в черный металл. По этой причине в зоне сварочного шва часто проявляется коррозия.
  4. Линейное расширение. Во время сварки металл подвергается сильным деформациям из-за высокого коэффициента линейного расширения свариваемых материалов. По завершении процесса во время остывания также возможны существенные деформации. Во избежание этого следует оставлять более широкие зазоры меду свариваемыми металлами.

Одной из основных проблем, с которой сталкиваются специалисты при данном виде сваривания, является высокая вероятность возникновения трещин шва, которые проявляются по завершении процесса. Это происходит по причине неоднородной структуры шва и избежать трещин можно при правильном выборе электродов и использовании нержавеющей присадки с содержанием марганца и никеля. Также для хорошего соединения в шве должно присутствовать не более 40% основного металла.

Кроме того, причиной плохой свариваемости нержавейки с черным металлом является образование хрупкой прослойки, возникающей в процессе сварки, вследствие чего уровень легирования нержавеющей стали снижается и становится приближенным к черным металлам. Если прослойка достигает критической величины, то соединение подвергается разрушению.

Способы сварки черного металла и нержавейки: технология и оборудование

Электродуговая сварка является наиболее простым способом сваривания нержавейки с черным металлом. Часто ее выбирают по причине высокой скорости процесса и простоте подготовки материалов к свариванию. Однако стоит упомянуть, что при использовании этого способа будет очень сложно достигнуть хорошего качества шва. Упростить задачу можно, подобрав качественные электроды из нержавейки с правильным покрытием. При сваривании электродом результат достигается за счет снижения температуры сварочной ванны, которое достигается добавлением в состав электрода марганца и никеля. При использовании таких электродов существенно уменьшается ширина хрупких прослоек.

Оборудование для электродуговой сварки включает в себя:

  • источник сварочного тока;
  • сварочный кабель с держателем для электрода;
  • обратный кабель для соединения источника со свариваемым изделием.

Если решили варить полуавтоматом, то лучше варить в среде защитного газа. Это позволит добиться наиболее качественного шва. Для данного метода используется сварочный полуавтомат, включающий в себя:

  • источник питания;
  • механизм подачи сварочной проволоки;
  • сварочный рукав с горелкой;
  • баллон с защитным газом;
  • обратный кабель.

При аргнодуговой сварке неплавящимся электродом стоит обратить внимание на то, что в зоне формирования шва идет крайне интенсивный нагрев металла, что при остывании изделия может привести к образованию трещин. Поэтому этот метод сварки самый нежелательный, его рекомендуется применять только для сварки тонкого метала.

Сварка нержавейки и черного металла электродом,полуавтоматом,аргоном

Как известно, нержавейка является одним из самых трудно свариваемых металлов. Далеко не всегда получается сварить его с другой нержавеющей сталью, не говоря уже о металле иного рода. Но все же иногда требуется сварка металла с нержавейкой для каких-либо целей и это нужно сделать как можно более качественно. Здесь требуется особый опыт, так как проблемный материал отличается повышенной текучестью, что при однородности еще как-то сносно. Но если требуется соединение с черным металлом, который не только ведет себя более вязко при сварке, но еще и имеет другую температуру плавления, то здесь возникает ряд проблем.

Сварка нержавейки и черного металла

Сварка нержавейки и черного металла требует подбора правильного режима, инструментов и расходных материалов. К примеру, присадку здесь используют только из нержавейки с марганцем и никелем, так как в ином случае будет резко падать качество шва. Количество дополнительных элементов в присадке должно быть выше, чем в самом материале, который подвергается процедуре. При самом сваривании стараются сделать шов на максимальной глубине, чтобы добиться наилучшего перемешивания материала электрода, или проволоки, нержавейки и черного металла.

Можно ли сварить черный металл с нержавейкой?

На производстве, где все делается исключительно по правильной технологии практически не возникает вопросов, как приварить нержавейку к черному металлу. Ведь сваривание любых различных металлов, особенно таких, является неправильным и не отличается достаточной крепостью за счет минимальной однородности соединения. Также практически не возникает потребности в проведении такой процедуры. Но чисто с физической точки зрения такая процедура вполне реальная. В домашних условиях она встречается намного чаще, так как здесь нет потребности в точном соблюдении технологий. При самом процессе сваривания лучше придерживаться технологии, как это идет с нержавеющей сталью, а также желательно иметь опыт работы с ней. В лучшем случае, нужно знать химический состав обоих компонентов, чтобы сделать правильный выбор расходных материалов.

Способы сварки

Одним из самых простых способов соединить два эти материала является сварка нержавейки и черного металла электродом при помощи электрической сварки. Это происходит достаточно быстро и требует минимум дополнительных процедур, но здесь же возникают проблемы с качеством. Дело в том, что из-за высокой температуры сталь будет растекаться и вести себя, как вода, тогда как черный металл будет оставаться вязким. В этой же ситуации отпадают варианты сделать потолочный или вертикальный шов, так как все попросту стечет вниз. Здесь используются электроды из нержавейки с соответствующим покрытием.

Сварочный аппарат для сварки нержавейки

Вторым способом является газовая сварка, где в качестве присадки также выступает нержавеющая проволока. Текучесть материала здесь снижается, примерно, в три раза, так что этот способ более предпочтителен. В данном случае нужно дополнительно использовать флюс, который бы позволил лучше расплавить черный металл для взаимодействия. Но данный способ сложнее за счет длительной подготовки и техники безопасности использования газовых баллонов.

Сварка нержавейки и черного металла аргоном может считаться самой качественной и надежной. Здесь не используется покрытие проволоки, так как аргон выступает в роли защиты от внешнего воздействия. В то же время  это сложный и дорогостоящий процесс, который не всегда рационально использовать для таких целей.

Сварка нержавейки и металла аргоном

Выбор способа

Если вам требуется сделать что-то для домашних условий или же просто проверить, можно ли сварить черный металл с нержавейкой, то лучше использовать обыкновенную электродуговую сварку с нержавеющими электродами. Как правило, ее качества оказывается вполне достаточно для тех целей, для которых все будет использоваться. Если же детали будут подвергаться сильным нагрузкам или находятся в неудобном положении, то лучше использовать газовую сварку, так как она упростит процедуру образования шва и уменьшит, тем самым, количество ошибок. Сварка нержавейки с углеродистой сталью при помощи аргона используется редко и только для самых ответственных случаев, когда это просто необходимо.

Выбор инструмента

Чтобы точно подобрать инструмент, следует точно знать конкретный состав обоих материалов. Это не всегда удается сделать, поэтому, зачастую приходится ориентироваться примерно. Для такого процесса используются следующие типы электродов:

  • НИАТ-5 – отлично подходит для сварки аустенитних металлов;
  • Э50Ф – используется для сваривания теплоустойчивых материалов;
  • ЦТ-28 – применяется для сплавов, в которых имеется никель;
  • ОЗЛ-25Б – для жаропрочных сталей.

Режимы

Толщина материалов, ммРод используемого токаНапряжение, ВСила тока, АДиаметр электрода, мм
1постоянный30-602
2переменный50-803
4постоянный90-1304

Технология

Перед тем как варить нержавейку, нужно провести подготовительные процедуры. Здесь нужно тщательно очистить поверхность на обоих деталях. Это производится механическим путем с помощью щетки, наждачной бумаги и в конце нужно протереть ветошью, чтобы не оставалось пыли и мусора. Когда все оборудование будет готово, следует нанести флюс на то место, где будет проходить соединение.

Здесь очень важно поставить все в максимально удобное горизонтальное положение, чтобы материал растекался равномерно. Сварка нержавейки и черного металла инвертором требует точных движений, так как нержавеющая сталь будет плавиться быстрее и нужно как можно больше захватить сторону черного металла.

Сварка нержавеющей стали инвертором

Это же происходит и при газовой сварке, только все процессы происходят несколько медленнее. Шов должен получиться максимально глубоким и широким, чтобы увеличить однородность материала в месте его прохождения. После завершения работы металлу нужно дать медленно остыть.

Контроль качества

Качество полученного соединения можно проверить при помощи следующих методов контроля:

  • Керосином – что основано на капиллярном проникновении этой жидкости;
  • Аммиаком – что использует принцип окраски индикаторов при его воздействии;
  • Гидравлическим давлением – что может стать одновременно и проверкой прочности.

«Важно!

При заведомо слабом соединении не следует применять методы контроля с разрушением.»

Меры безопасности

Когда происходит сварка нержавейки и черного металла полуавтоматом, то нужно соблюдать правила электробезопасности. Также следует защищаться от возможного разбрызгивания стали, что может привести к тяжелым ожогам.

Как правильно сварить нержавейку с черным металлом?

Сварка нержавейки с изделиями из черного металла является весьма проблематичной, потому что сама по себе нержавеющая сталь является материалом, сваривать который очень сложно. Бывает, что не получается соединить одноплановые изделия, выполненные из нержавейки.

Сварочные работы, связанные с необходимостью сварить черный металл и нержавейку, могут выполняться только очень опытным сварщиком. Дело в том, что такой материал, как нержавеющая сталь, обладает очень высокой текучестью по сравнению с обыкновенным металлом, кроме того, они имеют различную температуру плавления.

Возможность сваривать такие изделия появляется только при наличии специального оборудования, правильной его настройки, грамотного подхода к выбору расходных материалов. Например, присадочная проволока берется только из нержавеющей стали, куда должен быть добавлен никель и марганец. Если этих элементов не будет, то качество сварного соединения будет значительно ниже. В процессе проведения работ, стараются выполнять шов на наибольшей глубине, чтобы сваренные разнородные изделия обменивались частицами по всей своей толщине.

Можно ли сваривать сталь с нержавейкой?

Сварка нержавейки и черного металла в условиях промышленного производства с соблюдением всех технологических особенностей не представляет собой нечто особо сложное. Стоит отметить, что с физической точки зрения подобный процесс является вполне выполнимым.

В условиях домашней сварки это сделать тоже весьма реально, тем более что в этом случае наиболее серьезных требований к качеству сварного соединения не предъявляют. Чтобы соединение получилось наиболее долговечным, желательно иметь определенный опыт в области сваривания нержавейки.

Какую технологию использовать?

Черные и нержавеющие детали проще всего соединять друг с другом при помощи специальных электродов и электрической сварки. Осуществляется это довольно быстро, не требует привлечения каких-то дополнительных средств, однако, качество шва оставляет желать лучшего. Это связано с тем, что под воздействием высоких температур нержавейка становится очень жидкой, а сталь продолжает сохранять вязкость.

Сделать потолочный или вертикальный шов в данном случае практически невозможно, так как расплавленный материал будет попросту стекать вниз. Для проведения работ берут только качественные электроды из нержавейки, которые должны иметь соответствующую обмазку.

Возможно сваривать сталь и нержавейку за счет газовой сварки. В качестве присадочного материала здесь используют проволоку, также изготовленную из нержавеющей стали. Данный расходный материал позволяет значительно снизить текучесть стали, что помогает получить более качественное соединение.

В случае с газовой сваркой придется применять флюс, который позволит примерно уравнять текучесть стали и нержавейки. Эта технология значительно сложнее в плане проведения подготовительных работ, нужно будет соблюдать определенные правила техники безопасности, касающиеся использования газовых баллонов.

Сварка нержавейки с черными металлами зачастую производится в аргоновой среде. Данный метод принято считать наиболее надежный, так как он  позволяет получить сварное соединение самого высокого качества. Покрытия проволоки здесь может и не быть, так как газовая среда из аргона будет надежно предохранять сварную ванну от попадания воздуха. Однако сама по себе данная технология очень сложная и стоит дорого, поэтому пользоваться ей для подобных целей далеко не всегда имеет смысл.

Технология работ

Перед тем как приступить к свариванию нержавейки и черной стали, нужно правильно подготовить не только сами изделия, но и все необходимое оборудование. Участки деталей, поблизости от которых должен будет формироваться шов, очищают от оксидной пленки с помощью металлической щетки угловой шлифовальной машинки. На стальной заготовке не должно быть следов коррозионных процессов.

После окончания подготовки на место будущего формирования соединения следует нанести флюс. Элементы устанавливают в горизонтальное положение – так их сваривать будет наиболее удобно: данный подход позволяет обеспечивать наиболее равномерное растекания стали по шву.

Движения должны быть уверенными и очень точными. Это связано с тем, что сталь будет расплавляться значительно медленнее по сравнению с нержавейкой. Следует стараться как можно больше захватить черного металла, чтобы изделия хорошенько проникли друг в друга на молекулярном уровне.

Примерно то же самое производится в процессе изготовления шва при помощи газовой сварки, однако все здесь будет происходить значительно медленнее. Шов делают как можно шире и максимально глубоким, чтобы на участке его формирования материал получился наиболее однородным. После того как работы будут завершены, дают изделию полностью остыть.

Как проконтролировать качество соединения?

Когда сварное соединение достигнет приемлемой температуры (хотя бы 40 градусов), приступают к контролированию его прочности и ряда других параметров. Сделать это можно следующим образом:

  • При помощи керосина, принцип действия которого базируется на капиллярном проникновении через кристаллическую решетку стали;
  • Аммиаком: тут контроль основывается на принципе окрашивания индикаторов при его непосредственном воздействии;
  • Гидравлические методы, которые позволяют не только получить сведения относительно надежности шва, но и проверить, насколько прочным он получился.

