Трубчатый керамический конденсатор: Радиоэлементы из старой аппаратуры: конденсаторы

Содержание

Конденсатор трубчатый керамический, ЧП Неликвид

Конденсатор трубчатый керамический находится на втором месте по незаменимости в любой электрической схеме. Данный элемент может быть полярным или неполярным, различаются они применением: одни используют в цепи с постоянным напряжением, другие, с переменным. Конденсатор КТК трубчатый является неполярным элементом. Подобные РЭК предназначаются для цепей, в которых течет постоянный/переменный ток, для импульсных, блокировочных, контурных режимов. Особо важно использовать конденсаторы трубчатые в колебательном контуре приемных и передающих устройств, без этой детали не обходится работа блоков питания, фильтров.

Диэлектриком в трубчатых конденсаторах выступает трубка из керамики, с серебряными обкладками. Бывают одно секционные и двухсекционные. Раньше, начиная с сороковых годов прошлого столетия и практически до восьмидесятых годов, такой конденсатор широко применялся в колебательном контуре ламповых аппаратов. Для упрощенного определения температурного коэффициента емкостного изменения конденсаторы окрашивали в разные цвета.

Таблица:

Как можно увидеть, что самыми термостабильными являются КТК серого и голубого цветов. Данный вид отлично подходит для использования в высокочастотной технике.
Для того, чтобы настроить аппаратуру, зачастую необходимо подобрать конденсатор гетеродинного, входного контура, при использовании конденсаторов трубчатых керамических емкостный подбор значительно упрощается: просто на конденсаторный корпус рядом с выводами плотно наматываются витки проводов ПЭЛ-0.3, при этом один конец спирали подпаивается к конденсаторному выводу. Сдвинув или раздвинув витки спирали регулируется емкость конденсатора (правда, в незначительных пределах).

Конденсатор керамический, называемый «красный флажок» применяют в высокочастотной цепи, но значительно реже, чем КТК других цветов, так как данный вид РЭК могут быть произведены из керамики невысокого качества. У радиолюбителей и профессионалов они не котируются. Термостабильность и линейность трубчатых конденсаторов зависит также и от размера детали.

Использование КТК

  • Как комплектующий элемент в высокочастотном, высокоточном, термическом оборудовании;
  • Встроенный элемент при внутреннем монтаже различной аппаратуры;
  • В цепи с переменным/постоянным током.

Стоит отдельно отметить, что трубчатые конденсаторы, которые используются в сложных промышленных аппаратах, в оборудовании для военных нужд, весьма стабильны и ценны, но найти их чрезвычайно сложно, так как элементы в значительном количестве содержат металлы, относящиеся к классу редкоземельных.

Конденсаторы ссср маркировка фото


Конденсаторы «КБ»
(«Конденсатор бумажный»). До 1941 г. именовались «БК».
Обкладки – алюминий, диэлектрик – бумага в парафине. Корпус – пропарафиненная бумага. Выпускались с 1930-х по 1960-е годы.
Широко использовались в низкочастотных цепях вещательных
приемников.

Конденсаторы «CC».
(«Слюдосеребряные»)
Этикетка заполнена от руки
1940-е годы.

Конденсаторы «КСО».
(«Конденсатор слюдяной опресованный»). Диэлектрик – слюда, обкладки – алюминиевое напыление. Опресованы пластической массой. Выпускались с 1930-х по 1960-е годы (на ранних – емкость обозначена в микромикрофарадах). Во втором столбце сверху – конденсатор довоенного образца, под ним – американский аналогичного типа с цветовой маркировкий емкости. Использовались в высокочастотных цепях.

Конденсаторы «КТК».
(«Конденсатор трубчатый керамический»). Диэлектрик – керамика, серебряные обкладки нанесены методом вжигания. Выпускались с 1940-х по 1970-е годы. Широко применялись в колебательных контурах ламповой аппаратуры.

Конденсаторы «КДК».
(«Конденсатор дисковый керамический»). Диэлектрик – керамика, серебряные обкладки нанесены методом вжигания. Выпускались с 1940-х по 1970-е годы. Применялись в высокочастотных цепях ламповой аппаратуры.

Конденсаторы «КБГ-И».
(«Конденсатор бумажный герметизированный»). Диэлектрик – бумага в церезине, обкладки – алюминиевое напыление. Корпус – керамика. Выпускались с 1940-х по 1960-е годы. Обладая стабильными параметрами и высокой надежностью, применялись в различных цепях приемников улучшенного качества.


Подстроечные конденсаторы «КПК».

(«Конденсатор подстроечный керамический»). Диэлектрик – керамика, обкладки – серебряное напыление. Выпускались с 1940-х по 1970-е годы. Использовались для подстройки резонансных цепей.

Конденсаторы других типов. (1940-е – 1970-е годы)
Левый столбец – БМТ (бумажные), в середине сверху вниз – ПО (полистирольные), К40У-2 (бумажные герметизированные), справа – К40П-2 (бумажные герметизированные)

Оксидный конденсатор послевоенной модели.
(конец 1940-х годов)
Диэлектрик – бумага, пропитанная пастообразным электролитом, обкладки – губчатая поверхность алюминиевой фольги. Корпус – алюминий.

Оксидные конденсаторы «КЭ». (1950-1960)
(«Конденсатор Электролитический»). Диэлектрик – бумага, пропитанная пастообразным электролитом, обкладки – губчатая поверхность алюминиевой фольги. Корпус – алюминий. Выпускались с 1940-х по 1950-е годы. Широко применялись в качестве фильтров в цепях анодного питания.

Оксидные конденсаторы «ЭМ».
(Электролитические Малогабаритные).
Выпускались в модификациях ЭМ-М («морозостойкие») и ЭМ-Н («неморозостойкие»)
Диэлектрик – бумага, пропитанная пастообразным электролитом, обкладки – губчатая поверхность алюминиевой фольги.
Корпус – алюминий. Использовались в первых транзисторных приемниках. 1950-1960 годы.

Резисторы отечественного производства.
Слева – сопротивление Каминского (1920-30 годы, углеродистая мастика на керамике). Средний столбец – ТО (1930-1950, опрессованы пластмассой, ранние – с цветовой маркировкой). Справа – ВС, основной тип, применявшийся в 1940-1960-х годах (ВысокоСтабильные углеродистые).

Резисторы МЛТ и ВС.
Л евый столбец – МЛТ (1970-1990-е годы) мощностью от 2 Вт до 0,125 Вт. Справа – ВС с круглыми выводами (1970-е годы) и миниатюрный резистор УЛМ, применявшийся в первых транзисторных радиоприемниках..

Вторым незаменимым элементом в электрических схемах является конденсатор. Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 – вакуумные; 2 – воздушные; 3 – газонаполненные; 4 – твердый диэлектрик; 5 – жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 – подстроечный конденсатор с твердым диэлектриком.

Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости (КПЕ)

Рис.10 Ом.

Рис. 5 Конденсаторы КТК

Конденсаторы КТК – Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные – голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.

Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя – количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 – 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 – 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.

Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.

Рис. 8. МБГО, МБГЧ

Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО – конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая – особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.

Рис. 10. Различные типы конденсаторов

Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6 1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб 2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)

Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

лат.

рус.

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В

Буква обозначения

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.

Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.

Рис. 14. Электролитические конденсаторы. Снизу – для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.

Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10. 100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В[4].

Рис. 16. Ионисторы

В середине 17 века в Голландии, в Лейденском университете, учеными, в результате многочисленных опытов, был изобретен способ накопления и сохранения электрических зарядов. В роли накопителя электричества выступала так называемая лейденская банка (по названию университета). Лейденскую банку сделали из обычной стеклянной колбы, а стенки этой колбы ученые проклеили с двух сторон, снаружи и внутри, свинцовой фольгой. В результате экспериментов, когда этот прибор подключали обкладками к электрической машине, была доказана способность накапливать и длительное время сохранять значительное количество электричества внутри опытного образца.

Ученые заметили, что когда обкладки замыкали между собой толстой металлической проволокой, то в месте замыкания появлялся сильный искровой разряд. После этого накопленный электрический заряд в приборе мгновенно и бесследно исчезал.

В результате дальнейших экспериментов они попробовали соединить обкладки лейденской банки тонкой металлической проволокой. В этом случае проволока нагревалась и плавилась, т.е. перегорала. Тем самым учеными был сделан вывод: по тонкой проволоке течет электрический ток, а источником этого тока является электрически заряженная лейденская банка.

В наше время аналогичные приборы носят название конденсаторы. Слово конденсатор значит сгущать , сгуститель . Полоски фольги, которые не имеют соединения между собой, называются обкладками электрических конденсаторов. Единица емкости конденсаторов – микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще используется другая единица – пикофарада (пФ), миллионная доля микрофарады. На схемах встречается и та, и другая единица. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах, а свыше – в микрофарадах. Если, например,рядом с условным обозначением конденсатора написано 27 , 510 или 6800 , значит, емкость конденсатора соответственно 27,510 или 6800 пФ. А вот надписи 0,015 мк, 0,25 мк или 1 мк свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад.

Типов конденсаторов очень много. Они отличаются материалом между пластинами и конструкцией. Немного о конденсаторах, которые наиболее часто встречаются в радиоэлектронике.

1.Керамические конденсаторы постоянной емкости

Эти конденсаторы содержат токопроводящие обкладки. Между этими обкладками находятся слюда, бумага, керамика. По тому, какой диэлектрик используется, конденсаторы называются соответственно слюдяными, бумажными, керамическими. У этих конденсаторов роль диэлектрика выполняет специальная керамика. Обкладки такого конденсатора – тонкие слои посеребренного металла, которые нанесены на поверхность керамики. Выводы у них выполнены из латунной посеребренной проволоки или полоски из того же материала, которые припаяны к обкладкам. Снаружи на корпуса таких конденсаторов нанесен слой специальной эмали.

Это конденсаторы небольших размеров, но имеющие относительно большую емкость. Такие конденсаторы изготавливают из нескольких пластин, которые сложены в стопку и разделены друг от друга диэлектриком. В таком случае каждая пара расположенных рядом пластин создает конденсатор. Эти пары пластин соединяют параллельно и создают конденсатор значительной емкости. Обкладки таких конденсаторов изготовлены из алюминиевой фольги или слоя серебра, которые наносятся непосредственно на слюду.

Выводы у них сделаны из посеребренной проволоки. Они носят название КСО. В их обозначении есть цифра, описывающая форму и размеры таких конденсаторов. КСО-1, КСО-5, КСО-8. Чем цифра больше, тем больше размер самого конденсатора. Снаружи эти конденсаторы заливаются пластмассой. В промышленности применяются и разновидности слюдяных конденсаторов. Это конденсаторы СГМ. По внутренней конструкции они не отличаются от слюдяных. Единственное отличие состоит в том, что корпуса в конденсаторах СГМ выполнены из керамики и влагонепроницаемы.

3.Бумажные и металлобумажные конденсаторы
постоянной емкости

Такие конденсаторы находят применение в низкочастотных цепях. Все конденсаторы данного типа имеют в своем обозначении букву Б, т.е. бумажные. Конденсаторы БМ (Бумажные Малогабаритные) помещены в трубки малых размеров из металла. Эти трубки с торцов заливаются специальной смолой. Конденсаторы типа КБ изготовлены в картонных цилиндрических корпусах. Конденсаторы типа КБГ-И изготовлены в фарфоровых корпусах с металлическими торцовыми колпачками. Эти колпачки имеют соединение с обкладками, от которых отходят узкие выводные лепестки.

В радиопромышленности находят применение конденсаторы КБГ-МП, КБГ-МН, КБГТ. Такие конденсаторы имеют емкость до нескольких микрофарад и находятся в металлических корпусах. В одном таком металлическом корпусе конденсаторов с этой маркировкой может быть два-три.

Конденсаторы типа МБМ имеют одну отличительную особенность – это способность самовосстановления после электрического пробоя диэлектрика. Диэлектрик у таких конденсаторов выполнен из лакированной конденсаторной бумаги. Обкладки изготовлены из слоя металла толщиной меньше одного микрона. Эти слои нанесены на одну сторону бумаги.

Внутри корпуса данного типа конденсатора имеются две ленты, сделанные из алюминиевой фольги. Поверхность одной ленты покрывается тонким слоем окиси. Промеж этих лент прокладывается лента из пористой бумаги. Эта бумага пропитана специальной жидкостью – электролитом. Всю эту четырехслойную полосу сворачивают в рулон и располагают в алюминиевый цилиндр. Роль диэлектрика у таких конденсаторов выполняет слой окиси. Такое устройство имеют конденсаторы типа КЭ, К50-3, К50-6.

5.Конденсаторы переменной емкости

Конструкция конденсаторов данного типа такова: одна из его обкладок является статором и неподвижна. Другая обкладка, ее называют ротором, закреплена на оси и вращается вместе с ней. Когда ось начинает вращение, то изменяется площадь перекрытия обкладок и емкость конденсатора. Обкладки таких конденсаторов сделаны из алюминиевых или латунных пластин. Пластины ротора соединяются осью. Статорные пластины также имеют соединение и изолируются от ротора. В этих конденсаторах роль диэлектрика выполняет воздух.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения емкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 5-180 говорит о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пФ, а в другом – 180 пФ. При плавном повороте из одного положения в другое емкость конденсатора будет также плавно изменяться от 5 до 180 пФ или от 180 до 5 пФ.

Разновидностью конденсаторов переменной емкости являются подстроечные конденсаторы. Конструктивно такие конденсаторы состоят из керамического основания и тонкого диска, который также выполнен из керамики. На поверхность основания, т.е. под самим диском и на сам диск наложены в виде секторов металлические слои. Эти слои и являются обкладками конденсаторов данного типа. Когда диск начинает вращение вокруг оси, то меняется площадь перекрытия секторов – обкладок и тем самым меняется емкость конденсатора. Роль диэлектрика в этих конденсаторах выполняет бумага, керамика или пластмассовая пленка. Их еще называют конденсаторы с твердым диэлектриком.

Маркировка керамических конденсаторов – таблицы с расшифровками обозначений


Содержание статьи


Правильно выбрать конденсатор для микросхемы определенного назначения помогает маркировка, нанесенная на корпус. Но у конденсаторов она сложная и разнообразная, поэтому определить характеристики этих элементов затруднительно, особенно если они имеют незначительную площадь поверхности. Параметры, указываемые в обозначении: код производителя, номинальное напряжение, емкость, допустимое отклонение от номинала, температурный коэффициент емкости (ТКЕ).

Физические величины, используемые в маркировке емкости керамических конденсаторов


Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.


Таблица единиц емкости, применяемых для бытовых керамических конденсаторов







Наименование единицы

Варианты обозначений

Степень по отношению к Фараду

Микрофарад

Microfarad

мкФ, µF, uF, mF

10-6F

Нанофарад

Nanofarad

нФ, nF

10-9F

Пикофарад

Picofarad

пФ, pF, mmF, uuF

10-12F


Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).