Если соединение заведомо довольно слабое, то используют разрушающие методы контроля.

Меры безопасности

Техника безопасности очень важна при проведении сварных работ. Прежде всего, следует надежно защитить глаза от воздействия интенсивного излучения ультрафиолетового типа. Кроме того, надевают на руки и на ноги плотную одежду, которая не допустит попадания на кожу расплавленного металла. Очень важно соблюдать правила использования электрических установок, газовых баллонов и другого оборудования, так как при неверном применении они могут стать причиной возникновения угрозы жизни либо здоровью человека, работающего с ними при производстве сварных соединений самого разного рода.

Как приварить нержавейку к черному металлу

Сварка двух деталей из различных видов металла сопряжена с определенными трудностями: отличия температуры плавления, химические и физические свойства. Для решения этих задач используют различные методы. Чаще всего возникает вопрос, как правильно сварить вместе нержавейку и черный металл. Для этого следует ознакомиться с особенностями процесса.

Трудности сварки разнородных сталей

Для обеспечения качественного сварного шва необходимо учитывать толщину заготовок, направление сварки, режим работы аппарата и марку электродов. В месте соединения при температурном воздействии будут происходить специфические процессы.

Нужно учитывать следующие нюансы сварки нержавейки и черного металла:

  • Использование присадки из нержавеющего состава. В ней должно быть больше никеля, марганца и хрома. Это обеспечит хорошую связь с металлами.
  • Заполнение шва основным металлом – до 40%, по 20% от черного и нержавейки. Остальной объем заполняется присадкой. Показатель для основного материала можно изменить в меньшую сторону, используя автоматический или полуавтоматический режим сварки.
  • При выборе электрода учитывается химический состав свариваемых материалов, их физические свойства при расплавлении.

Главная задача при выполнении этого типа работ – добиться максимально качественного сварного шва. Явные признаки неправильно выбранного режима работы аппарата или марки электрода – формирование каверн, неоднородностей в месте соединения материала.

Описание способов сварки нержавейки и черного металла

Самый распространенный метод качественного соединения заготовки из нержавеющего металла и черного — электродуговая сварка. Ее можно сделать с помощью инвертора или другого аппарата. Для стабильной дуги необходимо использовать постоянный ток, его величина определяется шириной и глубиной шва. Также можно использовать дополнительные возможности сварочного аппарата: форсированный старт, стабилизация дуги, предотвращение прилипания электрода. Это поможет сделать качественное соединение.

При выполнении работ следует обратить внимание на такие тонкости:

  • Направление сварки. Важно, чтобы расплавленная присадка не вытекала из области шва. Поэтому не рекомендуется выбирать вертикальное или потолочное положение заготовки.
  • Место соединения должно быть однородным. Точечный метод в данном случае будет неэффективным и значительно снизит качество состыковки металлов.
  • Технология остывания соединения. Нельзя воздействовать низкими температурами, так как разница температурного расширения станет причиной появления дефектов. Остывание должно происходить естественно, при положительной температуре.
  • Из-за разницы в свойствах шов будет ржаветь. Это необходимо учесть при дальнейшей эксплуатации металлоконструкции.

Для получения по-настоящему качественного соединения рекомендуется использовать аргоновую сварку. В качестве присадки используется нержавеющая проволока. Сложность этого процесса заключается в точном выставлении температурного режима воздействия. В домашних условиях сделать это проблематично. Но подобная технология используется для приваривания нержавейки к черному металлу в заводских условиях.

Выбор электродов

Для формирования качественного шва с помощью электродуговой сварки необходимо проанализировать состав материалов – нержавейки и черного металла. На основе полученных данных подбирается оптимальная модель электродов. Если есть сомнения в правильности выбора – рекомендуется купить несколько пробных стержней для пробного сваривания.

Популярные модели электродов для сваривания различных типов металла:

  • Э50А. Они применяются для соединения с теплоустойчивыми сортами стали.
  • ОЗЛ-25Б. Рекомендуется использовать при работе с жаропрочными видами.
  • НИАТ-55. С помощью этих электродов происходит соединение нержавейки и аустенитных сталей.
  • ЦТ-28. Область применения – работа с материалами с повышенным содержанием никеля.

О правилах выбора электродов для сварки нержавеющей стали читайте здесь.

Основные характеристики указываются производителем на упаковке. Важно уметь расшифровать маркировку. При выборе учитывается возможный объем шлака и наплавки. Эти параметры можно сравнить с заявленными только после формирования пробного шва.

Урок 5 — Сварка присадочных металлов для нержавеющих сталей

Урок 5 — Сварка присадочных металлов для нержавеющих сталей

©
АВТОРСКИЕ ПРАВА 2000 УРОК ГРУППЫ ЭСАБ ИНК.
V 5.22 ЭЛЕКТРОДЫ
ДЛЯ
СВАРКА
В РОЛЯХ
УТЮГ
ВСТУПЛЕНИЕ
ТРАНСЛИРОВАТЬ
ЖЕЛЕЗНЫЙ Cast
железо — это высокоуглеродистый сплав железа, обычно содержащий 3,5% углерода или более. Там
несколько категорий
из чугуна. Чаще всего называют серым чугуном, потому что большая часть
углерод отделился от железа
и рассыпается по материалу в виде мелких
чешуйки свободного графита.Этот
графит делает изломанную поверхность серой. 5.22.0.1
Если серый чугун быстро охлаждается от
в расплавленном состоянии углерод остается связанным с
железо в виде очень твердого карбида железа, называемого цементитом. Наличие
цементит делает
железная масса очень твердая и хрупкая. Поверхность излома кажется белой; следовательно,
имя «белый»
железо ». Белое железо не сваривается.
5.22.0.2 Когда
белый чугун повторно нагревается до высокой температуры, карбид железа берется
решение.Если нагретый утюг
охлаждается очень медленно, углерод остается в растворе в железе, и
результат «податливый
железо ». 5.22.0.3
Когда небольшое количество определенных элементов,
такие как магний, добавляются к расплавленному
железо, магний действует как ядра углерода, образуя небольшие сферы или узелки
при охлаждении. Этот
называется «чугун с шаровидным графитом». 5.22.0.4
Серый чугун не пластичный; белый
железо очень твердое и хрупкое; ковкое железо — причина
невероятно мягкий и пластичный; и узловой
железо пластичное.5.22.1
Никель-Арк
55 (AWS
A5.15
Класс ENiFe-CI)
— Электроды Nickel-Arc 55 имеют сердечник
проволока из 55% никеля и 45% железа. Этот
комбинация была разработана специально для нанесения трещин
свободные сварные швы в чугуне. Электроды хорошо подходят как для чередования
текущий и прямой
Текущий. Металл шва с высоким содержанием никеля обладает способностью поглощать углерод.
это вымыто
из чугуна и по-прежнему остаются прочными и пластичными.Наплавленный металл
легко обрабатывается.
5.22.1.1 Звук,
Ремонтные и соединительные швы без трещин могут быть серыми, пластичными и
чугун с шаровидным графитом с электродами Nickel-Arc 55.
Если свариваемая деталь представляет собой использованную отливку, масло
и смазку нужно выгореть перед
сварка во избежание пористости. А.
Типичные свойства
Никель-Арк
Сварной металл:
Прочность на растяжение (фунт / кв. Дюйм) 58,500
Твердость сварного шва в сером чугуне
90-100 Р б
Обрабатываемость
Отличный цвет
Match Good

% PDF-1.4
%
206 0 объект
>
эндобдж
xref
206 13
0000000016 00000 н. NMe} I] N3 * 0LI: ђc.| ot t͆cY1Kbk;! sqq & K.sy⯗R @ ֘ {wͳ {q4Qs A @ ہ V ؘ X

общее описание и свариваемость черных металлов, сварочные позиции, сварочные аппараты и другие сварочные системы резки Плазменная сварка

ОБЩЕЕ ОПИСАНИЕ И СВАРОЧНОСТЬ ЧЕРНЫХ МЕТАЛЛОВ

7-10. СТАЛЬ С НИЗКИМ УГЛЕРОДАМИ

а. Общие . К низкоуглеродистым (мягким) сталям относятся стали с содержанием углерода до 0,30% (рис.7-7). В большинстве низкоуглеродистых сталей содержание углерода составляет от 0,10 до 0,25 процента, марганца — от 0,25 до 0,50 процента, фосфора — не более 0,40 процента, а серы — не более 0,50 процента. Стали этого диапазона наиболее широко используются в промышленном производстве и строительстве. Эти низкоуглеродистые стали не затвердевают заметно при сварке, и поэтому не требуют предварительного или последующего нагрева, за исключением особых случаев, например, когда необходимо сваривать тяжелые секции. В целом при сварке низкоуглеродистых сталей трудностей не возникает.Правильно выполненные сварные швы из низкоуглеродистой стали будут равны прочности основного металла или превосходить его. Низкоуглеродистые стали мягкие, пластичные, их можно прокатывать, штамповать, резать и обрабатывать как в горячем, так и в холодном состоянии. Они поддаются механической обработке и легко свариваются. Литая сталь имеет шероховатую темно-серую поверхность, за исключением случаев механической обработки. Стальной прокат имеет тонкие линии на поверхности, идущие в одном направлении. Кованую сталь обычно можно узнать по форме, следам от молотков или ребрам. Цвет излома — ярко-серый, кристаллический, и искровой тест дает искры с длинными желто-оранжевыми полосами, которые имеют тенденцию превращаться в белые раздвоенные бенгальские огни.При плавлении сталь выделяет искры и почти мгновенно затвердевает. Низкоуглеродистые стали можно легко сваривать с помощью любых процессов дуговой, газовой и контактной сварки.

г. Для сварки низкоуглеродистой стали следует использовать прутки с медным покрытием. Размеры стержней для листов различной толщины следующие:

Толщина листа
От 1/16 до 1/8 дюйма (от 1,6 до 3.2 мм)
От 3,2 до 9,5 мм (от 1/8 до 3/8 дюйма)
От 3/8 до 1/2 дюйма (от 9,5 до 12,7 мм)
1/2 дюйма (12,7 мм) и более

Диаметр стержня
1,6 мм (1/16 дюйма)
3,2 мм (1/8 дюйма)
3/16 дюйма (4,8 мм)
6,4 мм (1/4 дюйма)

ПРИМЕЧАНИЕ

Стержни от 5/16 до 3/8 дюйма(От 7,9 до 9,5 мм) доступны для тяжелой сварки. Тем не менее, тяжелые сварные швы можно выполнить с помощью стержней 3/16 или 1/4 дюйма (4,8 или 6,4 мм), правильно контролируя лужу и скорость плавления стержня.

г. Соединения могут быть подготовлены газовой резкой или механической обработкой. Тип подготовки (рис. 7-8) определяется толщиной листа и положением сварки.

г. Пламя должно быть нейтральным. В зависимости от толщины свариваемых пластин можно использовать метод сварки спереди или сзади.

e. Расплавленный металл не следует перегревать, так как это вызовет кипение металла и чрезмерное искрение. В результате зернистая структура металла шва будет большой, прочность снижена, а сварной шов будет сильно поврежден.

ф. Низкоуглеродистые стали не затвердевают в зоне плавления в результате сварки.

г. Металло-дуговая сварка .

(1) При дуговой сварке низкоуглеродистых сталей можно использовать электроды с экранированной дугой без покрытия, с тонким или толстым покрытием.Эти электроды относятся к низкоуглеродистому типу (от 0,10 до 0,14 процента).

(2) Листы или листовые материалы с низким содержанием углерода, подвергшиеся воздействию низких температур, перед сваркой следует слегка нагреть до комнатной температуры.

(3) При сварке листового металла толщиной до 3,2 мм (1/8 дюйма) можно использовать подготовку кромок для стыковых стыков с прямым квадратным стыком. Когда в этих материалах должны свариваться длинные швы, края должны быть расположены так, чтобы учесть усадку, потому что наплавленный металл имеет тенденцию стягивать пластины вместе.Эта усадка менее значительна при дуговой сварке, чем при газовой сварке, и достаточно будет расстояния примерно 1/8 дюйма (3,2 мм).

(4) Для коротких швов, которые фиксируются на месте, следует использовать технику сварки обратным шагом или пропуском. Это предотвратит коробление или деформацию и сведет к минимуму остаточные напряжения.

(5) Тяжелые пластины должны иметь фаску, чтобы обеспечить угол наклона до 60 градусов, в зависимости от толщины. Детали следует прихватывать с короткими интервалами вдоль шва.Первый или корневой валик должен быть выполнен с помощью электрода достаточно малого диаметра, чтобы обеспечить хорошее проникновение и сплавление в основании соединения. Для этой цели подходит электрод 1/8 или 5/32 дюйма (3,2 или 4,0 мм). Перед нанесением дополнительных слоев наплавленного металла первый валик следует тщательно очистить путем скалывания и чистки проволочной щеткой. Дополнительные проходы присадочного металла следует выполнять с помощью электрода 5/32 или 3/16 дюйма (4,0 или 4,8 мм). Проходы должны выполняться плетением для плоского, горизонтального или вертикального положения.При сварке над головой наилучшие результаты достигаются при использовании струнных валиков по всему сварному шву.

(6) При сварке тяжелых профилей, имеющих фаску с обеих сторон, валики плетения следует укладывать попеременно с одной стороны, а затем с другой. Это уменьшит деформацию сварной конструкции. Перед нанесением дополнительного металла каждый валик следует тщательно очистить, чтобы удалить всю окалину, оксиды и шлак. Движение электрода следует контролировать так, чтобы валик был однородным по толщине и не допускал подрезов и перекрытий на краях сварного шва.Все шлаки и оксиды должны быть удалены с поверхности готового сварного шва, чтобы предотвратить ржавление.

ч. Углеродно-дуговая сварка . Листы с низким содержанием углерода и листы толщиной до 3/4 дюйма (19,0 мм) можно сваривать с использованием процесса дуговой сварки углеродом. Дуга зажигается по краям пластины, которые подготавливаются аналогично тому, как это требуется для дуговой сварки металла. На соединение следует нанести флюс и добавить присадочный металл, как при кислородно-ацетиленовой сварке. Вокруг расплавленного основания должен быть предусмотрен газовый экран.Также следует использовать присадочный металл с помощью сварочного прутка с флюсовым покрытием. Сварку нужно производить без перегрева расплавленного металла. Несоблюдение этих мер предосторожности может привести к поглощению металлом сварного шва чрезмерного количества углерода из электрода, кислорода и азота из воздуха и вызвать хрупкость сварного соединения.

7-11. СРЕДНИЙ УГЛЕРОДА

а. Общие . Среднеуглеродистые стали — это нелегированные стали, содержащие от 0 до 0.От 30 до 0,55 процентов углерода. Эти стали могут подвергаться термообработке после изготовления и использоваться для общей механической обработки и ковки деталей, требующих твердости и прочности поверхности. Выпускаются в прутковой форме в холоднокатаном или нормализованном и отожженном состоянии. При сварке термообработанных сталей их следует предварительно нагреть от 300 до 500 ° F (от 149 до 260 ° C), в зависимости от содержания углерода (от 0,25 до 0,45 процента) и толщины стали. Температуру предварительного нагрева можно проверить, приложив полоску припоя 50-50 (точка плавления 450 ° F (232 ° C)) к пластине в месте соединения и отметив, когда припой начинает плавиться.Во время сварки зона сварного шва затвердеет при быстром охлаждении, и после сварки необходимо снять напряжение. Среднеуглеродистые стали можно сваривать любым способом: дуговой, газовой или контактной сваркой.

г. При более высоком содержании углерода и марганца следует использовать электроды с низким содержанием водорода, особенно в более толстых секциях. Электроды с низким содержанием углерода, с толстым покрытием, прямой или обратной полярности, аналогичные тем, которые используются для дуговой сварки низкоуглеродистых сталей, подходят для сварки среднеуглеродистых сталей.

г. Перед сваркой мелкие детали следует отжечь для придания им мягкости. Детали следует предварительно нагреть в месте стыка и сварить присадочной пруткой, обеспечивающей термообрабатываемые сварные швы. После сварки вся деталь должна быть подвергнута термообработке для восстановления первоначальных свойств.

г. Для сварки среднеуглеродистых сталей можно использовать низкоуглеродистый или высокопрочный пруток. Сварочное пламя должно быть настроено на легкое науглероживание, а лужа металла должна быть как можно меньше, чтобы соединение было надежным.Сварка науглероживающим пламенем приводит к быстрому нагреву металла, поскольку тепло выделяется, когда сталь поглощает углерод. Это позволяет выполнять сварку на более высоких скоростях.

e. Следует позаботиться о медленном охлаждении деталей после сварки, чтобы предотвратить растрескивание сварного шва. Для снятия напряжений со всей свариваемой детали необходимо нагреть ее до температуры от 1100 до 1250 ° F (от 593 до 677 ° C) в течение одного часа на дюйм (25,4 мм) толщины, а затем медленно охладить. Охлаждение можно осуществить, покрыв детали огнестойким материалом или песком.

ф. Среднеуглеродистые стали можно паять с помощью предварительного нагрева от 200 до 400 ° F (от 93 до 204 ° C), хорошего бронзового стержня и припоя. Однако эти стали лучше сваривать дуговой сваркой с использованием электродов, экранированных из низкоуглеродистой стали.

г. При сварке низкоуглеродистой стали помните о следующих общих технологиях:

(1) Пластины должны быть подготовлены к сварке аналогично тому, как это используется для сварки низкоуглеродистых сталей.При сварке электродами из низкоуглеродистой стали необходимо тщательно контролировать температуру сварки, чтобы избежать перегрева металла шва и чрезмерного проникновения в боковые стенки соединения. Этот контроль достигается путем направления электрода больше к ранее нанесенному присадочному металлу, прилегающему к боковым стенкам, чем непосредственно к боковым стенкам. При использовании этой процедуры металл шва вымывается на сторону стыка и плавится с ним без глубокого или чрезмерного проникновения.

(2) Высокая температура сварки приведет к тому, что большие участки основного металла в зоне плавления, прилегающей к сварным швам, станут твердыми и хрупкими. Площадь этих твердых зон в основном металле можно свести к минимуму, выполнив сварку серией небольших нитей или переплетений, которые ограничат подвод тепла. Каждый валик или слой наплавленного металла будет измельчать зерно в сварном шве непосредственно под ним, отжигать и уменьшать твердость, полученную в основном металле предыдущим валиком.

(3) По возможности, готовое соединение после сварки следует подвергнуть термообработке. Снятие напряжений обычно используется при соединении низкоуглеродистой стали, а высокоуглеродистые сплавы следует отжигать.

(4) При сварке среднеуглеродистых сталей электродами из нержавеющей стали металл следует наплавить в виде валиков, чтобы предотвратить растрескивание металла шва в зоне плавления. При наплавке металла шва в верхние слои швов, выполненных на тяжелых участках, плетение электрода не должно превышать трех диаметров электрода.

(5) Каждый последующий валик сварного шва должен быть отсечен, зачищен щеткой и очищен перед укладкой следующего валика.

7-12. ВЫСОКОУГЛЕРОДИСТЫЕ СТАЛИ

а. Общие . К высокоуглеродистым сталям относятся стали с содержанием углерода более 0,55%. Необработанная поверхность высокоуглеродистой стали темно-серого цвета и похожа на поверхность других сталей. Высокоуглеродистые стали обычно дают очень мелкозернистый излом, более белый, чем низкоуглеродистые стали.Инструментальная сталь тверже и хрупче, чем листовая сталь или другой низкоуглеродистый материал. Высокоуглеродистую сталь можно закалить путем нагревания до хорошего красного цвета и закалки в воде. Низкоуглеродистая сталь, кованое железо и стальные отливки не подлежат закалке. Расплавленная высокоуглеродистая сталь ярче низкоуглеродистой стали, а поверхность плавления имеет ячеистый вид. У нее более легкая искра, чем у низкоуглеродистой (мягкой) стали, и искры более белые. Эти стали используются для производства инструментов, которые после изготовления подвергаются термообработке для создания твердой структуры, необходимой для выдерживания высокого напряжения сдвига и износа.Они производятся в виде стержней, листов и проволоки, а также в отожженном или нормализованном и отожженном состоянии, чтобы быть пригодными для механической обработки перед термообработкой. Высокоуглеродистые стали трудно сваривать из-за закаливающего воздействия тепла на сварное соединение. Из-за высокого содержания углерода и термической обработки, обычно применяемой для этих сталей, их основные свойства ухудшаются при дуговой сварке.

г. Тепло сварки изменяет свойства высокоуглеродистой стали в непосредственной близости от сварного шва.Для восстановления первоначальных свойств необходима термическая обработка.

г. Перед сваркой высокоуглеродистые стали следует предварительно нагреть от 500 до 800 ° F (от 260 до 427 ° C). Температуру предварительного нагрева можно проверить с помощью сосновой палки, которая при этих температурах обугливается.

г. Поскольку высокоуглеродистые стали плавятся при более низких температурах, чем низко- и среднеуглеродистые стали, следует соблюдать осторожность, чтобы не перегреть сварной шов или основной металл. О перегреве свидетельствует чрезмерное искрение расплавленного металла.Сварка должна быть завершена как можно скорее, а количество искры должно использоваться для проверки сварочного тепла. Пламя должно быть настроено на науглероживание. Этот тип пламени способствует образованию прочных сварных швов.

e. Для сварки следует использовать сварочный пруток со средним или высоким содержанием углерода. После сварки необходимо снять напряжение со всей детали путем нагрева до температуры от 1200 до 1450 ° F (от 649 до 788 ° C) в течение одного часа на дюйм (25,4 мм) толщины, а затем медленного охлаждения.Если детали можно легко размягчить перед сваркой, для соединения следует использовать сварочный стержень с высоким содержанием углерода. Затем всю деталь следует подвергнуть термообработке для восстановления исходных свойств основного металла.

ф. В некоторых случаях мелкий ремонт этих сталей можно произвести пайкой. Для этого процесса не требуются такие высокие температуры, как при сварке, поэтому на свойства основного металла это серьезно не влияет. Пайку следует использовать только в особых случаях, потому что прочность соединения не такая высокая, как у исходного основного металла.

г. Электроды из мягкой или нержавеющей стали могут использоваться с высокоуглеродистой сталью.

ч. Дуговая сварка высокоуглеродистых сталей требует критического контроля температуры сварного шва. Следует помнить о следующих методах:

(1) Теплота сварки должна быть отрегулирована для обеспечения хорошего плавления боковых стенок и основания стыка без чрезмерного провара. Контроль нагрева сварочного шва может быть осуществлен путем наплавки металла шва небольшими валиками.Следует избегать чрезмерного образования луж на металле, поскольку это может привести к отрыву углерода от основного металла, что, в свою очередь, сделает металл сварного шва твердым и хрупким. Сплав присадочного металла и боковых стенок должен быть ограничен узкой зоной. Используйте процедуру поверхностной сварки, предписанную для среднеуглеродистых сталей (пункты 7-11).

(2) Та же процедура подготовки кромок, очистки сварных швов и последовательности сварки валиков, которая предписана для низко- и среднеуглеродистых сталей, также применяется к высокоуглеродистым сталям.

(3) Небольшие детали из высокоуглеродистой стали иногда ремонтируют путем наращивания изношенных поверхностей. Когда это будет сделано, изделие следует отжечь или размягчить, нагревая до красного огня и медленно охлаждая. Затем деталь следует сварить или укрепить электродами из среднеуглеродистой или высокопрочной стали и после сварки подвергнуть термообработке для восстановления ее первоначальных свойств.

7-13. ИНСТРУМЕНТАЛЬНАЯ СТАЛЬ

а. Общие . Стали, используемые для изготовления инструментов, пуансонов и штампов, являются, пожалуй, самыми твердыми, прочными и прочными сталями, используемыми в промышленности.Как правило, инструментальные стали — это стали от среднего до высокоуглеродистого, в которые в различных количествах включены определенные элементы для обеспечения особых характеристик. Искровой тест показывает умеренно большой объем белых искр с множеством мелких повторяющихся вспышек.

г. Углерод входит в состав инструментальной стали, чтобы помочь упрочнить сталь для обеспечения устойчивости к резанию и износу. Другие элементы добавляются для обеспечения большей прочности или прочности. В некоторых случаях добавляются элементы, чтобы сохранить размер и форму инструмента во время операции закалки при термообработке или сделать операцию закалки более безопасной и обеспечить красную твердость, чтобы инструмент сохранял свою твердость и прочность, когда он становится очень горячим.Железо является преобладающим элементом в составе инструментальных сталей. Другие добавленные элементы включают хром, кобальт, марганец, молибден, никель, вольфрам и ванадий. Инструментальная или штамповая сталь предназначена для специальных целей в зависимости от ее состава. Некоторые инструментальные стали производятся для изготовления штампов; одни предназначены для изготовления форм, другие — для горячей обработки, а третьи — для высокоскоростной резки.

г. Другой способ классификации инструментальных сталей — по типу закалки, необходимой для упрочнения стали.Самая тяжелая закалка после нагрева — закалка в воде (водоотверждаемые стали). Менее жесткой закалкой является закалка в масле, получаемая при охлаждении инструментальной стали в масляных ваннах (закаленные в масле стали). Наименее резкая закалка — охлаждение на воздухе (закаленные на воздухе стали).

г. Инструментальные стали и штампы также можно классифицировать в соответствии с работой, которую должен выполнять инструмент. Это основано на количестве классов.

(1) Стали класса I используются для изготовления инструментов, которые работают с режущим или режущим действием, таких как отрезные штампы, режущие штампы, вырубные штампы и обрезные штампы.

(2) Стали класса II используются для изготовления инструментов, которые создают желаемую форму детали, заставляя обрабатываемый материал, горячий или холодный, течь под напряжением. Сюда входят штампы для волочения, формовочные штампы, переходные штампы, штамповочные штампы, пластиковые формы и штампы для литья под давлением.