Численные и численно-буквенные коды в маркировках конденсаторов


Обозначение наносится на корпус элемента. Первым обычно указывается номинальное напряжение в вольтах, за числами могут следовать буквы: В, V, VDC или VDCW. На корпуса небольшой площади значение номинального напряжения наносят в закодированном виде. Если указание на допустимую величину напряжения в цепи отсутствует, это означает, что конденсатор можно использовать только в низковольтных схемах. На корпусе должны быть знаки «+» и «-», указывающие на полярность подсоединения элемента в цепи. Несоблюдение указанной полярности может привести к полному выходу детали из строя.


Таблица для расшифровки буквенных кодов величины номинального напряжения керамических конденсаторов
















Напряжение, В

Код

Напряжение, В

Код

1

I

63

K

1,6

R

80

L

3,2

A

100

N

4

C

125

P

6,3

B

160

Q

10

D

200

Z

16

E

250

W

20

F

315

X

25

G

400

Y

32

H

450

U

40

C

500

V

50

J



Вторая позиция – знак фирмы-производителя или температурный коэффициент емкости (ТКЕ), который может отсутствовать. ТКЕ обычно обозначается буквенным кодом.


Таблица буквенных кодов ТКЕ для маркировки керамических конденсаторов с ненормируемым ТКЕ






Допуск при -60°C…+80°C, +/-, %

Буквенный код

Допуск при -60°C…+80°C, +/-, %

Буквенный код

20

Z

70

E

30

D

90

F



Третья позиция – номинальная емкость, которая может указываться несколькими способами.

Способы маркировки емкости конденсатора


На деталях советского производства, чаще всего имеющих довольно большую площадь поверхности, наносились числовые значения емкости, ее единица измерения и номинальное напряжение в вольтах. Например, 23 пФ, то есть 23 пикофарада.


Расшифровка маркировки обозначений современных керамических конденсаторов отечественного и зарубежного производства – мероприятие более сложное. Возможны следующие варианты.


Три цифры


Если в маркировке присутствуют три цифры, то первые две обозначают величину емкости, последняя – множитель нуля. Если последняя цифра находится в диапазоне 0-6, то к числу, состоящему из первых двух цифр, добавляют нули в указанном количестве. Если последняя цифра – 8, то число из первых двух цифр умножают на 0,01, если 9, то – на 0,1. После определения числового значения емкости необходимо установить единицу измерения. Емкость мелких деталей обычно измеряется в пикофарадах. После числового значения может стоять буква, указывающая на единицу измерения: p – пикофарад, µ – микрофарад, n – нанофарад.


Пример 353p = 35 х 103 пФ.


Четырьмя цифрами


Этот вариант похож на описанный выше. Только значащая часть содержит три цифры, а четвертая – это показатель степени для 10. Единица измерения – обычно пикофарады.


Буквенно-цифровая маркировка


При таком способе обозначения емкости буква указывает на место, где должна находиться запятая. Буква R применяется для маркировки емкости в микрофарадах. Если перед буквой R стоит 0, то единица измерения – пикофарад. Например, 0R4 = 4 пФ, R47 = 0,45 мкФ.


Функции десятичной точки может выполнять буква, указывающая на единицу измерения. Например, емкость, равная 0,43 мкФ, на конденсаторах импортного производства обозначается как m43 или µ43. В русском варианте в качестве десятичной точки применяют буквы «п» – пикофарады, «н» – нанофарады, «м» – микрофарады.


В некоторых случаях на корпус конденсаторов наносятся допуски для номинального значения емкости. На деталях большой площади они указаны числами, обозначающими процент допуска. На маленькие конденсаторы допуски обычно нанесены в закодированном виде.


Таблица буквенного кодирования допусков











Буквенное обозначение

Допуск, %

Буквенное обозначение

Допуск, %

B

+/- 0,1

M

+/- 20

C

+/- 0,25

N

+/- 30

D

+/- 0,5

Q

-10…+30

F

+/- 1

T

-10…+50

G

+/- 0,2

Y

-10…+100

J

+/- 0,5

S

-20…+50

K

+/- 10

Z

-20…+80


Маркировка SMD конденсаторов


Габариты деталей, предназначенных для поверхностного монтажа, очень скромные, поэтому обозначение содержит минимум информации, нанесенной максимально лаконично. Значение напряжения наносится буквенным кодом в соответствии с таблицей, представленной выше. Другие элементы маркировки:

  • первая латинская буква характеризует производителя компонента;
  • вторая латинская буква – код значащей части (мантиссы) номинальной емкости;
  • цифра означает степень, в которую необходимо возвести закодированное число, чтобы получить номинал емкости в пикофарадах.


Например, КT3 – конденсатор от известного производителя Kemet номинальной емкостью 5,1х103 пФ = 5,1 нФ.


Таблица кодирования мантиссы












Буква

Мантисса

Буква

Мантисса

Буква

Мантисса

A

1.0

J

2.2

S

4.7

B

1.1

K

2.4

T

5.1

C

1.2

L

2.7

U

5.6

D

1.3

M

3.0

V

6.2

E

1.5

N

3.3

W

6.8

F

1.6

P

3.6

X

7.5

G

1.8

Q

3.9

Y

8.2

H

2.0

R

4.3

Z

9.1


Цветовая маркировка керамических конденсаторов


Цветовая маркировка часто используется для конденсаторов с малой площадью поверхности. Цветные полосы наносятся сверху вниз или слева направо. Номинальная емкость обычно указывается 3-5 цветными полосками, две первые из них обозначают определенную цифру. Черный – 0, коричневый – 1, красный – 2, оранжевый – 3, желтый – 4, зеленый – 5, голубой – 6, фиолетовый – 7, серый – 8, белый – 9.


Число, которое составляется из цифр, закодированных в двух первых полосках, умножается на множитель, зашифрованный в третьей полоске. Оранжевая полоса означает 103, желтый – 104, зеленый – 105.


В маркировке может присутствовать четвертая полоса, цвет которой соответствует допустимым отклонениям от номинальной емкости. Белый цвет означает, что допустимы отклонения 10 % в обе стороны, а черный – 20 % в обе стороны. Пятая полоска характеризует номинал напряжения. Красный – 250 В, желтый – 400 В.



Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?



Анатолий Мельник


Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.











Как выглядит керамический конденсатор

Керамический конденсатор является наиболее широко используемым конденсатором и доступен в различных составах и типах, подходящих для различных применений и свойств. Вы можете увидеть это почти на каждой печатной плате. Они также известны как дисковые конденсаторы.

Советуем вам посмотреть и узнать больше про конденсатор в статье по ссылке выше, а также про диэлектрик в конденсаторе.

Состав керамического конденсатора

Как следует из названия, этот конденсатор использует керамику в качестве диэлектрического материала. Они изготовлены с использованием керамического или фарфорового диска, покрытого с обеих сторон тонким слоем серебра. Керамика является одним из первых материалов, используемых для изготовления конденсаторов.

Именно расположение и свойства керамического вещества характеризуют функциональные аспекты этих конденсаторов. Купить керамические конденсаторы вы можете на Алиэкспресс:

Типы керамического конденсатора

Он широко классифицируется на три основных класса. Чем ниже класс, тем выше его производительность. Эти три класса:

Керамический конденсатор класса I

Этот класс керамических конденсаторов обеспечивает большую стабильность значения емкости при изменении температуры, напряжения и частоты. Их точность довольно высока.

Керамический конденсатор класса II

Этот тип керамического конденсатора обеспечивает большую эффективность с точки зрения размера. Они имеют высокую емкость на объем. Они лучше всего подходят для использования в качестве развязывающего конденсатора или в качестве буфера.

Керамический конденсатор класса III

Они почти такие же, как керамические конденсаторы класса II. Однако им не хватает точности и они нестабильны как класс II с точки зрения изменения температуры.

Свойства керамического конденсатора

Различные свойства керамических конденсаторов следующие:

Диэлектрическая проницаемость (K) керамического конденсатора

Они обладают высокой диэлектрической проницаемостью (К). Это свойство позволяет им обеспечивать высокое значение емкости даже при его небольших размерах.

Влияние на емкость при изменении температуры

Емкость этих конденсаторов изменяется нелинейно с изменением температуры. По этой причине они лучше всего подходят для использования в качестве развязывающих конденсаторов или байпасных конденсаторов.

Неполяризация в керамическом конденсаторе

Они не поляризованы. Это означает, что в этом типе конденсаторов нет проблем с полярностью. Они могут быть подключены к цепи с любой стороны.

Бюджетный

Их стоимость изготовления очень низкая.

Различные размеры

Они доступны в небольших размерах. Поэтому пространство для этого в цепи не вызывает беспокойства.

Надежность

Они очень надежны и обладают высокой переносимостью. Шансы на повреждение также меньше.

Диапазон емкости керамического конденсатора

Они доступны в различных значениях емкости от нескольких пФ до 1/2 мкФ.

Номинальное напряжение керамического конденсатора

Они доступны с переменным номинальным напряжением. Обычно они имеют низкое напряжение. Однако керамические конденсаторы MLCC имеют более высокое номинальное напряжение, чем электролитические конденсаторы.

Применение Керамического Конденсатора

Эти конденсаторы имеют много применений, таких как:

  • Резонансная схема в передающих станциях
  • Высоковольтные лазерные источники питания
  • Печатные платы высокой плотности
  • Минимизация радиочастотного шума
  • Силовые выключатели
  • Индукционные печи

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Керамический конденсатор является наиболее широко используемым конденсатором и доступен в различных составах и типах, подходящих для различных применений и свойств. Вы можете увидеть это почти на каждой печатной плате. Они также известны как дисковые конденсаторы.

Советуем вам посмотреть и узнать больше про конденсатор в статье по ссылке выше, а также про диэлектрик в конденсаторе.

Состав керамического конденсатора

Как следует из названия, этот конденсатор использует керамику в качестве диэлектрического материала. Они изготовлены с использованием керамического или фарфорового диска, покрытого с обеих сторон тонким слоем серебра. Керамика является одним из первых материалов, используемых для изготовления конденсаторов.

Именно расположение и свойства керамического вещества характеризуют функциональные аспекты этих конденсаторов. Купить керамические конденсаторы вы можете на Алиэкспресс:

Типы керамического конденсатора

Он широко классифицируется на три основных класса. Чем ниже класс, тем выше его производительность. Эти три класса:

Керамический конденсатор класса I

Этот класс керамических конденсаторов обеспечивает большую стабильность значения емкости при изменении температуры, напряжения и частоты. Их точность довольно высока.

Керамический конденсатор класса II

Этот тип керамического конденсатора обеспечивает большую эффективность с точки зрения размера. Они имеют высокую емкость на объем. Они лучше всего подходят для использования в качестве развязывающего конденсатора или в качестве буфера.

Керамический конденсатор класса III

Они почти такие же, как керамические конденсаторы класса II. Однако им не хватает точности и они нестабильны как класс II с точки зрения изменения температуры.

Свойства керамического конденсатора

Различные свойства керамических конденсаторов следующие:

Диэлектрическая проницаемость (K) керамического конденсатора

Они обладают высокой диэлектрической проницаемостью (К). Это свойство позволяет им обеспечивать высокое значение емкости даже при его небольших размерах.

Влияние на емкость при изменении температуры

Емкость этих конденсаторов изменяется нелинейно с изменением температуры. По этой причине они лучше всего подходят для использования в качестве развязывающих конденсаторов или байпасных конденсаторов.

Неполяризация в керамическом конденсаторе

Они не поляризованы. Это означает, что в этом типе конденсаторов нет проблем с полярностью. Они могут быть подключены к цепи с любой стороны.

Бюджетный

Их стоимость изготовления очень низкая.

Различные размеры

Они доступны в небольших размерах. Поэтому пространство для этого в цепи не вызывает беспокойства.

Надежность

Они очень надежны и обладают высокой переносимостью. Шансы на повреждение также меньше.

Диапазон емкости керамического конденсатора

Они доступны в различных значениях емкости от нескольких пФ до 1/2 мкФ.

Номинальное напряжение керамического конденсатора

Они доступны с переменным номинальным напряжением. Обычно они имеют низкое напряжение. Однако керамические конденсаторы MLCC имеют более высокое номинальное напряжение, чем электролитические конденсаторы.

Применение Керамического Конденсатора

Эти конденсаторы имеют много применений, таких как:

  • Резонансная схема в передающих станциях
  • Высоковольтные лазерные источники питания
  • Печатные платы высокой плотности
  • Минимизация радиочастотного шума
  • Силовые выключатели
  • Индукционные печи

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Вторым незаменимым элементом в электрических схемах является конденсатор. Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 – вакуумные; 2 – воздушные; 3 – газонаполненные; 4 – твердый диэлектрик; 5 – жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 – подстроечный конденсатор с твердым диэлектриком.

Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости (КПЕ)

Рис. 3 Конденсаторы КПЕ

Их можно встретить только в приемо-передающей аппаратуре

1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов.
2 – переменный конденсатор для УКВ блоков с верньером
3 – переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником. В основном китайского производства.

Типов постоянных конденсаторов существует великое множество, в рамках этой статьи невозможно описать все их разнообразие, опишу лишь те, что в бытовой аппаратуре чаще всего встречаются.10 Ом.

Рис. 5 Конденсаторы КТК

Конденсаторы КТК – Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные – голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.

Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя – количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 – 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 – 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.

Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.

Рис. 8. МБГО, МБГЧ

Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО – конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая – особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.

Рис. 10. Различные типы конденсаторов

Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6 1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб 2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)

Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

лат.

рус.

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В

Буква обозначения

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.

Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.

Рис. 14. Электролитические конденсаторы. Снизу – для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.

Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10. 100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В[4].

Рис. 16. Ионисторы

Керамические конденсаторы справочник. Конденсаторы — Справочник

Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные
конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 — вакуумные; 2 — воздушные; 3 — газонаполненные; 4 — твердый диэлектрик; 5 — жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 — подстроечный конденсатор с твердым диэлектриком.

Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости
(КПЕ)

Рис. 3 Конденсаторы КПЕ

Их можно встретить только в приемо-передающей аппаратуре

1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов.
2 — переменный конденсатор для УКВ блоков с верньером
3 — переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником. В основном китайского производства.

Типов постоянных конденсаторов существует великое множество, в рамках этой статьи невозможно описать все их разнообразие, опишу лишь те, что в бытовой аппаратуре чаще всего встречаются.10 Ом.

Рис. 5 Конденсаторы КТК

Конденсаторы КТК — Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные — голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.

Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Таблица 2

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 — 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.

Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.

Рис. 8. МБГО, МБГЧ

Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО — конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая — особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.

Рис. 10. Различные типы конденсаторов

Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6
К50 -Электролитический, фольговый, Алюминиевый
К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб
К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)

Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.

Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.

Рис. 14. Электролитические конденсаторы. Снизу — для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.

Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10…100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В.

Рис. 16. Ионисторы

Название
: Справочник по электрическим конденсаторам.

Приведены классификация, основные технические параметры, особенности конструкций и эксплуатационные характеристики выпускаемых отечественной промышленностью конденсаторов, а также данные о влиянии режимов и условий эксплуатации на их работоспособность. Даны рекомендации по выбору и применению конденсаторов в аппаратуре. Для широкого круга специалистов, занимающихся разработкой, эксплуатацией и ремонтом радиоэлектронной аппаратуры.


Электрические конденсаторы — наиболее массовые изделия, широко используемые в радиоэлектронной аппаратуре, В связи с быстрым развитием современной электроники потребность в конденсаторах непрерывно возрастает. В настоящее время создана довольно широкая номенклатура этих изделий и продолжают разрабатываться новые типы с более высокими электрическими и эксплуатационными характеристиками.

Многообразие различных типов конденсаторов и отсутствие справочных материалов, достаточно полно характеризующих их эксплуатационные свойства, вызывает определенные трудности при конструировании радиоаппаратуры.

Настоящий Справочник представляет собой наиболее полное издание, содержащее сведения о широкой номенклатуре конденсаторов. Справочные материалы составлены на основе данных, указанных в государственных стандартах и технических условиях.

Справочник состоит из двух частей. Первая часть посвящена общим сведениям. Даются классификация, система условных обозначений, понятия об электрических параметрах и излагаются вопросы, связанные с применением и эксплуатацией конденсаторов.

Во второй части приводятся справочные данные по конкретным типам конденсаторов. В основу разбиения материала по разделам принято установившееся деление конденсаторов по виду диэлектрика (с органическим, неорганическим и оксидным). В отдельные разделы выделены конденсаторы подстроечные, вакуумные и нелинейные.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:

Скачать книгу Справочник по электрическим конденсаторам — Дьяконов М.Н., Карабанов В.И., Присняков В.И. — fileskachat.com, быстрое и бесплатное скачивание.

  • Справочная книга радиолюбителя — конструктора — Чистяков Н. И.
  • Физика, Подготовка к ЕГЭ-2015, Книга 2, Монастырский Л.М., Богатин А.С., 2014

Следующие учебники и книги.


Как неотъемлемые элементы всех без исключения электрических схем конденсаторы отличаются большим разнообразием вариантов конструктивного исполнения. Они выпускаются многими производителями по всему миру с применением различных технологий. Как следствие, маркировка имеет множество вариантов в соответствии с внутренними стандартами производителя, что делает попытки расшифровывать обозначения трудной задачей.

Зачем нужна маркировка

Задачей маркировки стоит соответствие каждого конкретного элемента определенным значениям рабочей характеристики. Маркировка конденсаторов включает в себя следующее:

  • собственно, емкость – основная характеристика;
  • максимально допустимое значение напряжения;
  • температурный коэффициент емкости;
  • допустимое отклонение емкости от номинального значения;
  • полярность;
  • год выпуска.

Максимальное значение напряжения важно тем, что при превышении его значения происходят необратимые изменения в элементе, вплоть до его разрушения.

Температурный коэффициент емкости (ТКЕ) характеризует изменение ёмкости при колебаниях температуры окружающей среды или корпуса элемента. Данный параметр крайне важен, когда конденсатор используется в частотозадающих цепях или в качестве элемента фильтра.

Допустимое отклонение означает точность, с которой возможно отклонение номинальной емкости конденсаторов.

Полярность подключения в основном характерна для электролитических конденсаторов. Несоблюдение полярности включения, в лучшем случае, приведет к тому, что реальная ёмкость элемента будет сильно занижена, а в реальности элемент практически мгновенно выйдет из строя из-за механического разрушения в результате перегрева или электрического пробоя.

Наибольшее отличие в принципах маркировки конденсаторов наблюдается в радиоэлементах, выпущенных за рубежом и предприятиями на постсоветском пространстве. Все предприятия бывшего СССР и те, что продолжают работать сейчас, кодируют выпускаемую продукцию по единому стандарту с небольшими отличиями.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Обратите внимание!
Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения.

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание!
Кодированное обозначение года выпуска одинаково с другими радиоэлементами.

Расположение маркировки на корпусе

Маркировка керамических конденсаторов в первой строке на корпусе имеет значение емкости. В той же строке без каких-либо разделительных знаков или, если не позволяют габариты, под обозначением емкости наносится значение допуска.

Подобным же методом наносится маркировка пленочных конденсаторов.

Дальнейшее расположение элементов регламентируется ГОСТ или ТУ на каждый конкретный тип элементов.

Цветовая маркировка отечественных радиоэлементов

С распространением линий автоматического монтажа нашла применение цветовая маркировка конденсаторов. Наибольшее распространение получила четырехцветная маркировка при помощи цветных полос.

Первые две полосы означают номинальную емкость в пикофарадах и множитель, третья полоса – допустимое отклонение, четвертая – номинальное напряжение. Например, на корпусе имеется желтая, голубая, зеленая и фиолетовая полосы. Следовательно, элемент имеет такие характеристики: емкость – 22*106 пикофарад (22 μF), допустимое отклонение от номинала – ±5%, номинальное напряжение – 50 В.

Первая цветная полоса (в данном случае, которая имеет желтый цвет) делается более широкой или располагается ближе к одному из выводов. Также следует ориентироваться по цвету крайних полос. Такой цвет, как серебряный, золотой и черный, не может быть первым, поскольку обозначает множитель или ТКЕ.

Маркировка конденсаторов импортного производства

Для обозначения импортных, а в последние годы и отечественных радиоэлементов приняты рекомендации стандарта IEC, согласно которому на корпусе радиоэлемента наносится кодовая маркировка из трех цифр. Первые две цифры кода обозначают емкость в пикофарадах, третья цифра – число нулей. Например, цифры 476 означают емкость 47000000 pF (47 μF). Если емкость меньше 1 pF, то первая цифра 0, а символ R ставится вместо запятой. Например, 0R5 – 0,5 pF.

Для высокоточных деталей применяется четырехзнаковая кодировка, где первые три знака определяют емкость, а четвертый – количество нулей. Обозначение допуска, напряжения и прочих характеристик определяется фирмой-производителем.

Цветовая маркировка импортных конденсаторов

Цветовое обозначение конденсаторов строится по тому же принципу, что и у резисторов. Первые две полосы означают емкость в пикофарадах, третья полоса – количество нулей, четвертая – допустимое отклонение, пятая – номинальное напряжение. Полос может быть и меньше, если нет необходимости в обозначении напряжения или допуска. Первая полоса делается шире или у одного из выводов. Синие цвета отсутствуют. Вместо них используются голубые полосы.

Обратите внимание!
Две соседние полосы одинакового цвета могут не иметь между собой промежутка, сливаясь в широкую полосу.

Маркировка SMD компонентов

SMD компоненты для поверхностного монтажа имеют очень малые размеры, поэтому для них разработана сокращенная буквенно-цифровая кодировка. Буква означает значение емкости в пикофарадах, цифра – множитель в виде степени десяти, например G4 – 1.8*105 пикофарад (180 nF). Если спереди две буквы, то первая означает производителя компонента или рабочее напряжение.

Электролитические конденсаторы SMD могут иметь на корпусе значение основного параметра в виде десятичной дроби, где вместо точки может быть вставлен символ μ (напряжение обозначается буквой V (5V5 – 5.5 вольт) или могут иметь кодированное значение, зависящее от производителя. Положительный вывод обозначается полосой на корпусе.

Маркировка конденсаторов имеет большое число вариантов. Особенно этим отличаются импортные конденсаторы. Часто можно встретить малогабаритные элементы, которые вовсе не имеют каких-либо обозначений. Определить параметры можно только непосредственным измерением или, глядя на обозначение конденсаторов на электрической схеме. Произведенные разными фирмами радиоэлементы могут иметь схожие обозначения, но различные параметры. Здесь расшифровка обозначений должна базироваться на том, какой производитель выпускает преимущественное количество подобных элементов в конкретном устройстве.

Видео

Конденсатор – пассивное электронное устройство, состоящее из двух или более обкладок к которым подключены внешние выводы, разделенных между собой диэлектриком. На этой странице вы не только узнаете практически все о конденсаторах, но сможете скачать справочник по конденсаторам. Мы можем встретить эти радиокомпонеты практически на любых схемах и в любых электронных устройствах, их условное обозначение на принципиальных схемах следующее:

Архив Подборка справочной документации по емкостям выпущенных во времена СССР и стран Варшавского договора

Справочные параметры конденсаторов

    Номинальная емкость С ном
    — Емкость, обозначенная на корпусе. Может отличаться от реальной, на некоторую величину, не превышающую допустимое отклонение.

    Температурный коэффициент емкости. ТКЕ
    Он может принимать отрицательные и положительные значения. Если во время роста температуры емкость конденсатора уменьшается, то ТКЕ отрицательный, и наоборот (М — отрицательный, П — положительный, МП — близко к нулю, Н — ненормированный). Обычно этот справочный параметр необходим в высокочастотных цепях, где требуется повышенная стабильность емкости или заданная закономерность ее изменения.

    Номинальное напряжение U ном
    — Максимально допустимое постоянное напряжение, которое задается с определенным запасом по отношению к длительной электрической прочности диэлектрика.

    Сопротивление изоляции R из
    Справочная характеристика описывает качество материала диэлектрика. По окончании процесса зарядки конденсатора, протекающий ток принимает некоторое финишное значение — ток утечки I ут
    . Отношение приложенного напряжения к току утечки по закону Ома и является сопротивлением изоляции. Исправный конденсатор в нормальных условиях обладает сопротивлением изоляции в несколько сотен мегаом.

    Реактивная мощность P q
    Вычисляется как произведение протекающего тока на приложенное напряжение.

Номиналы конденсаторов практически идентичны номиналам сопротивлений. В основном используемые ряды номиналов конденсаторов при производстве — ряд Е3 (в настоящее время не используется, но может такая деталька попасть из СССР запасов), Е6 и Е12, т.к. многие типы конденсаторов сложно изготовить с более высокой точностью. Более подробно смотри справочник по ссылке выше.

Многочисленные виды емкостей можно классифицировать по нескольким признакам: по назначению
; по характеру регулировки
емкости; по способу монтажа
на печатную плату; по характеру и уровню защиты
от внешних воздействий.

Конденсаторы общего назначения
применяются практически в любом электронном устройстве, так как к ним не применяются особые требования.

А вот к их коллегам специального назначения
как раз и предъявляются особые требования по частоте, и напряжению, виду действующих сигналов и т.п. К даКонденсаторы общего назначения используются в большинстве видов радиоэлектронной аппаратуры. К ним не применяются особые требования

Конденсаторы постоянной и переменной емкости
— Уже из названия понятно, что у первых величина емкости является постоянной и ни как не регулируется, а у их переменных собратьев номиналы в процессе работы можно регулировать различными способами: механически, или поднастройкой управляющего напряжения, изменением температуры окружающей среды и т.п

Подстроечные емкости
– их используют для первоначальной регулировки аппаратуры или периодической подстройки схемы, где необходим малый диапазон изменения емкости.

Конденсаторы для печатного монтажа
– используются в технике с обычными печатными платами с отверстиями под выводы радиоэлементов. У них выводы сделаны из проволоки круглого сечения.

Конденсаторры для навесного монтажа
. Этот вид очень многообразен по исполнению выводов. Здесь могут быть мягкие и жесткие, радиальные или аксиальные, изготовленные из ленты или проволоки круглого сечения, а так же с выводами в виде опорных винтов и проходных шпилек.

Конденсаторы для поверхностного монтажа SDM
. В последнее время они находят все большее применение. Альтернативное название таких конденсаторов – без выводные. У них в качестве выводов применяются части корпуса.

Конденсаторы с защёлкивающимися выводами
, их выводы сделаны таким образом, что при установки в отверстия печатной платы они «защелкиваются», это дает возможность качественно и с удобствами осуществить их пайку.

Конденсаторы с выводами под винт
используются для поверхностного монтажа. В выводах имеется резьба. В основном они используются в блоках питанияс большими токами. применение выводов под винт так же дает возможность установки конденсатора на радиатор.

Незащищенные и защищенные конденсаторы
. Первые не допускают к работе в условиях повышенной влажности, только в составе герметизированной аппаратуры, а их защищенные собратья – наоборот, могут работать в условия повышенной влажности

Неизолированные конденсаторы
не допускается касания их корпусом шасси аппаратуры, и наоборот, изолированные
– имеют хорошо изолированный корпус, что допускает касания шасси аппаратуры или ее токоведущих поверхностей.

Уплотненные конденсаторы
– их корпус, уплотнен различными органическими материалами.

Герметизированные конденсаторы
обладают герметизированным корпусом, что исключает взаимодействие внутренней конструкции с окружающей средой.

Конденсатор постоянной емкости их виды

Конденсатор постоянной емкости характеризуются такими параметрами, как номинальная емкость, электрическая прочностью, реактивная мощность, качеством изоляции, потерями, коэффициентом абсорбции, индуктивностью, стабильностью и надежностью.

Их в основном используют в колебательных контурах, в схемах с различной рабочей частотой, построения сглаживающих фильтров, связи отдельных цепей переменного тока, накопления электрического заряда, в качестве делителя напряжения.

От того какой диэлектрик (изолятор) используется внутри емкости их делятся на керамические, металлопленочные, электролитические (алюминиевые и танталовые) и др

Керамические конденсаторы
представляют собой конструкции с керамической базовой деталью в качестве диэлектрика, на которую нанесены в соответствующих местах металлические слои (обкладки).

Основные свойства керамических емкостей определяются свойствами керамики, из которых они изготавливаются. В зависимости от ее состава получается широкий диапазон значений диэлектрической проницаемости (от нескольких единиц до нескольких тысяч) и величин температурного коэффициента емкости.

Обладают низким током утечки, малыми размерами, очень низкой индуктивностью, способны отлично работать на высоких частотах и в цепях постоянного, переменного и пульсирующего тока.

Выпускаются в широком диапазоне рабочих напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения способны выдержать высокое напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.

Представляют собой конструкции, состоящие из металлических обкладок и слюдяных пластин, выполняющих роль диэлектрика

В настоящее время не выпускаются. Но у многих их еще полно из старых советских запасов. Обычно они имеют ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Состоят из двух длинных полос алюминиевой или свинцово оловянной фольги, разделенных несколькими слоями специальной бумаги и свернуты в виде рулона.

Такие конденсаторы бывают ёмкостью от тысяч пф до 30 мкф, и могут выдерживать напряжение от 160 до 1,5 кВ.