(3) Стали класса III используются для изготовления инструментов, которые воздействуют на обрабатываемый материал, частично или полностью реформируя его без изменения фактических размеров.Сюда входят гибочные штампы, гибочные штампы и штампы для скручивания.

(4) Стали класса IV используются для изготовления штампов, работающих под высоким давлением и создающих поток металла или другого материала, придающий им желаемую форму. Сюда входят штампы для обжима, штампы для тиснения, штампы для товарных позиций, штампы для экструзии и штампы для кольцевания.

e. Стали в группе инструментальных сталей имеют содержание углерода от 0,83 до 1,55 процента. Их редко сваривают дуговой сваркой из-за чрезмерной твердости в зоне плавления основного металла.Если необходимо выполнить дуговую сварку, можно использовать электроды из низкоуглеродистой или нержавеющей стали.

ф. При сварке инструментальных сталей необходимо использовать равномерно высокие температуры предварительного нагрева (до 1000 ° F (583 ° C)).

г. Как правило, следует соблюдать те же меры предосторожности, что и при сварке высокоуглеродистых сталей. Сварочный раструб следует настроить на науглероживание, чтобы предотвратить выгорание углерода в металле шва. Сварку нужно производить как можно быстрее, стараясь не перегреть расплавленный металл.После сварки сталь следует подвергнуть термообработке для восстановления первоначальных свойств.

ч. Буровые штанги можно использовать в качестве присадочных стержней, поскольку их высокое содержание углерода близко к содержанию инструментальных сталей.

я. Флюс, подходящий для сварки чугуна, следует использовать в небольших количествах, чтобы защитить лужу высокоуглеродистой стали и удалить оксиды в металле шва.

Дж. Сварочная техника . При сварке инструментальных сталей следует учитывать следующие методы:

(1) Если свариваемые детали небольшие, их следует отжечь или размягчить перед сваркой.Затем края следует предварительно нагреть до 1000 ° F (538 ° C), в зависимости от содержания углерода и толщины листа. Сварку следует выполнять либо низкоуглеродистым, либо высокопрочным электродом.

(2) Высокоуглеродистые электроды нельзя использовать для сварки инструментальных сталей. Углерод, захваченный присадочным металлом из основного металла, приведет к тому, что сварной шов станет твердым как стекло, тогда как металл шва из мягкой стали может поглощать дополнительный углерод, не становясь чрезмерно твердым. Затем сварную деталь следует подвергнуть термообработке для восстановления ее первоначальных свойств.

(3) При сварке электродами из нержавеющей стали край пластины следует предварительно нагреть, чтобы предотвратить образование твердых зон в основном металле. Наплавленный металл следует наносить небольшими валиками, чтобы свести к минимуму тепловложение. В целом, процедура нанесения такая же, как и для средне- и высокоуглеродистых сталей.

к. Существует четыре типа штамповых сталей, которые подлежат ремонту с помощью сварки. Это штампы для закалки в воде, штампы для закалки в масле, штампы для закалки на воздухе и инструменты для горячей обработки.Также можно отремонтировать быстроходные инструменты.

7-14. ВЫСОКОПРОЧНЫЕ СПЛАВНЫЕ СТАЛИ

а. Общие . Было разработано большое количество и разнообразие высокопрочных, высокотвердых, коррозионно-стойких сталей, обладающих стойкостью и другими особыми свойствами. Для большинства этих сталей требуется специальный процесс термообработки для достижения желаемых характеристик в готовом состоянии. Легированные стали обладают большей прочностью и долговечностью, чем другие углеродистые стали, а заданная прочность обеспечивается меньшим весом материала.

г. К высокотвердым легированным сталям относятся следующие:

(1) Стали, легированные хромом . Хром используется в качестве легирующего элемента в углеродистых сталях для повышения прокаливаемости, коррозионной стойкости и ударопрочности, а также обеспечивает высокую прочность с небольшой потерей пластичности. Хром в больших количествах укорачивает искровую струю вдвое по сравнению с той же сталью без хрома, но не влияет на яркость струи.

(2) Никелевые легированные стали .Никель увеличивает ударную вязкость, прочность и пластичность сталей и снижает температуру закалки, поэтому для закалки используется закалка в масле, а не в воде. Никелевая искра имеет короткую резко очерченную полосу яркого света прямо перед вилкой.

(3) Стали из высокохромистого никелевого сплава (нержавеющие) . Эти высоколегированные стали имеют широкий диапазон составов. Их нержавеющие, коррозионные и жаропрочные свойства меняются в зависимости от содержания сплава и обусловлены образованием очень тонкой оксидной пленки, которая образуется на поверхности металла.Искры соломенного цвета возле точильного круга и белые ближе к концу полосы. Имеется средний объем полос с умеренным количеством разветвленных пакетов.

(4) Марганцевые легированные стали . Марганец используется в стали для повышения прочности, износостойкости, облегчения горячей прокатки и ковки. Увеличение содержания марганца снижает свариваемость стали. Стали, содержащие марганец, создают искру, похожую на угольную искру. Умеренное увеличение содержания марганца увеличивает объем искровой струи и интенсивность вспышек.Сталь, содержащая более чем нормальное количество марганца, будет давать искру, аналогичную высокоуглеродистой стали с более низким содержанием марганца.

(5) Молибденовые легированные стали . Молибден увеличивает прокаливаемость, то есть глубину затвердевания, возможную при термообработке. Ударно-усталостные свойства стали улучшены за счет содержания молибдена до 0,60%. При содержании молибдена более 0,60% ухудшается собственно ударная усталость. Износостойкость улучшается при содержании молибдена выше примерно 0.75 процентов. Иногда молибден объединяют с хромом, вольфрамом или ванадием для получения желаемых свойств. Стали, содержащие этот элемент, дают характерную искру с отделенным наконечником стрелы, похожую на искру из кованого железа, которую можно увидеть даже при довольно сильных выбросах углерода. Стали, легированные молибденом, содержат никель и / или хром.

(6) Стали, легированные титаном и колумбием (ниобием) . Эти элементы используются в качестве дополнительных легирующих добавок в коррозионно-стойких сталях с низким содержанием углерода.Они поддерживают стойкость к межкристаллитной коррозии после того, как металл подвергается воздействию высоких температур в течение длительного периода времени.

(7) Стали легированные вольфрамом . Вольфрам, как легирующий элемент в инструментальной стали, имеет тенденцию давать мелкое плотное зерно при использовании в относительно небольших количествах. При использовании в больших количествах, от 17 до 20 процентов, и в сочетании с другими сплавами, вольфрам дает сталь, сохраняющую твердость при высоких температурах.Этот элемент обычно используется в сочетании с хромом или другими легирующими добавками. В искровом испытании вольфрам будет иметь тускло-красный цвет в искровом потоке возле колеса. Это также укорачивает искровой поток и уменьшает размер или полностью исключает выброс углерода. Вольфрамовая сталь, содержащая около 10 процентов вольфрама, вызывает короткие изогнутые оранжевые острия на концах несущих линий. Еще более низкое содержание вольфрама приводит к появлению небольших белых всплесков на конце пети копья.Несущие линии могут быть от тускло-красного до оранжевого, в зависимости от других присутствующих элементов, при условии, что содержание вольфрама не слишком велико.

(8) Ванадиевые легированные стали . Ванадий используется для контроля размера зерна. Он имеет тенденцию к повышению закаливаемости и вызывает заметную вторичную твердость, но устойчив к отпуску. Его добавляют в сталь во время производства для удаления кислорода. Легированные стали, содержащие ванадий, создают искры с отделенными наконечниками стрелок на конце несущей линии, аналогичные искрам, возникающим в молибденовых сталях.

(9) Кремнистые легированные стали . Кремний добавляется в сталь для повышения прокаливаемости и коррозионной стойкости. Его часто используют с марганцем для получения прочной, вязкой стали.

(10) Быстрорежущие инструментальные стали . Эти стали обычно представляют собой специальные сплавы, предназначенные для режущих инструментов. Содержание углерода колеблется от 0,70 до 0,80 процента. Их трудно сваривать, кроме как индукционным методом.Искровой тест покажет несколько длинных раздвоенных лопаток, которые имеют красный цвет около колеса и соломенный цвет около конца искрового потока.

г. Многие из этих сталей можно сваривать электродом с толстым покрытием типа экранированной дуги, состав которого аналогичен составу основного металла. Электроды с низким содержанием углерода также могут использоваться с некоторыми сталями. Электроды из нержавеющей стали эффективны там, где предварительный нагрев невозможен или нежелателен. По возможности, термообработанные стали следует предварительно нагревать, чтобы свести к минимуму образование твердых зон или слоев в основном металле, прилегающем к сварному шву.Расплавленный металл не должен перегреваться, а температуру сварки следует контролировать, наплавляя металл узкими валиками. Во многих случаях процедуры сварки среднеуглеродистых сталей (параграфы 7-11) и высокоуглеродистых сталей (параграфы 7-12) могут использоваться при сварке легированных сталей.

7-15. ВЫСОКАЯ ПРОЧНОСТЬ, КОНСТРУКЦИОННАЯ СТАЛЬ С НИЗКИМ ЛЕГКИМ

а. Общие . Низколегированные конструкционные стали с высоким пределом текучести (конструкционные легированные стали) — это специальные стали, прошедшие отпуск для получения исключительной прочности и долговечности.Специальные сплавы и общий состав этих сталей требуют специальной обработки для получения удовлетворительных сварных швов. Эти стали представляют собой специальные низкоуглеродистые стали, содержащие определенные небольшие количества легирующих элементов. Их закаливают и отпускают для получения предела текучести от 90 000 до 100 000 фунтов на квадратный дюйм (от 620 550 до 689 500 кПа) и прочности на разрыв от 100 000 до 140 000 фунтов на квадратный дюйм (от 689 500 до 965 300 кПа), в зависимости от размера и формы. Конструкционные элементы, изготовленные из этих высокопрочных сталей, могут иметь меньшие площади поперечного сечения, чем обычные конструкционные стали, и при этом иметь равную прочность.Эти стали также более устойчивы к коррозии и истиранию, чем другие стали. При испытании на искру эти сплавы создают искру, очень похожую на искру с низким содержанием углерода.

г. Сварочная техника . Надежная сварка низколегированных конструкционных сталей с высоким пределом текучести может выполняться при соблюдении следующих правил:

ВНИМАНИЕ

Для предотвращения растрескивания под валиком при сварке низколегированных конструкционных сталей с высоким пределом текучести следует использовать только электроды с низким содержанием водорода.

(1) Правильные электроды. Водород — враг номер один для прочных сварных швов легированных сталей; поэтому используйте только электроды с низким содержанием водорода (MIL-E-18038 или MIL-E-22200/1), чтобы предотвратить растрескивание под валиком. Растрескивание под валиком возникает из-за того, что водород захватывается покрытием электрода, выделяется в дугу и поглощается расплавленным металлом.

(2) Контроль влажности электродов. Если электроды находятся в герметичном контейнере, поместите их сразу после открытия контейнера в вентилируемую печь для выдержки, установленную на 250–300 ° F (121–149 ° C).Если электроды не находятся в герметичном контейнере, поместите их в вентилируемую печь для выпечки и запекайте в течение 1-1 / 4 часа при 800 ° F (427 ° C). Запеченные электроды, пока они еще теплые, должны быть помещены в печь для выдержки до использования. Электроды должны быть сухими, чтобы исключить поглощение водорода. Тестирование на влажность должно проводиться в соответствии со стандартом MIL-E-22200.

ПРИМЕЧАНИЕ

Стабилизатор влажности NSN 3439-00-400-0090 — идеальная печь для выдержки в полевых условиях (MIL-M-45558).

г. Выбор электрода с низким содержанием водорода. Электроды идентифицируются по классификационным номерам, которые всегда указаны на контейнерах с электродами. Для покрытий с низким содержанием водорода два последних числа в классификации должны быть 15, 16 или 18. Чаще всего используются электроды диаметром 5/32 и 1/8 дюйма (4,0 и 3,2 мм), поскольку они больше адаптирован ко всем видам сварки этой стали. В таблице 7-14 перечислены электроды, используемые для сварки низколегированных конструкционных сталей с высоким пределом текучести.Таблица 7-15 представляет собой список электродов, используемых в настоящее время в системе снабжения армии.

г. Выбор комбинаций проволока-флюс и проволока-газ . Проволочные электроды для дуговой сварки под флюсом и в среде защитного газа не классифицируются по прочности. Сварочная проволока и комбинации проволока-флюс, используемые для снятия напряжений в сталях, должны содержать не более 0,05 недавнего ванадия. Сваривать металл более 0.05% ванадия может стать хрупким при снятии напряжения. При использовании процессов дуговой сварки под флюсом или газовой дуговой сварки для сварки конструкционных сталей с высоким пределом текучести, низколегированных конструкционных сталей с низкопрочными сталями комбинация проволока-флюс и проволока-газ должна быть такой же, как и для низкопрочных сталей.

e. Предварительный нагрев . Для сварочных пластин толщиной менее 1,0 дюйма (25,4 мм) температура выше 50 ° F (10 ° C) не требуется, за исключением удаления поверхностной влаги с металла. Таблица 7-16 содержит рекомендуемые температуры предварительного нагрева.

ф. Тепловая сварка .

(1) Общие . Важно избегать чрезмерной концентрации тепла, чтобы область сварного шва быстро остыла. Для определения подводимой теплоты к сварному шву можно использовать номограмму тепловложения или калькулятор тепловложения.

(2) Номограмма тепловложения . Чтобы использовать номограмму тепловой мощности (рис. 7-9), найдите значение вольта в столбце 1 и проведите линию к значению в амперах в столбце 3.От точки, где эта линия пересекает столбец 2, проведите еще одну линию до значения дюйм / мин в столбце 5. Считайте единицы тепла в точке, где эта вторая линия пересекает столбец 4. Тепловые единицы представляют собой тысячи джоулей на дюйм. Например, при 20 вольт и 300 ампер линия пересекает столбец 2 при значении 6. При 12 дюймах / мин подвод тепла определяется как 30 тепловых единиц или 30 000 джоулей / дюйм.

(3) Вычислитель тепловой энергии .Калькулятор тепловложения можно сделать, скопировав рисунок, напечатанный на внутренней стороне задней обложки данного руководства, на пластик, светлый картон или другой подходящий материал и вырезав кусочки. Если подходящего материала нет, калькулятор можно собрать, вырезав выкройку из задней обложки. После того, как две части вырезаны, в центре каждой пробивается отверстие. Затем они собираются с помощью бумажной застежки или другого подобного устройства, которое позволяет деталям вращаться.Чтобы определить погонную энергию при сварке с помощью калькулятора, поворачивайте до тех пор, пока значение на шкале вольт не совпадет со значением на шкале скорости (дюймы / мин). Значение на шкале ампер будет выровнено прямо напротив расчетного значения для тепловых единиц. Как и в случае с номограммой, тепловые единицы представляют собой тысячи джоулей на дюйм.

(4) Максимальное тепловложение . Сравните значение погонной энергии, полученное с помощью номограммы или калькулятора, с максимальными значениями, указанными в таблицах 7-17 и 7-18.Если расчетное значение слишком велико, отрегулируйте ток, скорость движения или температуру предварительного нагрева до тех пор, пока расчетное тепловложение не будет в надлежащем диапазоне. (Таблицы применимы только к процессам с одинарной дугой, дугой в экранированной среде, дугой под флюсом, дугой вольфрамовым электродом, порошковой проволокой и металлической дугой в газовой среде. процессы вертикальной сварки с высоким тепловложением, так как сварные швы, выполненные ими в сталях марки «Т-1», следует подвергать термической обработке закалкой и отпуском.) Для условий сварки, выходящих за пределы диапазона номограммы или калькулятора, тепловложение можно рассчитать по следующей формуле:

г. Сварочный процесс . Надежная сварка низколегированной конструкционной стали с высоким пределом текучести может быть выполнена формально, если выбрать электрод с низким содержанием водорода или выбрать правильную комбинацию проволока-флюс или проволока-газ при использовании дуговой сварки под флюсом или процессов металлической дуги в газе.По возможности используйте прямой стрингер. Избегайте использования рисунка плетения; однако, если необходимо, его следует ограничить узором частичного плетения. Наилучшие результаты достигаются при небольшом круговом движении электрода с площадью переплетения, не превышающей двух диаметров электрода. Никогда не используйте полный узор переплетения. Рисунок частичного переплетения не должен превышать двойного диаметра электрода. Пропустите сварку, насколько это целесообразно. Иногда рекомендуется упрочнение сварного шва для снятия напряжений при охлаждении более крупных деталей.Угловые швы должны быть гладкими и иметь правильный контур. Избегайте трещин на пальцах и подрезов. Электроды, используемые для угловых швов, должны иметь меньшую прочность, чем электроды, используемые для стыковой сварки. Упрочнение угловых швов с помощью пневмоударника может помочь предотвратить образование трещин, особенно если в сварных швах необходимо снять напряжение. Пьедестал из мягкой стальной проволоки может помочь поглотить усилия усадки. Масляная сварка в области носка перед фактической угловой сваркой укрепляет зону, где может начаться трещина на носке. В области носка накладывается валик, который затем шлифуется перед самой угловой сваркой.Этот валик масляного сварного шва должен располагаться так, чтобы кончик углового шва проходил прямо над ним во время фактической угловой сварки. Из-за того, что при угловой сварке используется дополнительный материал, скорость охлаждения увеличивается, а тепловложение может быть увеличено примерно на 25 процентов.

7-16. ЧУГУН

а. Общие . Чугун — это сплав железа, углерода и кремния, в котором количество углерода обычно составляет более 1,7% и менее 4.5 процентов.

(1) Серый чугун — наиболее широко используемый тип чугуна. Серый чугун имеет множество составов, но обычно это перлит с множеством рассеянных чешуек графита.

(2) Существуют также чугуны из сплавов, которые содержат небольшое количество хрома, никеля, молибдена, меди или других элементов, добавленных для придания им особых свойств.

(3) Другой легированный чугун — это аустенитный чугун, который модифицирован добавками никеля и других элементов для снижения температуры превращения, так что структура становится аустенитной при комнатной или нормальной температуре.Аустенитные чугуны обладают высокой степенью коррозионной стойкости.

(4) В белом чугуне почти весь углерод находится в комбинированной форме. Это обеспечивает чугун с более высокой твердостью, что используется для обеспечения устойчивости к истиранию.

(5) Ковкий чугун получают путем специальной термообработки белого чугуна с отжигом для изменения структуры углерода в чугуне. Структура меняется на перлитную или ферритную, что увеличивает ее пластичность.

(6) Чугун с шаровидным графитом и высокопрочный чугун изготавливаются путем добавления магния или алюминия, которые либо связывают углерод в комбинированном состоянии, либо придают свободному углероду сферическую или узловую форму, а не обычную чешуйчатую форму серого цвета. чугун. Эта структура обеспечивает большую пластичность или пластичность отливки.

(7) Чугуны широко используются в сельхозтехнике; на станках в качестве оснований, кронштейнов и крышек; для трубопроводной арматуры и чугунных труб; и для автомобильных блоков двигателя, головок, коллекторов и водоподготовки.Чугун редко используется в конструкционных работах, за исключением элементов сжатия. Он широко используется в строительной технике для противовесов и в других областях, где требуется вес.

г. Серый чугун имеет низкую пластичность и поэтому не будет расширяться или растягиваться в значительной степени перед разрушением или растрескиванием. Из-за этой характеристики при сварке чугуна методом кислородно-ацетиленовой сварки необходим предварительный нагрев. Однако его можно сваривать дуговым методом без предварительного нагрева, если тепло сварки тщательно контролируется.Это может быть достигнуто путем сварки только коротких участков стыка за один раз и охлаждения этих участков. Благодаря этой процедуре тепло сварки ограничивается небольшой площадью и исключается опасность растрескивания отливки. Крупные отливки со сложным сечением, такие как моторные блоки, можно сваривать без демонтажа и предварительного нагрева. Обычно желательны специальные электроды, предназначенные для этой цели. Ковкий чугун, такой как ковкий чугун, высокопрочный чугун и чугун с шаровидным графитом, можно успешно сваривать.Для достижения наилучших результатов эти типы чугунов следует сваривать в отожженном состоянии.

г. Сварка используется для восстановления новых чугунных отливок, ремонта отливок, вышедших из строя, а также для соединения отливок друг с другом или со стальными деталями в производственных процессах. В Таблице 7-19 показаны сварочные процессы, которые можно использовать для сварки чугуна с шаровидным графитом, ковкого чугуна и чугуна с шаровидным графитом. Выбор процесса сварки и присадочных металлов зависит от типа желаемых свойств сварного шва и ожидаемого срока службы.Например, при использовании процесса дуговой сварки экранированным металлом можно использовать различные типы присадочного металла. Присадочный металл будет влиять на соответствие цвета сварного шва по сравнению с основным материалом. Соответствие цвета может быть определяющим фактором, особенно при утилизации или ремонте отливок, когда разница в цвете недопустима.

г. Независимо от того, какой из сварочных процессов выбран, необходимо произвести определенные подготовительные действия.Важно определить точный тип свариваемого чугуна, будь то чугун серый, ковкий или пластичный. Если точная информация неизвестна, лучше всего предположить, что это серый чугун с небольшой пластичностью или без нее. Как правило, не рекомендуется сваривать ремонтные отливки из серого чугуна, которые при нормальных условиях эксплуатации подвергаются нагреву и охлаждению, особенно когда нагрев и охлаждение изменяются в диапазоне температур, превышающих 400 ° F (204 ° C). Если в качестве присадочного материала не используется чугун, металл шва и основной металл могут иметь разные коэффициенты расширения и сжатия.Это будет способствовать возникновению внутренних напряжений, которые не может выдержать серый чугун. Ремонт этих типов отливок может быть произведен, но надежность и срок службы такого ремонта невозможно спрогнозировать с точностью.

e. Подготовка к сварке .

(1) При подготовке отливки к сварке необходимо удалить все поверхностные материалы, чтобы полностью очистить отливку в области сварного шва. Это означает удаление краски, смазки, масла и других посторонних материалов из зоны сварки.Желательно нагреть зону сварного шва в течение короткого времени, чтобы удалить захваченный газ из зоны сварного шва основного металла. Кожа или поверхность с высоким содержанием кремния также должны быть удалены рядом с областью сварного шва как на лицевой, так и на корневой стороне. Края стыка должны быть вырезаны или отшлифованы, чтобы получился угол 60 ° или фаска. Там, где есть канавки, следует использовать V-образную канавку под углом 60-90 °. V должен выступать примерно на 3,2 мм (1/8 дюйма) от дна трещины. На каждом конце трещины следует просверлить небольшое отверстие, чтобы она не расширилась.Всегда следует использовать сварные швы с полным проплавлением, поскольку не полностью устраненные трещины или дефекты могут быстро появиться снова в условиях эксплуатации.

(2) Предварительный нагрев желателен для сварки чугунов любым сварочным процессом. Его можно уменьшить при использовании очень пластичного присадочного металла. Предварительный нагрев уменьшит температурный градиент между сварным швом и остальной частью чугуна. Температуры предварительного нагрева должны зависеть от процесса сварки, типа присадочного металла, массы и сложности отливки.Предварительный нагрев можно выполнить любым из обычных методов. Нагрев горелки обычно используется для относительно небольших отливок весом 30,0 фунтов (13,6 кг) или меньше. Более крупные детали могут быть предварительно нагреты в печи, и в некоторых случаях временные печи строятся вокруг детали, а не в печи. Таким образом, детали могут поддерживаться при высокой температуре промежуточного прохода во временной печи во время сварки. Предварительный нагрев должен быть общим, так как он помогает улучшить пластичность материала и распределяет усадочные напряжения по большой площади, чтобы избежать критических напряжений в какой-либо одной точке.Предварительный нагрев помогает смягчить область, прилегающую к сварному шву; способствует дегазации отливки, что, в свою очередь, снижает возможность образования пористости наплавленного металла шва; и это увеличивает скорость сварки.

(3) Медленное охлаждение или последующий нагрев улучшает обрабатываемость зоны термического влияния в чугуне, прилегающей к сварному шву. Последующее охлаждение должно быть как можно медленнее. Это можно сделать, накрыв отливку изоляционным материалом, чтобы не допустить проникновения воздуха или ветров.

ф. Сварочная техника .

(1) Электроды .

(a) Чугун можно сваривать стальным электродом с покрытием, но этот метод следует использовать только в крайних случаях. При использовании стального электрода необходимо учитывать усадку металла сварного шва, углерод, улавливаемый из чугуна металлом сварного шва, и твердость металла сварного шва, вызванную быстрым охлаждением. При переходе из расплавленного в твердое состояние сталь дает усадку больше, чем чугун.При использовании стального электрода эта неравномерная усадка вызывает деформации стыка после сварки. Когда на стык наносится большое количество присадочного металла, чугун может треснуть сразу за линией плавления, если не будут приняты профилактические меры. Чтобы преодолеть эти трудности, подготовленное соединение следует сварить, наплавив металл шва в виде коротких валиков длиной от 0,75 до 1,0 дюйма (от 19,0 до 25,4 мм). Они выполняются периодически, а в некоторых случаях — с помощью процедуры обратного шага и пропуска.Во избежание образования твердых участков дугу следует зажигать в V, а не по поверхности основного металла. Каждый короткий отрезок металла шва, нанесенный на соединение, следует слегка обработать в горячем состоянии небольшим ударным молотком и дать остыть перед нанесением дополнительного металла сварного шва. Упрочнение приводит к ковке металла и уменьшению деформации при охлаждении.

(b) Используемые электроды должны быть диаметром 1/8 дюйма (3,2 мм) для предотвращения чрезмерного нагрева при сварке. Сварку следует производить с обратной полярностью.Плетение электрода должно быть сведено к минимуму. Перед добавлением дополнительного металла каждый наплавленный металл следует тщательно очистить.