Металлобумажные конденсаторы имеют конструкцию, аналогичную бумажным конденсаторам, с той разницей, что вместо ленточных металлических электродов и бумаги в них используется бумажная лента, покрытая тонким слоем металла (алюминия или цинка) методом испарения в вакууме

Пленочные
их можно поделит на полиэстеровые и полипропиленовые конденсаторы представляют собой радиокомпоненты с диэлектриком из синтетических пленок.

Полипропиленовые обладают двумя неоспоримыми плюсами. Во первых их можно изготавливать с очень маленьким уровнем допуском всего в 1%. И второе их преимущество это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость лижит в огромном интервале от 100 пФ, до 10 мФ)

Электролитические конденсаторы
отличаются высокой удельной емкостью, обусловленной использованием в качестве диэлектрика тонкой оксидной пленки, образованной из вентильного металла электродов (алюминий, тантал, ниобий). Оксидная пленка имеет исключительно высокую электрическую прочность и обладает вентильными свойствами.

Обозначение конденсаторов на схемах основывается на требованиях ЕСКД ГОСТ 2.728-74. Обозначения условные графические в схемах. Резисторы, конденсаторы.

Ионисторы принцип действия

Ионисторы, другое название суперконденсаторы или ультраконденсаторы — это такие устройства, похожие на конденсаторы в которых накапливается электрический заряд между двумя обкладками на границе раздела двух сред — электролита и электродами. Вся энергия в ионисторах хранится в виде статического заряда. Накопление энергии происходит за счёт приложенного постоянного напряжения на его внешние выводы. Проще можно сказать, что это обычные конденсаторы, которые в отличие от простых, обладают огромной емкостью.

Подстроенные конденсаторы. Керамические подстроенные конденсаторы. Основные данные керамических подстроечных конденсаторов. Подстроенные (полупеременные) конденсаторы Конденсатор подстроечный керамический

§ 3. Подстроенные конденсаторы

Керамические подстроенные
конденсаторы находят широкое применение в колебательных контурах для точной
подстройки в процессе
наладки радиоаппаратуры

Таблица
II.;»

Основные данные керамических ппдстроечных
конденсаторов

Пределы
изменения емкости, пф

ТКЕ.5-250; 200-325;

275 — 375; 350- 450;

4_|5: 5-20; 6-25; 8-30

2-7; 4-15; 6-25; 8-30

1_Ю; 2-15: 2-20; 2-25

* ТКЕ не нормируется.

Выпускаются четыре типа керамических подстроечных конденсаторов: 1) КПД —
керамические подстроечные дисковые; ?) КПК — конденсаторы подстроечные
керамические;

3) КПКМТ — конденсаторы подстроечные
керамические малогаба
ритные
тропикоустойчнвые;

4) КПКТ — конденсаторы подстроечные
керамические трубчатые.
Внешний
вид подстроечных конденсаторов представлен на рис. 11.8, а основные данные
приведены п табл. 11.19.

Пластинчатые
подстроечные конденсаторы представляют гобой миниатюрные нр я моем костные конденсаторы переменной емкости с
воздушным диэлектриком (рис. П.8). Характеризуются
высокими качественными показателями,
но сложны по конструкции и дороги.

§
4.
Конденсаторы
переменной
емкости

Основные параметры
конденсаторов переменной емкости те же, что и конденсаторов постоянной емкости (см. § 1). Одной из
основных характеристик конденсаторов переменной емкости является закон
изменения скости в зависимости от угла поворота подвижных пластин (рстора), которым определяет
закон изменения частоты при настройке контура. Выпускают прямочастотные,
логарифмические, прнмоемкостные и пря-моволновые конденсаторы переменной емкости.
Они изготовляются с воздушным и твердым диэлектриком. Конденсаторы с воздушным диэлектриком
характеризуются более высокими показателями, в частности большими
точностью установки емкости и стабильностью. Конден саторы с гвердым
диэлектриком отличаются малыми размерами, а поэтому применяются в
малогабаритной аппаратуре.

В табл. 11.20 приведены основные
данные типовых малогабаритных конденсаторов
переменной емкости с твердым диэлектриком. Эти кон денсаторы предназначены для радиоприемников, работающих на транзисторах.

Таблица 11.20

Основные
данные типовых малогабаритных конденсаторов
переменной емкости

Где установлен

Закон изменения емкости

Пределы
изменения
емкости.
пф

Тангенс угла диэлектрических потерь

Размеры корпуса, мм

Длина выступающей части с осью, мм

Вес, г (не более)

Прямоемкостный

Прямоволновой

Примечание.
Конденсаторы выполнены в виде блоков из двух секция.

В качестве
конденсаторов настройки малогабаритных радиоприемников можно применять
керамические подстроечные конденсаторы ткпа КПК- Для увеличения срока их службы на
серебряное покрытие статора гальваническим способом наносится пленка хрома
или никеля толщиной 1,0-1,5 мк.
Можно также припаять пластинку из латунной или медной фольги
толщиной 0,05-0,1 мм.
Рекомендуется следующий способ: вырезав
заготовку по форме серебряного покрытия статора

В обиходе так называют изделия, изготовленные методом обжига массы, в основном глины. В технике же под керамическими подразумевают материалы с подобной структурой, хотя глины в них вовсе нет, либо она присутствует в незначительном количестве. К ним можно отнести конденсаторную керамику, применяемую в качестве диэлектрика конденсаторов.

Керамические конденсаторы

Такие изделия отличаются высокими электрическими показателями, небольшими размерами и низкой стоимостью. Керамические конденсаторы широко применяются в контурах радиоаппаратуры. Они бывают с постоянной емкостью и подстроечными.

с постоянной емкостью

Термостабильные керамические конденсаторы применяются в контурах генераторов и гетеродинов высокой стабильности. Для восстановления температуры используются термокомпенсирующие элементы. Особую группу составляют сегнето-керамические конденсаторы, в которых в качестве диэлектрика применяется сегнетокерамика — материал с очень высокой (до нескольких тысяч) в определенном интервале температур. Упомянутые изделия отличаются от высокочастотной керамики большей емкостью при одинаковых размерах.

Керамический трубчатый конденсатор (КТ-1, КТ-2) — это тонкостенная трубка, внешняя и внутренняя поверхности которой покрыты слоем серебра.

Конденсатор керамический дисковый (КД1, КД2) и дисковые сегнето-керамические модели (КДС1, КДС2, КДС3) представляют собой круглую керамическую пластину с обкладкой в виде тонких слоев серебра.

Керамический, опрессованный пластмассой боченочный элемент (КОБ1, КОБ2, КОБ3) — керамический цилиндрик, на основание которого также нанесены обкладки.

Цветовая гамма и её значение

Различные цвета, в которые окрашены изделия КТ, КДС, КД и др., обозначают стабильность их емкости при изменении температуры. и серая краска применяется в том случае, если на изменение температуры отреагирует незначительным образом. Такие элементы называются термостабильными. Красный и зеленый цвета означают, что при повышении температуры емкость изделий заметно уменьшится — это термокомпенсирующие конденсаторы. свидетельствует о том, что в случае перемены температурного режима в широком диапазоне емкость изделия будет меняться довольно сильно (однако при емкость остается стабильной).

Виды керамических подстроечных конденсаторов

Эти изделия предназначены для подгонки (подстройки) параметров колебательных контуров, еще их называют полупеременными. Кратко рассмотрим каждый из них.

Конденсатор подстроечный керамический (КПК) состоит из керамического основания (статора) и керамического же подвижного диска (ротора). Диск на оси прикреплен к статору, и его можно вращать при помощи отвертки. Серебряные обкладки, имеющие форму секторов, нанесены на плоскости обеих составляющих. Материал ротора является диэлектриком. При вращении изменяется взаимное расположение обкладок, соответственно, и емкость между ними.

Конденсатор подстроечный керамический трубчатый (КПКТ) — само название говорит о том, что рассматриваемое изделие имеет вид трубки. На её внутреннюю поверхность также нанесена тонкая серебряная неподвижная обкладка — металлический стержень с винтовой нарезкой. При вращении (достигается посредством отвертки) емкость изменяется за счет ввода или вывода стержня из трубки.

Емкость керамических конденсаторов

Еще 10-20 лет назад из-за трудностей, связанных с производством упомянутых конденсаторов, изделия относили к разряду приборов малой емкости. Совсем недавно керамический конденсатор 1 мкф никого не удивил бы, а вот элемент на 10 мкФ воспринимался как экзотика.

Но сегодня развитие технологий позволило некоторым производителям радиокомпонентов заявить о достижении лимита емкости в таких конденсаторах до 100 мкФ, но, как они заверяют, и это еще не предел.

Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные
конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 — вакуумные; 2 — воздушные; 3 — газонаполненные; 4 — твердый диэлектрик; 5 — жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 — подстроечный конденсатор с твердым диэлектриком.

Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости
(КПЕ)

Рис. 3 Конденсаторы КПЕ

Их можно встретить только в приемо-передающей аппаратуре

1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов.
2 — переменный конденсатор для УКВ блоков с верньером
3 — переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником.10 Ом.

Рис. 5 Конденсаторы КТК

Конденсаторы КТК — Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные — голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.

Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Таблица 2

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пФ первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 — 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 — 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.

Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.

Рис. 8. МБГО, МБГЧ

Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО — конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая — особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.

Рис. 10. Различные типы конденсаторов

Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6
К50 -Электролитический, фольговый, Алюминиевый
К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб
К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)

Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В

Буква обозначения

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.

Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.

Рис. 14. Электролитические конденсаторы. Снизу — для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.

Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10…100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В.

Рис. 16. Ионисторы

Подстроенные (полупеременные) конденсаторы позволяют изменять емкость в незначительных пределах. Они применяются для точной фиксированной подстройки емкости колебательных контуров в цепях высокой частоты для изменения величины связи между цепями, а также для подгонки емкости в процессе ремонта и наладки радиоприёмников . Обычно эти конденсаторы включаются параллельно основным конденсаторам большей емкости.

Подстроенные конденсаторы (рис. 20) состоят из двух керамических элементов: неподвижного основания — статора и подвижного диска — ротора или плунжера (в КПК-Т). На ротор и статор методом вжигания нанесены тончайшие серебряные обкладки в виде секторов. Диэлектриком между обкладками статора и ротора могут быть воздух, керамика или слюда. Выводы от обкладок выполнены в виде контактных лепестков, предназначенных для припайки монтажных проводов схемы.

Ротор жестко закреплен на оси, которая может вращаться с помощью отвертки. При вращении ротора изменяется взаимное положение (перекрытие) обкладок статора и ротора, а следовательно, и емкость конденсатора. Когда сектор или капля припоя на роторе расположена против вывода на статоре, то емкость будет максимальной, а при повороте ротора на 180° относительно указанного положения — минимальной. Конструкция трубчатых подстроенных конденсаторов несколько отличается от описанной выше. В них изменение емкости достигается перемещением плунжера в керамической трубке.

Для крепления к шасси керамические подстроенные конденсаторы имеют в керамическом основании отверстия для винтов или других крепежных деталей.

Промышленность выпускает несколько видов подстроечных конденсаторов, Конденсаторы КПК (подстроечные керамические) изготавливаются на номинальное напряжение постоянного тока 500 В. В зависимости от конструктивного исполнения конденсаторы КПК выпускают нескольких видов: КПК-1 — с ротором диаметром около 18 мм, КПК-2, КПК-3 и КПК-5 — с ротором диаметром около 33 мм. Кроме того, КПК-5 имеет регулировочный винт, который непосред-ственно соединен с роторной обкладкой.

Отрицательное ТКЕ конденсатора типа КПК позволяет осуществлять температурную компенсацию в колебательных контурах, так как катушки индуктивности в контурах имеют положительный температурный коэффициент индуктивности.

Маркировка конденсаторов КПК обозначает тип и вид конденсатора и величину минимальной и максимальной емкости (пФ). Например: КПК-3-125/250.

Конденсаторы КПК-Т (подстроечные керамические трубчатые) предназначены для работы в цепях с номинальным напряжением постоянного тока 500 В. Керамический диэлектрик позволяет использовать их в радиоприемниках и других радиоаппаратах.

Конденсаторы КПК-М (подстроечные керамические малогабаритные) предназначаются для работы в интервале температур от -20 до +80°С при номинальном напряжении постоянного тока 350 В. Выпускаются они двух вариантов: Н — для навесного монтажа; П — для печатного монтажа.

В качестве подстроечных конденсаторов в контурах высокой частоты и гетеродина в транзисторных приемниках применяются в основном полупеременные конденсаторы типов КПК-МП емкостью 4…15 пФ, КТ-4-2 емкостью 5…20 пФ.

Конденсаторы КПВ (подстроечные с воздушным диэлектриком) выпускаются пяти модификаций с минимальным диапазоном изменения емкости 4…50 пФ и максимальным- 8… 140 пФ, на номинальное напряжение постоянного тока 300 В. Малогабаритные конденсаторы (типа КПВМ) выпускаются на номинальное напряжение 350… 650 В. По конструкции конденсаторы типа К.ПВМ являются прямоемкостными с углом поворота 180° и имеют 14 модификаций по емкости с минимальной величиной 1,8…6,5пФ и максимальной — 3,8…24 пФ. Конденсаторы типа 2КПВМ имеют угол поворота 90° и предназначены для подстройки высокочастотных контуров в диапазоне УКВ и ДЦВ. По емкости эти конденсаторы имеют 12 модификаций с минимальной емкостью 1…1.3 пФ и максимальной — 1,5…2,8 пФ. Конденсаторы типа ЗКПВМ являются дифференциальными и выпускаются 14 модификаций с минимальной емкостью 2,5…6,5 пФ и максимальной 3…24 нФ. Миниатюрные керамические полупеременные конденсаторы К.Т4-2 и КТ4-1Т предназначены для радиоаппаратов с печатным монтажом,

Для точной
настройки контуров в процессе производства
и эксплуатации РЭА применяются
подстроечные конденсаторы, с помощью
которых компенсируется разброс параметров
контура. В отличие от переменных
подстроечные конденсаторы имеют
относительно небольшое изменение
емкости. После подстройки РЭА подвижная
часть конденсатора фиксируется
простейшими стопорными устройствами
или воском.

Подстроечные
конденсаторы характеризуются теми же
параметрами что и переменные. Однако к
ним предъявляются и ряд специфических
требований: стабильность емкости в
зафиксированном положении, высокая
надежность такой фиксации, плавность
установки емкости.

Подстроечные
конденсаторы бывают с воздушным и
твердым диэлектриком. Конструкция
воздушных подстроечных конденсаторов
с вращающимся ротором подобна аналогичной
конструкции переменных конденсаторов,
но ротор укорачивается и на его конце
делается прорезь (шлиц) для вращения
ротора (см. рис.2.5).

Наибольшее
применение получили дисковые керамические
подстроечные конденсаторы с вращающимся
ротором в виде диска (рис.2.6). Такие
конденсаторы состоят из сплошного
керамического статора и дискообразного
ротора. На поверхности
статора и ротора наносится металлическая
пленка серебра в виде полуокружности.
Диэлектриком является титановая керамика
с высокой диэлектрической проницаемостью
и воздушная прослойка между ротором и
статором. Недостатком таких конденсаторов
является изменение емкости при давлении
на ротор и большой разброс ТКЕ. Однако
такие подстроечные конденсаторы имеют
малые габариты и низкую стоимость.

Система
обозначений подстроечных конденсаторов
соответствует принятой для постоянных
конденсаторов, которая описана в разделе
2.2.2, и состоит из двух букв КТ
(конденсатор
подстроечный), цифры, обозначающей тип
диэлектрика согласно табл.2.4, и числа,
обозначающего порядковый номер разработки
конденсатора.

Например:
КТ4-21 2,0/10
– конденсатор подстроечный
с керамическим диэлектриком, порядковый
номер разработки 21, минимальная емкость
2 пФ, максимальная емкость 10 пФ.

До
действующей системы обозначений
подстроечные конденсаторы обозначались
набором от двух до четырех букв, которые
отражали тип диэлектрика и его
конструктивные особенности.

Например:
КПК-МТ
– конденсатор подстроечный
керамический малогабаритный термостойкий.

    1. Вариконды

Вариконды
это конденсаторы, емкость которых резко
меняется в зависимости от приложенного
напряжения. Этот эффект достигается
применением в качестве диэлектрика
сегнетокерамики на основе титанатов
бария и стронция. Поскольку в
сегнетоэлектриках зависимость вектора
электрического смещения от напряженности
приложенного поля нелинейная, то это
вызывает зависимость диэлектрической
проницаемости от величины приложенного
электрического поля (рис.2.7).

Основными параметрами
варикондов являются следующие параметры:

    Номинальная
    емкость –
    это
    емкость, которая измеряется при
    напряжении переменного тока 5 В с
    частотой 50 Гц или при напряжении
    переменного тока 1,5…2 В частотой 1000 Гц.
    Условия измерения номинальной емкости
    зависят от типа вариконда. Номинальная
    емкость указывается на корпусе вариконда.
    Промежуточные значения номинальной
    емкости варисторов соответствуют рядам
    Е6 и Е12.

    Коэффициент
    нелинейности по напряжению переменного
    тока –
    он
    показывает во сколько раз увеличивается
    емкость вариконда при изменении
    напряжения переменного тока частотой
    50 Гц от 5 В до величины напряжения, при
    которой достигается максимальное
    значение емкости.

    Коэффициент
    управления по постоянному напряжению


    это коэффициент, который показывает
    во сколько раз уменьшается емкость
    вариконда при изменении постоянного
    напряжения от 0 до 200 В.

Конструкция
варикондов соответствует конструкции
постоянных конденсаторов с объемным
диэлектриком – дисковая или стержневая
(рис.2.8).

Вариконды
широко применяются для оперативной
подстройки резонансных контуров с
помощью электрического управления.

Система
обозначений вариконда соответствует
принятой для постоянных конденсаторов,
которая описана в разделе 2.2.2, и состоит
из двух букв КН
(конденсатор
нелинейный), цифры, обозначающей тип
диэлектрика согласно табл.2.4, и числа,
обозначающего порядковый номер разработки
вариконда.

Например:
КН1-5 4,7 пФ
– конденсатор нелинейный
вариконд, порядковый номер разработки
5, номинальная емкость 4,7 пФ.

До
действующей системы обозначений
вариконды обозначались набором букв
ВК
и цифр, которые отражали
конструктивные особенности вариконда.

Например:
ВК2-Б
– вариконд тип конструкции 2
неизолированный.

Керамические, стеклокерамические конденсаторы | Основы электроакустики

Керамические, стеклокерамические и стеклопленочные конденсаторы В зависимости от электрических свойств, керамику служащей диэлектриком, керамические конденсаторы могут быть

  • высоко­частотными,
  • низкочастотными,
  • термостабильными,
  • термокомпенса­ционными.

Высокочастотная керамика (тиконд и др.) обладает ма­лыми диэлектрическими потерями (на радиочастотах tg6<0,001) и невысокой диэлектрической проницаемостью (от 12 до 1500). Низ­кочастотная керамика Характеризуется относительно большими ди­электрическими потерями (на частотах нескбльких килогерц tg6< 0,04) и высокой диэлектрической проницаемостью (от 1000 до 8000). От вида керамики зависит температурная стабильность емко­сти керамических конденсаторов. По значениям ТКЕ конденсаторы из высокочастотной керамики делят на, группы (табл. 32), обозначае­мые буквами П (положительный) и М (отрицательный) и числом, указывающим среднее значение ТКЕ на 1 ° на радиочастотах.

По значениям ТКЕ в диапазоне рабочих температур конденса­торы из низкочастотной керамики делят  на группы, обозначаемые буквой Н и числом, указывающим, на сколько процентов может из­мениться емкость конденсаторов в этом диапазоне по срайнению с температурой 20 °С  Конденсаторы с малым значением ТКЕ (группы ПЗЗ, М47) от­носят к термостабильным, а с большим отрицательным (Ml500) — к термокомпенсационным. Будучи включенными в резонансные кон­туры, такие конденсаторы позволяют .скомпенсировать положитель­ный ТКЕ других элементов схемы. Наиболее распространены керамические дисковые КД, КДУ и трубчатые КТ конденсаторы. Наряду с этими конденсаторами применяют пластинчатые и монолитные. Дисковые конденсаторы КД1, КД2, КДУ  представляют собой керамический диск, на поверхности которого нанесены метал лизирозанпые обкладки с проволочными токоотводами, а трубчатые КТ-1, КТ-2, КТ-3  — керамическую трубку, на внутрен-нюю и наружную поверхности которой нанесены обкладки, покры­тые защитной эмалью определенного цвета и снабженные проволоч­ными токоотводами. Такие конденсаторы применяют в контурных, разделительных или блокированных цепях радиоаппаратуры. Элек­трические параметры дисковых конденсаторов приведены в табл.34, а трубчатых — в табл. 35.

Трубчатые конденсаторы — проходные КТП-1 — КТП-3 , опорные КО-1, КО-2  и дисковые КДО-1, КДО-2 — применяют в качестве фильтровых в цепях постоянного и переменного токов ори рабочих напряжениях до 750 В. Пластинчатые керамические конденсаторы К10-7  выпускают с неболь­шой толщиной (0,2 — 0,4 мм) диэлектрической пластины прямоуголь­ной формы, на плоскости которой нанесены металлизированные об­кладки. Конденсаторы КЮ-7а имеют номинальные напряжения 250 В и емкости от 6,8 до 6800 пФ и от 0,01 до 0,033 мкФ, а К10-7 в — 50 В и от 22 до 6800 пФ, а также от 0,01 до 0,047 мкФ соответст­венно Конденсаторы применяют для работы в цепях постоянного, переменного и импульсного токов в диапазоне температур от — 60 до + 155°С. Однонаправленные выводы конденсаторов обеспечивают их использование да платах с печатным монтажом. Монолитные керамические конденсаторы КЮ-23, КЮ-17 выпус­кают малогабаритными с толщиной слоя диэлектрика 0,025 — 0,07 мм и используют для работы в цепях постоянного и переменного токов, а также в импульсных режимах различных микросхем и диапазоне температур от — 60 до +85 С. Пределы номинальных напряжений конденсаторов К10*23 — 16 В, емкостей от 2,2 до 3000 пФ и от 680 до 33000 пФ, а конденсаторов КЮ-17 — 25 В, от 22 пФ до 0,012 мкФ и от 470 пФ до 0,33 мкФ соответственно.

Стеклокерамические конденсаторы СКМ К22У-1, К22У-2, К22У-3 и К22-5, имеющие секции из стеклокерамики и серебряной илн алюминиевой фольги, могут работать в цепях постоянного и пе­ременного токов, а также в импульсных режимах в диапазоне температур от — 60 до +155°С. Емкость стеклокерамических конденса­торов лежит в пределах от 75 пФ до 0,047 мкФ. Конденсаторы К22У-1 используют в качестве контурных, разделительных, сеточных, блоки­ровочных, а К22У-3 — в гибридных интегральных микросхемах.

 Стеклопленочные конденсаторы заменяют дорогостоящие слюдяные, имеют меньшие по сравнению с ними габаритные размеры. Их используют для работы в.цепях постоянного тока и импульсных режимах. Эти конденсаторы применяют в резонансных контурах и других высокочастотных схемах. Пределы номинальных емкостей, напряжение и диапазон рабочих температур стеклопленочных кон­денсаторов приведены в табл. 36

 

Таблица 32

Обозначение труп­пы конденсато­ров по ТКЕ

Изменение ТКЕ в диапазоне температур от 20 до 85°С

Условный цвет окраски корпуса конденсатора

П100

П33

М47

М75

М330

Ml500

+100±30

+33±30

—47±30

—75±30

— 330±60

— 1500±200

Синий

Серый

Голубой

 

Красный

Зеленый

Примечание. Цвет окраски точка на корпусе М75 красный, а МЗЗО — зеленый. 

Таблица 33

Обозначение групп и конденсаторов по ТКЕ

Изменение емкости, %, в диапазоне температур от — 60 до +85° С

Цвет точки или по­лоски на корпусе конденсатора

Н30

Н50

Н70

Н90

±30

 ±50

—      70

—      90

Зеленый

Синий

Белый

 Таблица 34 

Обозначение группы конденсаторов по ТКЕ

Номинальное напряжение, В

 

 

Пределы номинала емкостей,

 

 

Номинальное

напряжение,В

 

Пределы номинальных емкостей, пФ

 

 

Номинальное

напряжение

 

 

Пределы номинальных  емкостей, пФ

 

 

 

КД1 (04,5 — 6,5мм)

КД2 (06,5 — 8,5 мм)

КДУ (08,6 — 16,5 мм)

П100

ПЗЗ

М47

М75

М700

М1300

250

1 — 7,5

1 — 10

1 — 15

1 — 39

10 — 56

18 — 130

500

1 — 12

1 — 30

1 — 43

1 — 68

3,3 — 150

15 — 270

50

1 — 2,2

1 — 27

3, 3 — 27

27 — 47

Н70

160

680 — 2200

300

680 — 6800

__

 —

Таблица 35

Обозначе­ние группы конденса­торов по ТКЕ

Номинальное напряже­ние, В

Пределы номинальных емкостей, пФ

Номинальное напряже­ние, В

Пределы номинальных емкостей, пФ

Номинальное напряже­ние, В

Пределы номинальных емкостей, пФ

 

 

КТ-1 (03мм)

КТ-2 (06мм)

КТ-3 (010мм)

П100

 

1 — 30

 

2,2 — 100

 

2,2 — 110

ПЗЗ

 

1 — 62

 

2,2 — 180

 

2,2 — 150

М47

2&0

1 — 75

500

2,2 — 240

750

2,2 — 240

М75

 

1 — 130

 

2,2 — 360

 

 —

М700

 

2,2 — 270

 

2,2 — 910

 

2,2 — 1000

М1500

 

15 — 560

 

15 — 2200

 

 —

Н70

160

680 — 10000

300

От 680 пФ до 0,033 мкФ

 —

.Таблица 36

Конденсатор

Номинальное напряжение, В

Пределы номинальных емкостей, пФ

Диапазон рабочих температур, °С

К21-5а

160

2,2 — 16

От — 60 до +100

К21-56

160

2,2 — 330

» — 60 » +100

К2-7

50

57 — 10000

» — 60 » +155

 

 

трубчатые керамические конденсаторы | APITech

Трубчатые керамические конденсаторы | APITech

Конденсаторы керамические

Мы предлагаем широкий ассортимент трубчатых керамических конденсаторов, которые имеют небольшой размер, легкий вес, неполярные и обладают высокой диэлектрической прочностью.Эти конденсаторы используются для создания настоящих монолитных конструкций, непроницаемых для влаги и загрязнений.

Керамические конденсаторы

APITech спроектированы и произведены в нашем Государственном колледже, штат Пенсильвания (США).

  • Идеально подходит для применения с многополюсными разъемами
  • Маленький, легкий, надежный, с высокой диэлектрической прочностью
  • Равномерные вносимые потери в широком диапазоне частот
  • Доступны конфигурации проходного типа и типа PI
  • Высокое отношение емкости к объему
  • Низкая индуктивность, неполярный
  • Непроницаем для влаги и загрязнений
  • 0.Диаметр 081 «0,122»
  • Наружные концевые заделки имеют никелевый барьер и последний металлический слой, обычно серебряный.
  • Рабочие температуры от –55 ° C до + 125 ° C достигаются без снижения номинального напряжения
  • Высокочастотные приложения
  • Фильтрация электромагнитных помех и многополюсные разъемы
  • Медицинское оборудование
  • Фильтры подавления EMI / RFI
  • Коммерческие приложения
  • Защитные приложения
  • Источники питания
  • Преобразователи
  • Многострочные конструкции
  • Процесс производственного контроля

Твердый FT

Solid Pi

Многослойный FT

Многослойный Pi

Электрические параметры Метод испытаний Температурный коэффициент
НП0 X7R Z5U
Температурный коэффициент EIA 198 ± 30 частей на миллион / ° C,
от -55 до + 125 ° C
± 15%,
от -55 до + 125 ° C
+22, -56%,
+10 до + 85 ° C
Емкость
Допуск
Код допуска EIA К, М, П К, М, П M, P, Z
Испытание емкости
при 25 ° C
MIL-STD-202,
Метод 305
Емкость = 100 пФ: 1 МГц, 1 В СКЗ
Емкость> 100 пФ: 1 кГц, 1 В СКЗ
1 кГц, 1 В среднекв. 1 кГц, 0.5 В среднекв.
Коэффициент рассеяния
при 25 ° C
MIL-STD-202,
Метод 305
0,15% Макс 3,5% Макс. 3,5% Макс.
Скорость старения
(за десятилетие)
0% <2,0% <3,5%
Изоляция
Сопротивление
при 25 ° C
MIL-STD-202,
Метод 302
1000 МО · мкФ
или 100 KMO,
в зависимости от того, что меньше
1000 МО · мкФ
или 100 KMO,
в зависимости от того, что меньше
1000 МО · мкФ
или 100 KMO,
в зависимости от того, что меньше
Изоляция
Сопротивление
при 125 ° C
MIL-STD-202,
Метод 302
100 МО · мкФ
или 10 кМО,
в зависимости от того, что меньше
100 МО · мкФ
или 10 кМО,
в зависимости от того, что меньше
100 МО · мкФ
или 10 кМО,
в зависимости от того, что меньше
Диэлектрик
Выдерживаемое напряжение
MIL-STD-202,
Метод 301
250% от номинального напряжения,
5-секундное удержание,
30-50 мА
250% от номинального напряжения,
5-секундное удержание,
30-50 мА
250% от номинального напряжения,
5-секундное удержание,
30-50 мА