(c) Чугунные электроды должны использоваться там, где требуется последующая обработка сварного соединения. Электроды из нержавеющей стали используются, когда обработка сварного шва не требуется. Процедура выполнения сварных швов этими электродами такая же, как и для сварки электродами из низкоуглеродистой стали. Электроды из нержавеющей стали обеспечивают отличное сплавление присадочного металла и основного металла.Следует проявлять особую осторожность, чтобы избежать растрескивания сварного шва, которое сжимается примерно на 50 процентов больше, чем из-за того, что нержавеющая сталь расширяется, а низкоуглеродистая сталь расширяется при одинаковых изменениях температуры.

(2) Дуговая сварка .

(a) Процесс дуговой сварки защищенным металлом может использоваться для сварки чугуна. Можно использовать четыре типа присадочных металлов: электроды с чугунным покрытием; покрытые электроды из сплава на основе меди; покрытые электроды из сплава на основе никеля; и электроды, покрытые мягкой сталью.Существуют причины для использования каждого из различных конкретных типов электродов, которые включают обрабатываемость наплавки, соответствие цвета наплавке, прочность наплавки и пластичность окончательного сварного шва.

(b) При дуговой сварке чугунными электродами (ECI) предварительно нагрейте до 250–800 ° F (от 121 до 425 ° C), в зависимости от размера и сложности отливки, а также от необходимости обработки наплавки и прилегающих к ней поверхностей. области. Чем выше степень нагрева, тем легче будет обработать наплавленный металл.В общем, лучше всего использовать электроды небольшого размера и относительно низкую настройку тока. Следует использовать дугу средней длины, и, если это возможно, сварку следует выполнять в горизонтальном положении. Следует использовать блуждающую или пропущенную процедуру сварки, а упрочнение поможет снизить напряжения и свести к минимуму деформацию. Рекомендуется медленное охлаждение после сварки. Эти электроды обеспечивают отличное цветовое соответствие серого чугуна. Прочность сварного шва будет равна прочности основного металла. Есть два типа электродов на основе меди: сплав медно-оловянный и медно-алюминиевый.Медно-цинковые сплавы нельзя использовать для электродов для дуговой сварки из-за низкой температуры кипения цинка. Цинк улетучивается в дуге и вызывает пористость металла сварного шва.

(c) При использовании электродов с медной основой рекомендуется предварительный нагрев от 250 до 400 ° F (от 121 до 204 ° C). Следует использовать электроды малого диаметра и слабый ток. Дуга должна быть направлена ​​против наплавленного металла или лужи, чтобы избежать проникновения и смешивания основного металла с металлом сварного шва.После сварки рекомендуется медленное охлаждение. Электроды на медной основе не обеспечивают хорошего соответствия цвета.

(d) Существует три типа никелевых электродов, используемых для сварки чугуна. Эти электроды можно использовать без предварительного нагрева; однако рекомендуется нагревание до 100 ° F (38 ° C). Эти электроды можно использовать во всех положениях; однако рекомендуется горизонтальное положение. Сварочный шлак следует удалять между проходами. Отложения никеля и никелевого железа чрезвычайно пластичны и не станут хрупкими из-за улавливания углерода.Твердость зоны термического влияния можно минимизировать за счет уменьшения проникновения в основной металл чугуна. Упомянутая выше техника, игра дуги на лужу, а не на основной металл, поможет свести к минимуму разбавление. Медленное охлаждение и, при необходимости, последующий нагрев улучшают обрабатываемость зоны термического влияния. Электроды на никелевой основе не обеспечивают близкого соответствия цвета.

(e) Электроды медно-никелевого типа двух марок. Любой из этих электродов можно использовать так же, как никелевый или железоникелевый электрод, с примерно той же технологией и результатами.Отложения этих электродов не обеспечивают совпадение цвета.

(f) Электроды из низкоуглеродистой стали не рекомендуются для сварки чугуна, если требуется механическая обработка наплавки. Отложения из мягкой стали собирают достаточно углерода для образования высокоуглеродистых отложений, которые невозможно обработать механической обработкой. Кроме того, наплавка из мягкой стали будет иметь пониженный уровень пластичности в результате повышенного содержания углерода. Этот тип электрода следует использовать только для небольшого ремонта и не должен использоваться, когда требуется механическая обработка.Для небольших ремонтных работ возможен минимальный предварительный нагрев. Для минимизации разбавления и во избежание концентрации усадочных напряжений рекомендуется использовать небольшие электроды при слабом токе. Следует использовать короткие сварные швы в произвольной последовательности, а сварной шов следует как можно быстрее после сварки. Наплавленный электрод из низкоуглеродистой стали обеспечивает хорошее соответствие цвета.

(3) Углеродно-дуговая сварка чугуна . Отливки из чугуна можно сваривать с помощью угольной дуги, чугунного прутка и сварочного флюса для чугуна.Стык следует предварительно нагреть, перемещая угольные электроды по поверхности. Это предотвращает слишком быстрое охлаждение после сварки. Расплавленную лужу металла можно обрабатывать углеродным электродом так, чтобы перемещать любой образующийся шлак или оксиды на поверхность. Сварные швы, выполненные с помощью угольной дуги, охлаждаются медленнее и не такие твердые, как сварные с использованием металлической дуги и чугунного электрода. Сварные швы поддаются механической обработке.

(4) Газовая сварка на кислородном топливе . Процесс кислородно-топливного газа часто используется для сварки чугуна.Можно использовать большую часть топливных газов. Пламя должно быть нейтральным или слегка уменьшающимся. Следует использовать флюс. Доступны два типа присадочных металлов: чугунные стержни и медно-цинковые стержни. Сварные швы, выполненные подходящим чугунным электродом, будут такими же прочными, как и основной металл. Все эти сварочные покрытия обеспечивают хорошее соответствие цветов. Следует использовать оптимальную процедуру сварки в отношении подготовки стыка, предварительного нагрева и последующего нагрева. Стержни из меди и цинка обеспечивают сварку пайкой. Существует две классификации: марганцевая бронза и бронза с низким дымом.Осажденная бронза имеет относительно высокую пластичность, но не обеспечивает совпадения цветов.

(5) Пайка и сварка припоем .

(a) Пайка используется для соединения чугуна с чугуном и сталью. В этих случаях конструкция соединения должна выбираться для пайки так, чтобы капиллярное притяжение заставляло присадочный металл течь между близко прилегающими деталями. Обычно используется факельный метод. Кроме того, в качестве источников тепла можно использовать угольную дугу, двойную угольную дугу, газо-вольфрамовую дугу и плазменную дугу.Обычно используются два металлических сплава припоя; оба являются сплавами меди и цинка. Для соединения чугуна также можно использовать пайку. При сварке пайкой присадочный металл не втягивается в соединение за счет капиллярного притяжения. Иногда это называют сваркой бронзы. Следует использовать наполнитель с жидкостью выше 850 ° F (454 ° C). Сварка пайкой не обеспечивает совпадения цвета.

(b) Сварка пайкой может также выполняться с помощью процессов дуговой сварки в защитном металлическом корпусе и газовой дуги.Предварительный нагрев при высокой температуре обычно не требуется для сварки пайкой, если только деталь не является очень тяжелой или сложной по геометрии. Наплавленный бронзовый металл шва имеет чрезвычайно высокую пластичность, которая компенсирует недостаточную пластичность чугуна. Тепла дуги достаточно, чтобы довести поверхность чугуна до температуры, при которой сплав присадочного металла на основе меди будет сцепляться с чугуном. Поскольку перемешивание материалов незначительное или отсутствует, зона, прилегающая к сварному шву в основном металле, не затвердевает в значительной степени.После завершения сварки сварной шов и прилегающий участок можно обработать. Как правило, для большинства применений достаточно предварительного нагрева до 200 ° F (93 ° C). Скорость охлаждения не очень важна, и термообработка для снятия напряжения обычно не требуется. Этот тип сварки обычно используется для ремонтной сварки автомобильных деталей, деталей сельскохозяйственных орудий и даже блоков и головок автомобильных двигателей. Его можно использовать только в том случае, если отсутствие соответствия цветов не вызывает возражений.

(6) Газовая дуговая сварка металлом .Процесс газовой дуговой сварки может использоваться для сварки ковкого чугуна и углеродистой стали. Можно использовать несколько типов электродной проволоки, в том числе:

(a) Мягкая сталь с использованием 75% аргона + 25% CO 2 для защиты.

(b) Никель-медь с использованием 100% аргона для защиты.

(c) Кремниевая бронза с использованием 50% аргона + 50% гелия для защиты.

Во всех случаях следует использовать электродную проволоку малого диаметра при слабом токе.При использовании электродной проволоки из низкоуглеродистой стали смесь защитного газа аргон-CO 2 используется для минимизации проникновения. В случае присадочного металла на основе никеля и присадочного металла на основе меди наплавленный присадочный металл является чрезвычайно пластичным. Низкоуглеродистая сталь обеспечивает хорошее соответствие цвета. Обычно требуется более высокий предварительный нагрев, чтобы снизить остаточные напряжения и склонность к растрескиванию.

(7) Порошковая сварка . Этот процесс недавно стал применяться для сварки чугунов.Более успешным применением была порошковая проволока на никелевой основе. Эта электродная проволока обычно работает с защитным газом CO 2 , но когда более низкие механические свойства не являются нежелательными, она может работать без внешнего защитного газа. Можно использовать минимальные температуры предварительного нагрева. Этот метод должен минимизировать проникновение в основной металл чугуна. Последующий нагрев обычно не требуется. Подбор цвета не получается.

(8) Шпилька .Трещины в крупных отливках иногда заделывают шпильками (рис. 7-10). В этом процессе трещина удаляется шлифовкой V-образной канавки. Отверстия просверливаются и нарезаются под углом с каждой стороны канавки, и в эти отверстия ввинчиваются шпильки на расстояние, равное диаметру шпилек, при этом верхние концы выступают примерно на 1/4 дюйма (6,4 мм) над канавкой. чугунная поверхность. Шпильки следует герметично приварить на месте с помощью одного или двух валиков вокруг каждой шпильки, а затем связать вместе металлическими швами.Сварные швы следует выполнять короткими отрезками, каждая из которых подвергается закалке в горячем состоянии, чтобы предотвратить высокие напряжения или растрескивание при охлаждении. Перед нанесением дополнительного металла каждому бусинке необходимо дать остыть и тщательно очистить. Если метод установки шпилек не может быть применен, края стыка следует вырезать или обработать инструментом с круглым концом, чтобы сформировать U-образную канавку, в которую должен быть наплавлен металл шва.

(9) Для чугуна можно использовать другие способы сварки.Термитная сварка использовалась для ремонта определенных типов деталей станков из чугуна. Пайка может использоваться для соединения чугуна и иногда используется для ремонта небольших дефектов в небольших отливках. Сварку оплавлением можно также использовать для сварки чугуна.

Доверенность

Сварка аустенитной нержавеющей стали — Часть 2

Предыдущая статья Job Knowledge , № 103, была посвящена металлургии аустенитных нержавеющих сталей и некоторым проблемам сварки, с которыми можно столкнуться.

Аустенитные нержавеющие стали можно сваривать с помощью всех имеющихся в продаже способов сварки. Для большинства аустенитных сплавов доступны подходящие присадочные металлы, за исключением отсутствия присадочного металла типа 304 (этот сплав обычно сваривают с присадочным металлом типа 308) и присадочного материала типа 321 из-за проблем с переносом титан поперек дуги. Стали типа 321 обычно сваривают с присадкой типа 347.

Также упоминается в Job Knowledge 103 , что аустенитные нержавеющие стали являются простыми в металлургическом отношении сплавами, и на механические свойства при комнатной температуре изменения в процедуре сварки существенно не влияют.Однако увеличение содержания кислорода и феррита снизит ударную вязкость при криогенных (~ -196 ° C) температурах.

Ручные металлические дуговые электроды с основным покрытием и регулируемой короткой длиной дуги и основными агломерированными флюсами под флюсом необходимы для достижения наилучшей ударной вязкости при использовании процессов дуговой сварки. Сталь и присадочный металл следует выбирать с как можно более низким содержанием феррита, скажем, от 1 до 3% для получения наилучших результатов испытаний по Шарпи-V.

И наоборот, для наилучшего сопротивления ползучести следует выбирать сталь класса «H» и использовать рутиловые или кислотно-рутиловые электроды и кислотные флюсы под флюсом.Они улучшают сопротивление ползучести за счет увеличения содержания титана и ниобия в металле сварного шва, образуя большую концентрацию карбидов, упрочняющих зерно.

Сварка TIG (GTAW) корневого прохода всегда должна выполняться с обратной продувкой инертным газом, чтобы предотвратить потерю хрома (и, следовательно, коррозионной стойкости). Обычно для этой цели используется аргон. Можно использовать азот, но существует риск того, что наплавленный металл будет поглощать азот, вследствие чего он станет полностью аустенитным и чувствительным к горячим трещинам.

Две характеристики аустенитных нержавеющих сталей, которые отличают их от ферритных сталей, — это коэффициенты теплопроводности и расширения. Аустенитные нержавеющие стали имеют низкий коэффициент теплопроводности, примерно 1/3 от ферритной стали при комнатной температуре, и коэффициент теплового расширения примерно на 30% больше, чем у ферритной стали.