Трубчатые керамические конденсаторы — Bruce & LCA Company

Трубчатые керамические конденсаторыadmin2016-01-05T10: 20: 10 + 00: 00

Продукты

серии

Размер (единица измерения : мм) Емкость выдерживает
напряжение
Схема
тип
Д D1 D2 L L1
XWG1915 1.9 1,5 0,7-0,8 2–3,5 0,5–1 10ПФ-10нФ 100VDC-300VDC С
XWG2020 2 2 1,3 4,2 0 10ПФ-10нФ 100VDC-300VDC С
XWG2222 2,2 2,2 1,6 12 0 860PF / 223/103 100VDC-300VDC PI / C
XWG2416 2.4 1,6 0,75-0,8 4 1,5 10ПФ-10нФ 100VDC-300VDC С
XWG2424 2,4 2,4 0,8 5 0 10ПФ-10нФ 100VDC-300VDC С
XWG2525 2,5 2,5 0,8 2,5 0 10ПФ-10нФ 100VDC-300VDC С
XWG2618 2.6 1,8 0,75-0,8 3,5 1 10ПФ-10нФ 100VDC-300VDC С
XWG2727 2,7 2,7 2 11,5 0 702 100VDC-300VDC PI
XWG2828 2,8 2,8 1,1 3,5 0 10ПФ-10нФ 100VDC-300VDC С
XWG3822 3.8 2,2 0,75-0,8 4,5-6,5 1,5-2 10ПФ-10нФ 100VDC-500VDC С
XWG4020 4 2 0,9 2,5 1,2 10ПФ-10нФ 100VDC-500VDC С
XWG4224 4,2 2,4 1 3 1 10ПФ-10нФ 100VDC-500VDC С
XWG4330 4.3 3 1,1–1,6 2,5–2,7 1–1,2 10ПФ-10нФ 100VDC-500VDC С
XWG4532 4,5 3,2 0,8–1,3 5,6-6 2,1 10ПФ-10нФ 100VDC-500VDC С
XWG4545 4,5 4,5 2,7 3 0 10ПФ-10нФ 100VDC-500VDC С
XWG4722 4.7 2,2 0,7–1 3,2–4 1–1,5 10ПФ-10нФ 100VDC-500VDC С
XWG4737 4,7 3,7 1,5-2 6-6,5 2–2,1 10ПФ-10нФ 100VDC-500VDC С
XWG4848 4,8 4,8 0,8 1 1 10ПФ-10нФ 100VDC-500VDC С
XWG5034 5.1 3,4 1,5 4 1,5 10ПФ-10нФ 100VDC-500VDC С
XWG5038 5 3,8 0,8-0,85 4,1–4,5 2,2 10ПФ-10нФ 100VDC-500VDC С
XWG5122 5,1 2,2 1 4,5–6 1,5–2,5 10ПФ-10нФ 100VDC-500VDC С
XWG5124 5.1 2,4 1,4 6 1,5 10ПФ-10нФ 100VDC-500VDC С
XWG6045 6 4,5 2,5 6,5 1,5 10ПФ-10нФ 100VDC-500VDC С
Диаметр свинца :: 0,6 мм 、 0,7 мм 、 0,75 мм 1,0 мм 、 1,5 мм Доступен индивидуальный дизайн!

LCA производит широкий ассортимент проходных трубчатых и керамических конденсаторов Pi, которые имеют небольшие размеры, легкий вес, неполярные и обладают высокой диэлектрической прочностью.Рабочие температуры от -55 ° C до + 125 ° C достигаются без снижения напряжения. Все конденсаторы обжигаются для создания настоящих монолитных конструкций, непроницаемых для влаги и загрязнений. Внешние окончания имеют никелевый барьер и последний металлический слой, обычно серебряный.

1. Трубчатые проходные трубчатые конденсаторы

Проходные трубчатые конденсаторы идеально подходят для байпаса и фильтрации. Благодаря цилиндрической конструкции конденсаторы будут иметь однородные вносимые потери в широком диапазоне частот.Эта структура обеспечивает низкую индуктивность по сравнению с обычными конденсаторами с обмоткой. Твердотельные конденсаторы FT не имеют внутренних электродов и находят свое основное применение в недорогих устройствах. Многослойные конденсаторы FT имеют более высокое отношение емкости к объему и идеально подходят для большей фильтрации на более низких частотах. Многослойные конденсаторы FT также предназначены для применений, в которых полное сопротивление источника велико и критически важно резкое увеличение затухания.

Характеристики

■ Обеспечивает фильтрацию шумов, близких к содержанию сигнала
■ Недорогое решение для фильтрации общего назначения
■ Идеально для применения с многополюсными разъемами
■ Высокое отношение емкости к объему
■ Низкая индуктивность, неполярность
■ Непроницаемость для влаги и загрязнений
■ От -55 ° C до + 125 ° C рабочий

2.Трубчатые конденсаторы Pi

По сравнению со сквозными трубчатыми конденсаторами, трубчатые конденсаторы Pi имеют гораздо более узкий переход между полосой пропускания и полосой заграждения. Конденсаторы Pi эффективно останавливают высокочастотные помехи, не влияя на необходимые частоты непосредственно ниже полосы заграждения. Подобно проходным трубчатым конденсаторам, трубчатые конденсаторы Pi могут иметь сплошную или многослойную конфигурацию. Твердые трубчатые конденсаторы Pi более экономичны, но имеют ограниченные значения емкости.Многослойные трубчатые конденсаторы Pi могут охватывать более широкий диапазон емкостей, сохраняя при этом механическую прочность твердотельного трубчатого конденсатора Pi при аналогичном размере корпуса.

трубчатый | Керамический | Конденсаторы

Конденсаторы, фиксированные Керамика, однослойная Трубчатые силовые конденсаторы RF с монтажными бирками, керамические, класс 1 Винтовой зажим 2000.0 3 пФ 400 пФ 1 R7, R42, R85
Конденсаторы, фиксированные Керамика, однослойная Трубчатые силовые конденсаторы RF с монтажными бирками, керамические, класс 1 Винтовой зажим 3000.0 25 пФ 1,6 нФ 1 R7, R16, R42, R85
Конденсаторы, фиксированные Керамика, однослойная Трубчатые силовые конденсаторы RF с монтажными бирками, керамические, класс 1 Винтовой зажим 4000.0 60 пФ 2 нФ 1 R7, R42, R85
Конденсаторы, фиксированные Керамика, однослойная Трубчатые силовые конденсаторы RF с винтовыми клеммами и монтажными бирками, керамические, класс 1 Винтовой зажим 7000.0 1,5 нФ 1,5 нФ 1 R7, R16, R42, R85
Конденсаторы, фиксированные Керамика, однослойная Трубчатые силовые конденсаторы RF с винтовыми клеммами и монтажными бирками, керамические, класс 1 Винтовой зажим 8000.0 100 пФ 1,2 нФ 1 R7, R16, R42, R85
Конденсаторы, фиксированные Керамика, однослойная Трубчатые силовые конденсаторы RF с винтовыми клеммами и монтажными бирками, керамические, класс 1 Винтовой зажим 10000.0 800 пФ 4,7 нФ 1 R16, R42, R85, R230
Конденсаторы, фиксированные Керамика, однослойная Трубчатые силовые конденсаторы RF с винтовыми клеммами и монтажными бирками, керамические, класс 1 Винтовой зажим 11000.0 200 пФ 3 нФ 1 R16, R42, R85, R230

Керамический трубчатый ВЧ-конденсатор 4700 ПФ, 8000 рупий / штука Arun Engineers & General Suppliers

Керамический трубчатый ВЧ-конденсатор 4700 ПФ, 8000 рупий / штука Arun Engineers & General Suppliers | ID: 20587504012
Уведомление : преобразование массива в строку в файле / home / indiamart / public_html / prod-fcp / cgi / view / product_details.php на линии 290

Спецификация продукта

Использование / применение Мощность
Номинальное напряжение 15 кВ
Емкость 4700pf
Тип конденсатора Керамический конденсатор
Цвет
Мощность 70 кВА
Форма Трубчатая
Материал Керамика
Минимальное количество заказа 1 шт.

Описание продукта

Трубчатый силовой конденсатор RF
1000pf 30kv 70kva
4700pf 15kv 70kva

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 1966

Юридический статус фирмы Партнерство Фирма

Характер бизнеса Импортер

Количество сотрудников До 10 человек

Годовой оборот Rs.1-2 крор

Участник IndiaMART с апреля 2013 г.

GST07AAKFA2690Q1ZV

Код импорта и экспорта (IEC) 05130 *****

Основанная в 1947 , с тех пор компания превратилась в выдающихся поставщиков и продавцов широкого спектра высококачественных, качественно обработанных вакуумных трубок и розеток , а также высоковольтных конденсаторов. Весь этот ассортимент продуктов, которые мы предлагаем нашим клиентам, гарантированно закупается у лучших поставщиков в отрасли.Эти поставщики всегда гарантируют безупречное качество и отделку всей продукции. Мы установили с ними прочные и стабильные связи за годы обширной крупномасштабной коммерческой деятельности. Продукты предлагаются по разумным ценам, чтобы удовлетворить разнообразных и обширных клиентов, которых мы обслуживаем с помощью этих продуктов. В конце концов, все продукты разрабатываются и производятся из лучших материалов с использованием инновационных технологий и сложного оборудования. Кроме того, мы проверяем качество всех продуктов, прежде чем отправлять их в помещения клиента, с помощью внутренних проверок качества.Эти испытания проводятся квалифицированными и опытными контролерами качества, хорошо разбирающимися в новейшем оборудовании и технологиях. С нашей продукцией клиенты получают рентабельные, но качественные решения своих проблем с вакуумом и конденсаторами

Вернуться к началу

1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

Керамика конденсатора — обзор

КЕРАМИКА И MICAS

Названия, которые используются для типов конденсаторов, являются названиями диэлектрических материалов, поскольку характеристики конденсатора так тесно связаны с типом материала что используется для его диэлектрика.Керамика покрывает любые материалы, состоящие в основном из оксидов металлов, сплавленных при очень высоких температурах; типичное сырье — оксид алюминия (оксид алюминия) и оксид титана. Слюда — это натуральный материал, который распадается на пластины, которые могут быть очень тонкими; его основная форма — минерал мусковит или рубиновая слюда. Когда этот материал разделен на пластины, пластины часто имеют серебристый вид (из-за воздушной пленки между оставшимися пластинами), поэтому их называют серебристо-слюдяной . Это вызвало значительную путаницу, поскольку покрытие листов слюды серебром создает композит, называемый посеребренной слюдой .

Из-за естественной формы сырья слюда используется для изготовления конденсаторов пластинчатой ​​формы, круглой или прямоугольной. Керамике можно придать любую подходящую форму, включая пластины и трубки, так что диапазон форм конденсаторов больше для керамики, чем для слюды. Какой бы из этих двух типов изолятора не использовался, способ формирования конденсатора заключается в нанесении металлического слоя на каждую сторону диэлектрика.Это проще всего, когда материал имеет форму пластины, а осаждение металла может быть выполнено химическими методами (традиционный метод, который особенно легко осаждать серебро), а также испарением или распылением. Металлический слой не должен касаться краев или протираться с краев, чтобы избежать коротких замыканий или потенциальных точек искрения. Затем соединительные провода можно припаять к металлическому слою, а весь конденсатор покрыть изолятором, который может быть из пластика или другого керамического материала.

Трубчатая керамика формируется так же, как и пластины, но процесс металлизации значительно сложнее, и для нанесения покрытия внутри трубки можно использовать только химический метод. Подключение к этому покрытию также является более сложным, но небольшой объем трубчатого типа иногда может быть преимуществом, так что этот тип конденсатора используется в течение многих десятилетий, хотя теперь он исчез из многих каталогов, потому что он может быть изготовлен только в наименьшие размеры емкости, для которых существует множество других вариантов.Пластинчатая форма конденсатора имеет значительное преимущество, заключающееся в том, что металлизированные пластины могут быть сложены вместе для увеличения емкости (рис. 4.4), при очень небольшом увеличении объема.

Слюдяные конденсаторы могут быть выполнены в виде однопластинчатых или уложенных друг на друга пластин. В прошлом конденсаторы с слюдяными пластинами изготавливались из фольги, проложенной между слюдяными пластинами, или с пластинами, скрепленными вместе с помощью металлических люверсов. Эти старые формы теперь устарели, и единственный оставшийся тип — это посеребренная слюдяная конструкция, которая имеет слои серебра, нанесенные на слюду, независимо от того, использует ли конденсатор одну пластину или несколько пластин.Конденсатор из посеребренной слюды обладает наилучшим сочетанием электрических, тепловых и механических свойств, которое можно найти у конденсатора низкой стоимости.

Натуральная слюда имеет значение относительной диэлектрической проницаемости около 5,4, и это значение сохраняется до очень высоких рабочих частот, особенно до 1 ГГц. Коэффициент рассеяния очень низкий на частотах от 1 кГц и выше, порядка 0,0003, хотя при 50 Гц коэффициент рассеяния составляет около 0,005 из-за присутствия ионов в материале (что вызывает рубиновый цвет природного минерала).Диэлектрическая прочность удивительно высока, порядка 150–180 кВ / мм, и это связано с пластинчатой ​​формой материала. Структура слюды состоит из плоских молекул силиката алюминия-калия, которые соединяются вместе в листы, которые в конечном итоге имеют толщину в одну молекулу. Через эти листы нет естественного пути проводимости, потому что расстояние между листами намного больше, чем расстояние между молекулами вдоль листа, так что любая проводимость должна быть вдоль листа, а не от листа к листу.Даже самые тонкие кусочки слюды, которые мы можем разрезать, состоят из множества листов, так что изоляция и электрическая прочность не имеют себе равных среди любого материала, в котором молекулы расположены в трехмерной структуре.

Объемное сопротивление природной слюды составляет 5 × 10 9 1070 15 9 1071 Ом · м, что не является самым высоким значением, но представляет собой среднее значение, не учитывающее огромных различий, вызванных разными направлениями измерения. Значение удельного сопротивления, измеренное в направлении листа слюды, будет намного меньше, чем значение, измеренное между листами, и указанное значение является средним.Слюда является примером анизотропного материала, физические свойства которого будут варьироваться в зависимости от направления измерения длины. Все кристаллические материалы анизотропны, и материалы, образующие плоские листы, такие как слюда, очень заметно. Это свойство не ограничивается минералами и кристаллами — древесина является примером очень известного анизотропного материала, прочность которого зависит от направления волокон.