Большее расширение в более узкой ЗТВ приводит к более высоким остаточным напряжениям и большей деформации. Это особая проблема при изготовлении тонких листов, где достижение желаемых допусков на размеры может быть чрезвычайно трудным и дорогостоящим.Использование методов ускоренного охлаждения, таких как охлаждение меди или замораживающий газ (жидкий CO 2 метод низкого напряжения без искажения типичен для этого подхода), было использовано для уменьшения искажений до приемлемых уровней.

Одной из основных причин использования аустенитной нержавеющей стали является ее коррозионная стойкость. Хотя это в первую очередь зависит от содержания хрома в стали, углерод также оказывает серьезное, но неблагоприятное воздействие, приводящее к форме коррозии, известной как межкристаллитная или межкристаллическая коррозия (ICC), или распаду сварного шва, локализованному эффекту, ограниченному HAZ.

Карбиды, присутствующие в ЗТВ аустенитной нержавеющей стали, растворяются при нагревании и реформируются при охлаждении во время теплового цикла сварки. К сожалению, эти новые выделения преимущественно образуются в виде карбидов хрома на границах зерен, истощая хром из области, непосредственно примыкающей к границе, что приводит к локальной потере хрома и снижению коррозионной стойкости. Если образуется достаточное количество карбидов хрома, это приводит к образованию сетки стали вдоль границ зерен, чувствительной к коррозии; сталь была сенсибилизирована.Эта сенсибилизация происходит в зоне HAZ, где наблюдаются температуры от 600 до 900 ° C и время, которое может составлять всего 50 секунд.

Есть несколько способов преодолеть эту трудность. Термическая обработка на твердый раствор (1050 ° C с последующей закалкой в ​​воде) приведет к повторному растворению карбидов, и они останутся в растворе при быстром охлаждении. Хотя это устранит обедненные хромом области, обработка сложных сварных конструкций редко бывает практичной.

Самый очевидный альтернативный метод — снизить содержание углерода.Это имеет два положительных эффекта:

  • Чем ниже содержание углерода, тем больше времени требуется для образования карбидов. При 0,08% углерода это время составляет около 50 секунд; при 0,03% углерода необходимое время составляет около восьми часов, что маловероятно во время сварки!
  • Чем ниже содержание углерода, тем меньше карбидов образует непрерывную обедненную хромом сетку. Следовательно, марки «L», тип 304L или 316L предпочтительны там, где требуется лучшая коррозионная стойкость.

Еще одним методом является добавление легирующих элементов, которые будут образовывать карбиды, а не хром; Таким образом, были разработаны стабилизированные марки 321 и 347, содержащие соответственно титан и ниобий.

Титан и ниобий — очень сильные карбидообразователи, которые выделяют карбиды при более высоких температурах, чем те, при которых образуются карбиды хрома, поэтому углерод не может вступить в реакцию с хромом. Однако даже эти стабилизированные марки могут подвергаться коррозии в очень узкой полосе рядом с линией плавления (так называемая ножевая атака) в присутствии горячих кислот.Это связано с более высоким и более ограниченным диапазоном температур, в котором растворяются карбиды ниобия или титана. Решение, как указано выше, состоит в том, чтобы ограничить содержание углерода максимум 0,03%.

Сварочные материалы также следует выбирать с низким содержанием углерода, если требуется лучшая коррозионная стойкость. Большинство расходных материалов для дуговой сварки содержат менее 0,03% углерода, но существуют присадочные металлы с содержанием углерода до 0,10%; их следует использовать только для сварки стали марки «H», где требуется хорошее сопротивление ползучести.

Хотя сварка MAG (GMAW) часто используется, следует помнить, что улавливание углерода возможно при использовании смесей аргон / CO 2 , особенно если сварка выполняется в режиме переноса погружением. Поэтому смеси аргон / 2% кислорода обычно предпочтительны там, где требуется лучшая коррозионная стойкость, но аргон / 10% CO 2 /2% кислорода является хорошим компромиссом, который может использоваться для широкого диапазона применений.

Другой серьезной проблемой при эксплуатации аустенитных нержавеющих сталей является коррозионное растрескивание под напряжением.Это может быть вызвано сильными щелочными растворами, но в первую очередь виноваты галогениды (хлориды, фториды и бромиды). Как следует из названия, растрескивание происходит в областях с высоким напряжением и поэтому не ограничивается только сварными швами, но именно в сварных швах и рядом с ними обнаруживаются напряжения, приближающиеся к пределу текучести металла, и это представляет особую проблему.

Растрескивание является межкристаллитным, и скорость его распространения может быть очень высокой при идеальных условиях.Например, в горячих концентрированных растворах хлорида проникновение тонких листовых компонентов может происходить в течение нескольких минут. Однако чем ниже температура и / или концентрация кислоты, тем меньше скорость распространения трещин. Поэтому аустенитные нержавеющие стали обычно не используются там, где присутствуют галогениды. Даже здесь коррозионное растрескивание под напряжением (SCC) может происходить из-за загрязнения либо продукта в трубе или резервуаре, либо извне морской водой, особенно там, где жидкость может концентрироваться в щелях.

Чтобы исключить любую возможность SCC, единственное решение — снять напряжение сварного шва при температуре примерно от 700 до 900 ° C. Следует помнить, что:

  • это может сделать сталь чувствительной, поэтому следует использовать только низкоуглеродистые марки, а
  • сталь может охрупчиваться из-за образования сигма-фазы (см. Рабочие знания 103 ) при более низких температурах термообработки.

К местному снятию напряжений следует подходить с осторожностью, поскольку температурные градиенты могут привести к возникновению напряжений за пределами нагретой полосы; Поэтому могут потребоваться более широкие полосы нагрева и более строгий контроль градиентов температуры, чем требуется спецификациями или нормами.Обработка раствором (выдержка при 1050 ° C с последующим очень быстрым охлаждением, в идеале — закалка в воде) устранит все остаточные напряжения, избегая как сенсибилизации, так и охрупчивания, но редко бывает практичной для сварной сборки.

В качестве альтернативы можно выбрать более прочную сталь; Марка подшипников из молибдена 316 лучше, чем 304 или 321. Ферритные нержавеющие стали ( Job Knowledge 101 ) не восприимчивы к хлориду SCC.

Эту статью написал Джин Мазерс .

Какие металлы можно сваривать и почему?

Свариваемость — это все. Металлы с высокой свариваемостью легче поддаются сварке и сохраняют более высокое качество сварки, чем другие металлы, поэтому важно изучить эти факторы, прежде чем выбирать материалы для проекта.

После того, как вы сузили свой выбор до нескольких металлов, следующим шагом будет определение того, какой процесс сварки вы хотите использовать. Некоторые методы требуют большего мастерства, чем другие, например, сварка TIG, и от них зависит, какие металлы находятся в вашем распоряжении.Например, идеальными металлами для сварки MIG являются углеродистая сталь, нержавеющая сталь и алюминий по разным причинам.

Ознакомьтесь с нашим ассортиментом сварочных материалов на IMS!

Основные параметры, определяющие свариваемость металла, включают материал электрода, скорость охлаждения, защитные газы и скорость сварки. Каждый металл уникален. В определенной степени можно сваривать все металлы, но у каждого из них есть явные преимущества и недостатки.

Ручная сварка, также известная как дуговая сварка в защитном металлическом корпусе (SMAW), является одним из наиболее распространенных методов сварки.Для начала вам понадобится сварочный аппарат, подходящий электрод (мы рекомендуем DCEP для сварки постоянным током), защитный шлем, зажимы для скрепления стыков и выбранный сварочный металл. С помощью этого метода вы плавите металлический стержень со специальным флюсовым покрытием, предотвращающим загрязнение кислородом — отсюда и название «защищенный металл». Сварку палкой можно использовать для сварки стали, железа, алюминия, меди и никеля.

Просмотреть Сварочные материалы для вашего проекта

В отличие от сварки штучной сваркой, дуговая сварка газом металлическим электродом (или GMAW) не имеет покрытия поверх электродного стержня.Вместо этого сварочный пистолет распыляет защитный газ, который защищает от загрязнений. На сегодняшний день это наиболее распространенный промышленный процесс сварки, который может использоваться для стали, чугуна, магния и многих других металлов.

В конечном счете, нет однозначного ответа при принятии решения, какие металлы и методы сварки использовать. Лучше всего выяснить, какие металлы лучше всего подходят (и наиболее рентабельны) для вашего проекта, а затем выбрать стиль сварки, который можно выполнить с учетом ваших навыков.

# НАЗВАНИЕ № || КОБЕЛКО — КОБЕ СТАЛЬ, ООО.-

Сварка нержавеющей стали

1. Характеристики нержавеющей стали

При добавлении хрома (Cr) к железу (Fe) железо становится стойким к коррозии в атмосфере. Когда содержание Cr увеличивается до 11-12% или более, коррозионная стойкость стали становится заметно высокой.

Следовательно, сталь с таким высоким содержанием Cr получила название нержавеющая.
сталь, где «нержавеющая» означает отсутствие пятен ржавчины.

Причина, по которой нержавеющая сталь обладает хорошей коррозионной стойкостью, заключается в том, что содержащийся в ней Cr окисляется в атмосфере и образует на ее поверхности защитную пленку, называемую «пассивной пленкой».

В зависимости от условий окружающей среды, в которых предполагается использовать нержавеющую сталь, содержание Cr увеличивается, и в сталь также добавляются Ni и другие элементы.

Однако, поскольку его коррозионная стойкость обеспечивается главным образом Cr, Cr является важным элементом для нержавеющей стали. Стандарт JIS определяет нержавеющую сталь как «легированную сталь, содержащую Cr или Cr и Ni для улучшения коррозионной стойкости, обычно содержащую около 10,5% или более Cr.Точно так же в Руководстве по сварке AWS (том 4) нержавеющие стали определяются как «легированные стали с номинальным содержанием Cr не менее 11%, с другими легирующими добавками или без них».

Нержавеющая сталь

обладает высокой термостойкостью, а также устойчивостью к коррозии, поэтому ее применение универсально, от товаров для дома до химического оборудования, судов, подвижного состава, оборудования для пищевой промышленности, архитектурных материалов и оборудования для ядерной энергетики, поскольку такая нержавеющая сталь важна для наших отрасли.

2. Различные виды нержавеющей стали

Нержавеющую сталь

можно условно разделить на нержавеющую сталь Cr и нержавеющую сталь Cr-Ni.

Эти две марки могут быть дополнительно классифицированы на основе их металлографической структуры, как показано на рис. 1. Нержавеющая сталь с хромом может быть разделена на мартенситную нержавеющую сталь и ферритную нержавеющую сталь, а также хромоникелевую нержавеющую сталь.
можно разделить на аустенитную нержавеющую сталь, аустенитно-ферритную нержавеющую сталь (дуплексную нержавеющую сталь) и нержавеющую сталь с дисперсионным твердением.

Рис.1 Классификация нержавеющих сталей

(1) Мартенситная нержавеющая сталь

Типичный сорт мартенситной нержавеющей стали согласно стандарту JIS — SUS410 (AISI 410) (см. Таблицу 1.).

Он содержит 13% Cr, а его металлографическая структура — мартенситная при комнатной температуре, твердая и хрупкая.

Хотя хорошие механические свойства могут быть получены с этой маркой стали путем соответствующей термической обработки (отпуска), считается, что она уступает другим сортам нержавеющей стали по коррозионной стойкости, поскольку в ней низкое содержание Cr.

Мартенситная нержавеющая сталь используется для лопаток, клапанов и валов турбин, требующих высокой прочности, устойчивости к истиранию и нагреванию.

(2) Ферритная нержавеющая сталь

В таблице 2 приведены типичные марки ферритной нержавеющей стали.

Он содержит около 18% Cr и имеет металлографическую структуру феррита, который является мягким и хорошо обрабатывается. Но это создает металлургические проблемы, когда его нагревают до высокой температуры.

По сравнению с мартенситной нержавеющей сталью, ее коррозионная стойкость лучше и даже стойкость к азотной кислоте (HNO3), поскольку в ней выше содержание Cr.

Ферритная нержавеющая сталь широко применяется во внутренней и внешней архитектуре, кухонных приборах, автомобилях и бытовых электроприборах.

(3) Аустенитная нержавеющая сталь

В таблице 3 приведены типичные марки аустенитной нержавеющей стали.

Самая распространенная марка аустенитной нержавеющей стали — SUS304 или AISI 304 (18% Cr − 8% Ni). SUS316 или AISI 316 (18% Cr − 12% Ni − 2% Mo) обеспечивает лучшую коррозионную стойкость, что также широко используется.

Поскольку аустенитная нержавеющая сталь обеспечивает хорошую коррозионную стойкость, обрабатываемость, механические свойства и свариваемость, она широко используется для изготовления резервуаров для хранения, теплообменников, очистных сооружений, кухонной утвари, ванн, раковин и т. Д.

3.Физические свойства нержавеющей стали

В таблице 4 показано сравнение физических свойств нержавеющей и углеродистой стали.

При сварке нержавеющих сталей необходимо соблюдать осторожность, поскольку физические свойства нержавеющей и углеродистой стали сильно различаются, что прямо или косвенно влияет на свариваемость.