Температурный коэффициент посеребренного слюдяного конденсатора положительный и находится в диапазоне +50 ± 50 ppm / ° C, что не так низко, как у типичной керамики.Чем больше емкость, тем меньше температурный коэффициент. Производимые посеребренные слюды доступны в диапазоне от 2,2 пФ до 100 пФ (10 нФ), а обычная инкапсуляция — это воск, покрытый керамическим цементом. Нормальный диапазон рабочих температур составляет от –40 ° C до + 80 ° C (в некоторых случаях до + 150 ° C и более), с коэффициентом мощности 0,002 и сопротивлением изоляции около 10 10 Ом. Рабочее напряжение обычно составляет максимум 350 В, и это значение включает импульсный режим.

Посеребренные слюды в настоящее время дороги в Великобритании по сравнению с конденсаторами других типов (в США это не так), но их комбинация параметров не может сравниться ни с одним другим типом, поэтому приложения, требующие максимально возможной стабильности, должны указывать эти конденсаторы.Типичные применения — это настроенные схемы и фильтры, для которых важна стабильность частоты. Из-за своей физической формы слюды имеют очень низкую самоиндукцию, поэтому их резонансная частота очень высока, а низкие потери (очень низкое эквивалентное последовательное сопротивление) делают эффективное значение добротности (отношение реактивного сопротивления к сопротивлению) очень большим. высокая.

Все конденсаторы имеют значение собственной индуктивности, которое низкое для значений низкой емкости, но довольно высокое для некоторых типов намотанной фольги.В результате для каждого значения емкости конденсатора будет резонансная частота, когда собственная индуктивность находится в последовательном резонансе с емкостью. На этой частоте конденсатор имеет минимальный импеданс, а выше этой частоты импеданс будет в большей степени индуктивным. Коэффициент добротности конденсатора также будет минимальным на резонансной частоте. Физическая форма посеребренных слюдяных конденсаторов делает их самоиндуктивность очень низкой, особенно когда конденсаторы сделаны в форме, пригодной для поверхностного монтажа (см. Главу 8).Керамические конденсаторы большой емкости и типы фольги (кроме типов с расширенной фольгой) имеют сравнительно низкие значения собственного резонанса.

Керамические конденсаторы, напротив, очень часто используются в ситуациях, когда потери не имеют большого значения. В отличие от слюды, керамика, которая используется для конденсаторов, изготавливается искусственно, хотя и из натуральных материалов. Традиционные материалы, такие как силикат магния и оксид алюминия, были дополнены другими материалами, такими как титанат бария и диоксид титана, и производители склонны использовать смеси, состав и обработка которых не раскрываются.Большинство производителей теперь указывают буквы / цифры стандартных спецификаций, а не точные материалы.

Из этих стандартов, старый установленный N750T96 имеет номер 750, потому что это его температурный коэффициент при преобразовании в конденсатор, а N означает, что коэффициент отрицательный. Также доступен соответствующий материал N150, но наиболее стабильные конденсаторы изготавливаются из материалов COG (ранее известных как NPO) с нулевым температурным коэффициентом и низкой пропиткой.Все эти типы имеют низкие характеристики потерь и заменили посеребренную слюду для критических применений.

Керамические конденсаторы емкостью 120 пФ и ниже почти всегда относятся к типу COG (NPO).

Многие другие типы керамики, особенно с высоким содержанием титана, имеют очень высокие значения диэлектрической проницаемости, вплоть до 6000 в некоторых примерах. К сожалению, многие из этих керамических материалов также являются сильно анизотропными, что очень нежелательно — значение относительной диэлектрической проницаемости изменяется при изменении приложенного электрического поля, так что значение емкости изменяется по напряжению.Такие материалы, как титанат бария, по сути, являются пьезоэлектрическими, а это означает, что размеры всего кристалла будут изменяться при изменении напряжения на материале. Некоторые материалы обладают высокой относительной диэлектрической проницаемостью, которая сочетается с разумной стабильностью, и одна из спецификаций таких конденсаторов — X7R / 2C1. Для менее требовательных приложений, где допускается изменение значения емкости в зависимости от приложенного напряжения или температуры, можно использовать спецификацию Z5U / 2F4.

Для некоторых типов керамических конденсаторов коэффициент рассеяния может быть значительным, порядка 0.15% (0,0015) для типа C0G / NP0, возрастает до 3% (0,03) для типа Z5U, так что эквивалентное последовательное сопротивление этих типов сравнительно велико. Тип C0G / NP0 с номинальным нулевым температурным коэффициентом может иметь значения ± 30 ppm / ° C, что является приемлемо низким значением. Другие типы имеют гораздо более высокие температурные коэффициенты, которые могут изменяться, так что значение температурного коэффициента само будет изменяться при изменении температуры. Для этих конденсаторов обычно заменяют температурный коэффициент на процент максимального изменения.Например, если для керамического конденсатора вместо температурного коэффициента указаны цифры + 56%, –35%, это означает, что максимальное изменение, которое можно ожидать при крайних значениях температурного диапазона, будет составлять эти проценты. Номинальный диапазон температур для материала X7R составляет от –55 ° C до + 125 ° C, а для Z5U — от –10 ° C до + 85 ° C. Типичные максимальные изменения в этих диапазонах температур составляют от + 15% до –25% для X7R и от + 56% до –20% для Z5U.

Области применения керамических конденсаторов, следовательно, должны быть адаптированы к типу используемого диэлектрика.Конденсаторы, в основном в диапазоне 10–100 пФ, в которых используется диэлектрик NPO, подходят для общих (обычно низковольтных) целей, включая схемы настройки генератора, схемы синхронизации и фильтры, характеристики которых не требуют использования посеребренных слюд. Более стабильный из материалов с высокой диэлектрической проницаемостью, X7R, указан для значений примерно до 0,1 мкФ, и эти конденсаторы используются в приложениях байпаса и развязки, менее требовательных схем фильтрации, синхронизации и для приложений связи, в которых температурная стабильность ниже. важный.Диэлектрик Z5U имеет самый высокий диапазон значений относительной диэлектрической проницаемости и используется для получения очень высоких значений емкости в диапазоне от 0,22 мкФ до 1 мкФ. Эти конденсаторы используются в основном для развязки и байпаса, хотя их также можно использовать для связи в цепях, постоянная времени которых не обязательно должна быть стабильной. Сопротивление изоляции меньшего значения емкости составляет порядка 10 11 Ом, но для больших значений используется формула 10 9 / C Ом, с C в микрофарадах, чтобы указать сопротивление.

Из всех керамических конденсаторов только типы C0G / NP0 подходят для схем выборки и хранения. Эта керамика доступна в размерах до 0,01 мкФ.

Дисковая керамика с высокой относительной диэлектрической проницаемостью изготавливается специально для развязки аналоговых и цифровых схем. Большинство цифровых схем генерируют очень острые импульсы при включении и выключении устройств, и эти импульсы могут распространяться по линиям электропитания постоянного тока или линиям шины, если их не подавить.В большинстве примеров необходимо разместить развязывающий конденсатор на каждой ИС, подключенный между положительной линией питания и землей, но в некоторых схемах, использующих низкие тактовые частоты, это может быть уменьшено до одного конденсатора на каждые пять ИС. Стабильность значения не важна в таком приложении, где важными особенностями являются высокая емкость в небольшом объеме и низкая индуктивность.

Современная дисковая керамика хорошо подходит для этой цели с диапазоном емкости от 1 нФ до 100 нФ (0,1 мкФ). Они могут быть низковольтными, подходящими для цифровых схем, и высоковольтными, которые используются в телевизионных и радиолокационных схемах.Допустимое отклонение значения велико, в диапазоне от + 80% до –200%, и изменение в зависимости от температуры указывается редко. Типичное сопротивление изоляции 10 10 Ом. Более специализированная форма для цифрового использования — это низкопрофильный тип DIL, который имеет форму и размер ИС, но плоский, с четырьмя контактами, расположенными так, что два контакта будут соответствовать положительным и отрицательным положениям питания типичных ИС и две другие булавки — пустышки. Эти конденсаторы DIL могут быть установлены в монтажное положение ИС под ИС, таким образом сводя к минимуму индуктивность выводов, и, при необходимости, могут быть установлены поверх существующих ИС, если существующая развязка неадекватна.Диапазон выводов — для 14-, 16-, 20-, 24-, 28- и 40-выводных ИС.

Обратите внимание, что старый тип дисковой керамики имел сравнительно высокую самоиндукцию, что делало их непригодными для развязки в критических приложениях. Более современные многослойные диски намного превосходят их.

Конденсаторы с керамической пластиной также используются для проходных (проходных) конденсаторов, используемых для фильтрации нижних частот, когда кабель питания проходит через металлическую панель. Значения варьируются от 100 пФ до 10 нФ, и комбинация последовательной индуктивности и параллельной емкости может быть указана в децибелах затухания для высокочастотных сигналов при стандартном импедансе линии 50 Ом.Проходные типы не эффективны для синусоидальных сигналов менее 10 МГц, но очень полезны для фильтрации цифровых цепей линий питания, особенно сейчас, когда в компьютерных схемах используются высокие тактовые частоты 800 МГц и выше. Значения затухания варьируются от 1 дБ для 10 МГц / 100 пФ до 63 дБ для 1 ГГц / 10 нФ.

Также существует линейка конденсаторов с низкой диэлектрической проницаемостью и отрицательными температурными коэффициентами, предназначенных для температурной компенсации. Принцип заключается в том, что, комбинируя основной конденсатор с положительным температурным коэффициентом в настроенной цепи с меньшим значением с отрицательным температурным коэффициентом, можно полностью устранить влияние температуры в разумном диапазоне частот.Поскольку основной конденсатор может быть слюдяного типа с очень низким положительным значением температурного коэффициента, необходимо параллельно подключить только небольшой конденсатор с отрицательным температурным коэффициентом; в качестве альтернативы можно использовать большое значение емкости, подключенное последовательно. Используемые диэлектрики относятся к типам от N150 до N750, и даже можно использовать тип C0G / NP0, поскольку его температурный коэффициент может находиться в диапазоне от +30 до 30 ppm / ° C. Обычно используемые значения находятся в диапазоне от 2,2 пФ до 220 пФ, но доступны и гораздо большие размеры, вплоть до 0.01 мкФ. Некоторые производители используют цветовую маркировку конденсаторов, чтобы указать применимый температурный коэффициент.

Трубчатый керамический конденсатор со сквозным сердечником G2618, сопротивление давлению

Описание

Трубчатый керамический конденсатор со сквозным сердечником, сопротивление давлению G2618

В качестве электронного компонента трубчатый керамический конденсатор со сквозным сердечником G2618 особенно важен с точки зрения электрических характеристик и выдерживания напряжения.

Технический чертеж продукта

Существует несколько распространенных форм схем для фильтров электромагнитных помех

Существует много видов проходных конденсаторов с внутренней схемой.Комбинация конденсаторов и ферритовых шариков в соответствии с различными схемными структурами может формировать схемы фильтров C, LC, Pi, T. Эти схемы обеспечивают разные характеристики фильтрации. Чем больше компонентов фильтра, тем короче полоса перехода между полосой пропускания и полосой задерживания и тем больше вносимые потери.

Фильтр типа C, конструкция с одним конденсатором. Это устройство с низкой самоиндукцией, которое позволяет избежать высокочастотных помех на землю. Он подходит для фильтрации сигнальных линий и линий питания постоянного тока и подходит для приложений с источниками с высоким импедансом и высокими нагрузками.

Фильтр типа LC, это фильтр электромагнитных помех с индуктивной и емкостной составляющими. Различные методы (направления) установки могут использоваться в случаях с высоким импедансом источника и низким импедансом нагрузки или низким импедансом источника и высоким импедансом нагрузки.

Pi-фильтр состоит из двух емкостных элементов и индуктивного элемента между двумя емкостными элементами. По сравнению с типом C, структура типа LC обеспечивает лучшую производительность фильтрации высоких частот.Он подходит для случаев, когда как полное сопротивление источника, так и сопротивление нагрузки высоки, а эффективность подавления помех высока (вносимые потери).

Фильтр Т-типа состоит из двух индуктивных элементов и одного емкостного элемента. Он похож на структуру фильтра типа Pi, но не так широко используется, как фильтр типа Pi. Он подходит для случаев, когда полное сопротивление источника и сопротивление нагрузки низкие, а эффективность подавления помех высока (вносимые потери).

Наши сертификаты

Выставка завода Xuansn

Электронная почта: [email protected]

Pho: + 86-18825879082

Whatsapp: + 86-18825879082

Skype 9000PS Skype: : Xuansn-capacitor.en.made-in-china.com

Наконечники для конденсаторов при восстановлении антикварных ламповых радиоприемников

Наконечники для конденсаторов при восстановлении старинных ламповых радиоприемников

Азбука конденсаторов — Наконечники конденсаторов для ламповых радиоприемников

КОНДЕНСАТОРНЫЕ НАКОНЕЧНИКИ для новичков.Если вы новичок в восстановлении
старинные ламповые радиоприемники вот несколько полезных
КОНДЕНСАТОРЫ. Как выбрать конденсаторы и установить их в ламповые радиоприемники, объясняется в нетехнических разделах.
язык. Мы надеемся, что этот совет по конденсаторам окажется для вас полезным при ремонте и реставрации старинных радиоприемников.

Наконечники конденсатора (для начинающих) :

Ламповое радио КОНДЕНСАТОР Основные сведения

  • Для работы старинному ламповому радиоприемнику требуется как постоянный (DC), так и переменный ток (AC).Конденсаторы пропускают переменный ток, блокируя постоянный ток. Конденсаторы используются для блокировки, пропускания, фильтрации и настройки различных токов в вашем радио.
    • Не позволяйте терминологии сбивать вас с толку .. «конденсатор» — это старомодное название «конденсатор». Если вы не лучший специалист по написанию, конденсатор, конденсатор, конденсатор, конденсатор, конденсатор и конденсатор тоже одно и то же.
    • Конденсаторы

    • имеют значение емкости и номинальное напряжение. Значение емкости — это мера того, сколько электрического заряда может хранить конденсатор.Номинальное напряжение — это максимальное напряжение, с которым конденсатор может работать без пробоя. Иногда это выражается как WVDC (рабочее напряжение постоянного тока).
    • В вашем старом ламповом радиоприемнике используются 4 типа конденсаторов: переменные (настраивающие) конденсаторы, слюдяные конденсаторы, бумажные конденсаторы и электролитические (фильтрующие) конденсаторы. Когда вы восстанавливаете старинное радио, вы замените бумажные и электролитические конденсаторы, но не переменные и слюдяные конденсаторы.
    • В перечнях и схемах запасных частей для радиооборудования бумажные и электролитические конденсаторы обычно выражаются в терминах «микрофарады».Краткие формы для микрофарад включают mfd, MFD, MF, UF и uF. Слюдяные конденсаторы в вашем ламповом радиоприемнике будут иметь более низкие значения емкости, чем бумажные и электролитические конденсаторы. Слюды выражаются в микромикрофарадах (пикофарадах). Краткие формы для микрофарад включают mmfd, MMFD, MMF, PF и pF. ПФ составляет одну миллионную мкФ. Например, слюдяной конденсатор номиналом 500 ммфд (пФ) будет иметь значение 0,0005 мфд (мкФ).
      При чтении схем и покупке конденсаторов вам иногда нужно иметь возможность преобразовать мкФ в пФ или пФ в мкФ.Для вашего удобства у нас есть

      Конденсатор мкФ-нФ-пФ.
      на которые вы можете сослаться. Вы можете прикрепить эту таблицу преобразования к своему рабочему столу.

    • Как правило, если емкость конденсатора в вашем старинном ламповом радиоприемнике меньше 0,001 мкФ, это, вероятно, слюдяной конденсатор. Если он находится в пределах от 0,001 до 1,0 мкФ, это, скорее всего, бумажный конденсатор, а если он больше 1 мкФ, это, вероятно, электролитический конденсатор.
    • По размеру электролитические конденсаторы являются самыми большими конденсаторами, и в большинстве ламповых радиоприемников используется 2 или 3 из них.Оригинальные электролитические конденсаторы обычно имеют размер рулона в четверть или больше. В старых наборах переменного тока они обычно заключаются в алюминиевый корпус и монтируются наверху шасси. В легких наборах переменного / постоянного тока 1950-х годов они довольно часто находятся под шасси и могут иметь картонный футляр.
    • Оригинальные бумажные конденсаторы в вашем радиоприемнике, скорее всего, будут в трубчатом корпусе из коричневой бумаги (иногда покрытом воском). Обычно они от 1 до 1 1/2 дюйма в длину и от 1/4 до 1/2 дюйма в диаметре.
    • Слюдяные конденсаторы бывают разных размеров и форм, но наиболее распространенная форма — квадратная или прямоугольная, коричневого цвета с цветными точками (что-то вроде «домино»).
    • Конденсаторы имеют «радиальные» выводы или «осевые» выводы. В «радиальном» типе оба вывода выходят из одного конца конденсаторов. У «осевого» типа на каждом конце конденсаторов есть выводы.

      Оба типа одинаково хороши. Просто убедитесь, что у конденсаторов, которые вы заказываете, длинные провода.

    • На принципиальных схемах
      плоская сторона символа конденсатора — это положительная (+) сторона, а изогнутая — отрицательная (-). Положительный конец должен иметь более высокий электрический потенциал (более положительное напряжение). Современные пленочные конденсаторы неполярны, поэтому вам не нужно беспокоиться о полярности при замене старых бумажных колпачков новыми пленочными конденсаторами.
    • Как насчет использования конденсаторов NOS (новые «старые запасы»)? Не рекомендуется использовать на свой страх и риск! По мере старения бумажных и электролитических конденсаторов их значения емкости изменяются, они высыхают и становятся негерметичными.Вы бы водили автомобиль 1930-х годов с шинами NOS 70-летнего возраста?
    • Не тратьте деньги на аудиофильские, компьютерные или танталовые конденсаторы. Конечно, это хорошие конденсаторы, но в вашем старом ламповом радиоприемнике нет электронной схемы, позволяющей использовать эти дорогие конденсаторы. Единственное отличие, которое вы заметите, — это более легкий кошелек.
    • Конденсаторы с пластиковой / полиэфирной пленкой теперь используются вместо бумажных конденсаторов из-за их меньшего размера, более низкой стоимости и превосходных характеристик.Есть много вариантов пластиковых / полиэфирных конденсаторов.
      Хорошие типы пленочных конденсаторов для радиовосстановления трубок включают металлизированный полиэстер, металлизированный полипропилен, полипропилен с металлической фольгой, полистирол и майлар. Что такое майлар? Майлар — это просто торговое название синтетической пленки, зарегистрированной компанией duPont
    • .

    • На более высоких частотах полипропилен и полистирол более стабильны, чем полиэфир, поэтому для пленочных конденсаторов менее 0,01 мпм вы можете использовать полипропиленовые или полистирольные конденсаторы , а не полиэфирные конденсаторы.
    • Сколько стоит замена конденсаторов в вашем радио? Чтобы «вспомнить» типичный ламповый радиоприемник, вам понадобятся два или три электролитических конденсатора, один или два предохранительных конденсатора для подавления помех линейного фильтра и около дюжины пленочных конденсаторов .. Общая стоимость этих деталей должна составлять 15 или
      меньше.

    Наконечники для неэлектролитических конденсаторов

  • При замене старых бумажных / восковых конденсаторов вы не ошибетесь, используя пленочные конденсаторы, которые имеют более высокое номинальное напряжение, чем бумажные, которые вы заменяете.Например, если вы заменяете бумажный конденсатор на 400 вольт, вы можете использовать пленочный конденсатор на 630 вольт (но не на 200 вольт). Пленочный конденсатор с более высоким номинальным напряжением повысит надежность и срок службы лампового радиоприемника.
  • Почему ламповые радиоприемники изготавливались с бумажными конденсаторами на 200, 400 и 600 вольт, если для всех конденсаторов можно было использовать 600 вольт? Две причины стоимости и размера. Раньше конденсаторы были дорогими, поэтому, если производитель мог использовать конденсаторы более низкого напряжения в цепи, это могло снизить производственные затраты.Кроме того, чем выше напряжение, тем больше бумажный конденсатор, поэтому было проще установить бумажные конденсаторы более низкого напряжения. В наши дни пленочные конденсаторы недороги и компактны, поэтому использует пленочные конденсаторы на 630 В, и вы не ошибетесь .
  • Схема

  • Radio Schematics и списки деталей иногда не указывают рабочие напряжения неэлектролитических конденсаторов. В целях безопасности используйте пленочный конденсатор на 630 вольт.
  • Старые бумажно-восковые конденсаторы — одна из самых ненадежных частей старого радио.Не позволяйте «формованным» бумажным конденсаторам вводить вас в заблуждение. Это просто бумажные конденсаторы в пластмассовых корпусах, столь же ненадежные, как и покрытые воском. Формованные бумажные колпачки продавались под торговыми марками, такими как Bumble Bee, Black Cats, Black Beauty, Pyamid, Goodall и т. Д.
  • Современные неэлектролитические конденсаторы, то есть слюдяные конденсаторы, пленочные конденсаторы, керамические конденсаторы и т. Д., Неполярны. Это означает, что вам не нужно беспокоиться о том, какой конец подключить при замене старых бумажных конденсаторов новыми пленочными.
  • Типичный старый бумажный конденсатор (вверху) можно заменить новым «осевым» пленочным конденсатором (в центре)
    или новым «радиальным» пленочным конденсатором (внизу). Как видите … современные пленочные конденсаторы
    намного меньше старых бумажных конденсаторов, которые они заменяют.

    Как видно выше … новые слюдяные конденсаторы намного меньше старых слюдяных конденсаторов типа домино.

  • Старые бумажные конденсаторы, хотя и неполярные, имели черные полосы на одном конце. Черная полоса показывала, на каком конце бумажного конденсатора была металлическая фольга (которая действовала как экран). Конец с металлической фольгой был подключен к земле (или к самому низкому напряжению). Цель экрана из фольги заключалась в том, чтобы продлить срок службы бумажного конденсатора. При замене этих старых бумажных колпачков новыми пленочными конденсаторами вам не нужно беспокоиться о том, какой конец идет на сторону с самым низким напряжением. Иногда вы можете услышать, как кто-то утверждает, что неполярные пленочные заглушки должны быть установлены в определенном направлении для правильной работы в старом старинном радиоприемнике … это будет верно только для тех, кто обладает исключительным воображением … широко известный как «эффект плацебо».
  • При замене бумажных конденсаторов на пленочные имейте в виду, что значения емкости «легко угодить». Значение uF не обязательно должно быть одинаковым. Например; при замене конденсатора 0,04 мкФ можно использовать конденсатор 0.039 мкФ; при замене 0,008 мкФ можно использовать 0,0082 мкФ. Эти замены практически идентичны. Если у вас +/- 10%, значит, ваши радиостанции соответствуют заводским спецификациям. (Просто убедитесь, что ваш новый конденсатор имеет рабочее напряжение, равное или выше оригинального бумажного конденсатора)
  • Наконечники для электролитических конденсаторов

  • Электролитические конденсаторы часто называют «фильтрующими конденсаторами». Электролитические конденсаторы помогают преобразовывать (фильтровать) мощность переменного (переменного тока) в постоянное (постоянное) напряжение, необходимое для работы ваших радиоламп.
  • По размеру электролитические конденсаторы являются самыми большими конденсаторами. На более старых моделях они обычно заключаются в алюминиевый корпус (банки типа) и монтируются наверху шасси. Если они не находятся наверху шасси, вы найдете их под шасси.
  • Современные производственные технологии резко уменьшили размер электролитических конденсаторов.
    И новый осевой электролитический конденсатор (вверху), и старый конденсатор для поверхностного монтажа (внизу) — 40 мкФ 450 В.

    Конденсаторы

  • раньше были намного больше и дороже, чем сегодня. Для экономии места и стоимости использовались «многосекционные» электролиты. Это просто два, три или четыре конденсатора в одном корпусе. Вы заметите только одно соединение / провод заземления (обычно «черный» провод), так как все колпачки разделяют это заземление. Эти «многосекционные» колпачки можно заменить на одинарные электролитические. Современные электролиты компактны и легко помещаются под шасси.Вы должны оставить старый конденсатор на корпусе для первоначального вида. Только обязательно отключите его.

    Благодаря компактному размеру три новых Ecap (справа) можно легко установить под шасси
    , чтобы заменить старый многосекционный (3 в 1) электролитический конденсатор для поверхностного монтажа.

  • Электролитические конденсаторы много работают и, вероятно, являются самой ненадежной частью старинного радио.По мере того, как они изнашиваются (или просто стареют), вы слышите знаменитый «гул лампового радио». Да, в большинстве случаев причиной этого шума являются плохие конденсаторы фильтра. ВНИМАНИЕ! Если у вас ламповое радио гудит, «выключите его и не используйте». Плохие электролиты вредны не только для ушей; они плохо воздействуют на лампы, трансформаторы и другие части вашего радио. Конденсаторы дешевы. Лампы и другие детали могут быть дорогими, и их трудно найти.
  • Электролитические конденсаторы имеют номинальное «рабочее напряжение» (WV), которое представляет собой напряжение, с которым они могут работать в течение ограниченного периода времени.Никогда не используйте Ecap с рабочим напряжением, равным или близким к фактическому напряжению в цепи. Это напрашивается на неприятности. Ваша машина имеет максимальные обороты, на которых может работать двигатель …. если максимальная частота вращения составляет 6000 об / мин …. сколько времени проработает двигатель, если вы поставите машину на стоянку и продолжите вращать двигатель на 6000 об / мин … да , недолго. Электролитический конденсатор должен работать не более чем на 3/4 от его максимального рабочего напряжения . Это продлит срок службы конденсатора и обеспечит некоторый запас прочности на случай неожиданных скачков напряжения.Чем выше V, на котором работает Ecap, относительно максимального рабочего напряжения, тем короче будет срок службы Ecap. Никогда не заменяйте электролитический электролит на тот, который имеет более низкое номинальное напряжение, чем оригинальный Ecap.
  • Как и в случае бумажных конденсаторов, значение емкости электролитического конденсатора «легко угодить», и точная замена мкФ не требуется. Например, вы можете заменить 15 мкФ на 16 мкФ или заменить 80 мкФ на 82 мкФ. Если вы не можете найти подходящую замену, лучше выбрать более высокое значение мкФ, чем более низкое.
  • Старое практическое правило при замене электролитических конденсаторов — не использовать более чем на 80% больше (или на 20% меньше), чем «исходный» размер мкФ. Если вы замените E-cap на тот, у которого слишком высокий MFD, напряжение постоянного тока будет выше, чем требуется, и ваши лампы и другие детали будут изнашиваться быстрее. Если вы используете слишком низкий размер мкФ, ваше радио будет гудеть.
  • Предупреждение! У электролитов есть отрицательный конец и положительный конец … если вы установите электролит с перепутанной полярностью, не только ваше радио не будет работать, электролитический конденсатор может взорваться.На всех современных электролитических конденсаторах, которые продает JustRadios, нанесены стрелки (с отрицательными знаками). Стрелка с отрицательными знаками указывает на отрицательный конец электролитического конденсатора.
  • Стрелка с отрицательным знаком …. указывает на отрицательный полюс электролитического конденсатора.

  • Как правило, в ламповых радиоприемниках переменного тока (ламповые радиоприемники с силовыми трансформаторами) могут использоваться электролитические элементы на 450 В, в то время как в легких ламповых радиоприемниках переменного / постоянного тока могут использоваться фильтрующие конденсаторы на 160 В.Однако бывают исключения, поэтому всегда лучше обращаться к схеме.
  • Электролитические конденсаторы

  • имеют срок годности пару лет, поэтому убедитесь, что вы покупаете «свежие» стандартные электролитики (а не новые «старые») . Вы бы купили черствую буханку хлеба, если есть свежий?
  • Электролитические конденсаторы следует хранить при температуре от 5 до 35 градусов C (от 40 до 95 градусов F) и в невлажных условиях (относительная влажность менее 60), чтобы продлить срок годности.
  • Не кладите ламповый радиоприемник на хранение после восстановления электрики. Раз в месяц пусть радио поет полчаса или около того. Это предотвратит высыхание электролитических конденсаторов.
  • КОНДЕНСАТОР Советы по установке

  • При восстановлении старинного радиоприемника стандартной практикой является замена некоторых конденсаторов радиоприемника. Это известно как «перепрошивка» радио. Старое радио может работать со своими оригинальными крышками, но как долго ?? .и насколько безопасно ?? Если радиостанция будет продаваться с гарантией или передается кому-то в подарок, следует «резюмировать» радио.
  • Вам нужно заменить все бумажные и электролитические конденсаторы. Однако «не заменяйте слюдяные конденсаторы», если ваше радио было произведено в США или Канаде. Слюдяные конденсаторы, которые встречаются в американских и канадских радиоприемниках, очень редко выходят из строя, и если вы их замените, это нарушит настройку радиостанции. Замена слюдяных конденсаторов принесет больше вреда, чем пользы. Заменяйте слюду только в том случае, если вы уверены, что она плохая. (что бывает редко).
  • Обновление обсуждения слюдяных конденсаторов: как член AVRS (Австралийское общество старинных радио) я получаю информационный бюллетень AVRS. Поскольку у многих моих клиентов никогда не было проблем с слюдяными конденсаторами, я был удивлен и озадачен, прочитав в информационном бюллетене AVRS совет «Следует заменить слюдяные конденсаторы, подключенные к высоковольтному источнику» . Я спросил об этом Уорика Вудса (нынешнего президента AVRS).Уорвик любезно предоставил в ответ следующую информацию.

    Привет