Например, хотя коэффициент теплового расширения мартенситной и ферритной нержавеющей стали почти такой же, как у углеродистой стали, коэффициент теплового расширения аустенитной нержавеющей стали равен 1.В 5 раз больше, чем у углеродистой стали. Этот
указывает на то, что деформация и деформация становятся значительно большими при сварке аустенитной нержавеющей стали, чем при сварке углеродистой стали.

Кроме того, если сварное соединение, состоящее из аустенитной нержавеющей стали и углеродистой стали, подвергается термическим циклам, возникают термические напряжения из-за разницы коэффициентов теплового расширения между двумя материалами. Таким образом, использование сварного шва из разнородных металлов, включая аустенитную нержавеющую сталь, в среде, где температура изменяется циклически, является проблемой.

Более того, поскольку электрическое сопротивление нержавеющей стали намного выше, чем у углеродистой стали, при дуговой сварке защищенным металлом электроды с покрытием из нержавеющей стали имеют тенденцию к ожогу. Следовательно, надлежащие сварочные токи ниже, чем для электродов из углеродистой стали.

Мартенситная и ферритная нержавеющая сталь является ферромагнитной, а аустенитная нержавеющая сталь обычно немагнитна.

Однако во многих случаях металл сварного шва из аустенитной нержавеющей стали имеет ферритную структуру; в таких случаях он обладает некоторой степенью магнетизма.

Наличие или отсутствие магнетизма полезно для грубой оценки марки стали в зависимости от процедуры сварки. Например, предварительный нагрев не применяется к немагнитной нержавеющей стали, но во многих случаях предварительный нагрев эффективен для магнитной нержавеющей стали.



4. Рекомендуемые сварочные материалы для аналогичных металлических соединений 5. Рекомендуемые сварочные материалы для соединений разнородных металлов 6. Предварительный и последующий нагрев

Начало страницы

Подготовка, расходные материалы и оборудование, необходимые для процесса

Дуговая сварка вольфрамовым электродом (GTAW) — это процесс электродуговой сварки, при котором возникает дуга между неплавящимся электродом и свариваемым изделием.Сварной шов защищен от атмосферы защитным газом, который образует оболочку вокруг области сварного шва (см. , рис. 1, ).

Рис. 1:
Процесс GTAW универсален и может использоваться для черных и цветных металлов. Между неплавящимся электродом и свариваемым изделием возникает дуга. Сварной шов защищен от атмосферы защитным газом, который образует оболочку вокруг области сварного шва.

GTAW универсален и может использоваться для обработки черных и цветных металлов, а также, в зависимости от основного металла, во всех положениях сварки.Этот процесс можно использовать для сварки тонких или толстых материалов с присадочным металлом или без него.

При сварке более тонких материалов, кромочных соединений и фланцев присадочные металлы не используются. Для более толстых материалов обычно используется присадочная проволока с внешней подачей. Тип используемой присадочной проволоки основан на химическом анализе основного металла. Размер присадочной проволоки зависит от толщины основного металла, от которой обычно зависит сварочный ток.

Действия для GTAW могут быть ручными или автоматическими.

Переменные процедуры сварки и конфигурации стыков

Переменные процедуры сварки управляют процессом сварки и качеством получаемых сварных швов. Конфигурация соединения определяется конструкцией сварного изделия, металлургическим анализом, а также процессом и процедурой, требуемыми для сварки.

Параметры сварки выбираются после выбора основного металла, присадочного металла и конфигурации соединения. К фиксированным параметрам сварки относятся тип присадочного металла, тип и размер электрода, род тока и тип защитного газа.

Регулируемые переменные управляют формой сварного шва, влияя на такие параметры, как высота шва, ширина шва, проплавление и целостность шва. Основными регулируемыми переменными для GTAW являются сварочный ток, длина дуги и скорость перемещения.

Вторичные переменные также помогают контролировать процесс сварки, но их сложнее рассчитать. Вторичные переменные включают рабочий угол и угол перемещения, а также расстояние, на которое электрод выходит за край чашки.

Вольфрамовые электроды

Электроды для GTAW изготавливаются из вольфрамового сплава. Вольфрам имеет одну из самых высоких температур плавления среди всех металлов, около 6 170 градусов по Фаренгейту (3410 градусов по Цельсию).

Размер используемого электрода определяется требуемым сварочным током. Электроды большего размера позволяют использовать более высокие токи. Электроды меньшего диаметра можно использовать для сварки более тонких материалов или при сварке в нерабочем положении.

Ниже приводится список различных типов используемых вольфрамовых сплавов:

1.Чистый вольфрам используется для обработки цветных металлов, таких как алюминий и магний, и обычно используется с подготовкой со скругленными концами на переменном токе (AC) (см. Рисунок 2 ).

Рис. 2:
Чистый вольфрам обычно используется с препарированным концом.

2. Торированный вольфрам — наиболее распространенный тип вольфрамового электрода для обработки углеродистой и нержавеющей стали. Его можно купить с 1 или 2% тория.Торированный вольфрам легко зажигается и поддерживает стабильную дугу. Он обладает большей устойчивостью к загрязнениям, сохраняет остроту и не разрушается так же быстро, как чистый вольфрам.

3. Цирконий вольфрам обычно используется для сварки цветных металлов с повышенным переменным током.

Подготовка острия или использование угла конуса электрода применимо к торированному вольфраму. Электроды из торированного вольфрама зашлифованы до точки для лучшего зажигания дуги с добавлением высокой частоты.Это обеспечивает зажигание дуги и предохраняет электрод от контакта с изделием. Это также помогает стабилизировать дугу.

Степень сужения влияет на форму и глубину проплавления сварного шва. Чтобы уменьшить количество раз, когда электрод необходимо затачивать, сварщик должен научиться не прикасаться к вольфрамовой детали во время процесса сварки. Рекомендуемая длина конуса составляет от 21/2 до 3 диаметров электрода (см. Рисунок 3 ).

Рис. 3:
Правильная подготовка кончика электрода важна для достижения надлежащего проплавления шва.

Защитные газы

Аргон и гелий — два наиболее часто используемых защитных газа, используемых для GTAW. Наиболее желательными характеристиками для целей защиты являются химическая инертность газов и их способность создавать плавную дугу при высоких токах. Оба газа инертны, вызывая эффект ионизации сварочной дуги. Они защищают вольфрамовый электрод и сварочную ванну от атмосферы.

Чистота газа влияет на сварной шов. Металлы выдерживают небольшое количество примесей, но для достижения наилучших результатов процент используемого инертного газа должен быть не менее 99.Чистота 9 процентов.

Аргон тяжелее гелия и может поставляться в жидкой или газообразной форме. Аргон обеспечивает хорошее очищающее действие. Расход определяется размером вольфрама и диаметром газового стакана. Аргон подходит для сварки одинаковых и разнородных металлов и хорошо работает при сварке в вертикальном и потолочном положениях.

Гелий — более легкий инертный газ. Он может распространяться в виде жидкости, но чаще используется в виде сжатого газа. Он покидает зону сварного шва быстрее, чем аргон, и при его использовании необходимы более высокие скорости потока.

Гелий образует узкую, но глубокую зону термического влияния (HAZ), которая хорошо подходит для сварки более тяжелых металлов. Он подходит для сварки на высоких скоростях и обеспечивает хорошее перекрытие при сварке в вертикальном и потолочном положениях. Это помогает увеличить проплавление, а при использовании в качестве обратной продувки имеет тенденцию сглаживать проход сварного шва. Гелий подходит для обработки цветных металлов большой толщины.

Смеси аргона и гелия используются, когда сварщикам требуется контроль аргона и проникновения гелия.Эта смесь не нужна при сварке простых углеродистых сталей.

Типичные смеси различаются в зависимости от области применения. Он часто используется для автоматической сварки.

Смеси аргона и водорода часто используются для сварки нержавеющей стали, INCONEL® и MONEL®. Эту смесь нельзя использовать при сварке простых углеродистых сталей. Типичная смесь состоит из 95 процентов аргона и 5 процентов водорода.

Азот также можно использовать в качестве защитного газа, но он используется редко из-за более высоких требований к току.Подходит для сварки меди.

Сварочный ток, конструкция соединения

Ток зависит в первую очередь от типа свариваемого металла, требуемых уровней тока и наличия аппарата, вырабатывающего этот тип сварочного тока.

Положительный электрод постоянного тока (DCEP) (обратная полярность) иногда используется для сварки очень тонких цветных металлов, а также для шариковой сварки вольфрамового электрода. Отрицательный электрод постоянного тока (DCEN) (прямая полярность) чаще всего используется для сварки нержавеющей стали и черных металлов.

Переменный ток с добавлением высокой частоты чаще всего используется для сварки некоторых цветных металлов, таких как алюминий и магний. Он обеспечивает хорошее очищающее действие и дает умеренное проникновение.

Конструкция сварного соединения

Пять основных типов соединений — это стыковое соединение, угловое соединение, краевое соединение, соединение внахлест и тройник (см. Рисунок 4 ). Из пяти типов шарниров наиболее часто используются стыковое и тройниковое соединение.

Рисунок 4

Прочность сварного соединения — еще один фактор, влияющий на конструкцию сварного соединения.Сварные швы могут быть частичными или полными, в зависимости от требуемой прочности шва. Конструкция сварного соединения или конфигурация сварного изделия для GTAW определяется типом металла, конфигурацией сварного соединения, обозначенными кодами и спецификациями, а также металлургическим анализом. На конструкцию соединения, которое будет использоваться, влияют несколько факторов, включая требуемую прочность, положение сварки, толщину металла и доступность соединения для сварщика.

Целью любой конструкции соединения является получение прочного сварного шва с желаемыми свойствами с максимальной экономией.Подготовка кромки и стыка важны, потому что они влияют как на качество, так и на стоимость сварки.

Подготовка к сварке

Перед использованием GTAW необходимо предпринять несколько шагов для подготовки электрода и сварного шва, закрепления сварного соединения, установки переменных и, при необходимости, предварительного нагрева основного металла. Объем подготовки зависит от размера сварного шва, типа основного материала, подгонки и требований к качеству.

Подготовка электродов. Подготовка электродов зависит от типа электрода и области применения сварки. Наконечник может иметь точку заземления или шаровой конец для сварки на переменном токе.

Для изготовления электрода с острием следы шлифовки должны проходить параллельно электроду.

Чтобы приготовить шарик на конце вольфрама, источник питания должен быть переключен на DCEP (обратная полярность). Затем после зажигания дуги между электродом и куском металлолома или меди ее необходимо поддерживать на умеренном уровне тока.Кончик мяча должен быть идеально чистым, блестящим и иметь зеркальную поверхность.

Подготовка сварного шва. При подготовке сварного шва можно использовать несколько различных методов, в том числе газокислородную резку, плазменную резку, резку ножницами, механическую обработку, строжку угольной дугой, шлифовку или скалывание. Помните, что правильная подготовка сварного шва поможет произвести надежную сварку и соответствовать требованиям стандартов качества сварки.

Очистка. Очистка свариваемого материала очень важна.Сварные швы GTAW часто подвержены загрязнению во время сварки. На свариваемой поверхности не должно быть масла, жира, краски, грязи, оксидов и других посторонних материалов.

Алюминий имеет оксидное покрытие, которое, если его не удалить, загрязняет зону сварки. Чистящие растворы, проволочные щетки, шлифовальные машины и абразивоструйная очистка — вот некоторые из методов, используемых для удаления этих загрязнений.

Крепление и позиционирование. Крепление и расположение также повлияют на форму, размер и однородность сварного шва.Приспособления удерживают сварную деталь на месте, контролируя деформацию, помогая размещать и удерживать детали в их положении относительно сварной детали.

Использование крепления позволяет сократить время сварки. Позиционирование поможет переместить сварную деталь в ровное положение, что повысит производительность сварщика.

Охлаждающие блоки, радиаторы или опорные стержни могут использоваться при сварке некоторых металлов, чтобы предотвратить прожог, снизить температуру основного материала или минимизировать деформацию.

Предварительный нагрев. В зависимости от легирующих элементов в основном материале, толщины стали и конфигурации соединения иногда требуется предварительный нагрев. Величина предварительного нагрева, необходимая для данного применения, обычно определяется процедурой сварки. Доступно несколько методов управления температурой предварительного нагрева, включая нагрев печи, электрические индукционные катушки, кислородные горелки и одеяла резистивного нагрева.

Температуру предварительного нагрева можно измерить с помощью температурных палочек, шариков мелков, индикаторов температуры, термопар, термисторов или инфракрасных термометров.

Заключение

Изучение основ процесса GTAW повысит способность сварщика производить качественные сварные швы. Знание правильных расходных материалов, оборудования и необходимой подготовки к сварке поможет сварщику устранять проблемы при сварке.

Хорошее понимание процесса GTAW поможет сварщику сделать более разумный выбор при выборе присадочного металла, вольфрамовых электродов и защитных газов. Сварщик также сможет выбрать правильный тип оборудования в зависимости от области применения при сварке углеродистой стали, нержавеющей стали или цветных металлов.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *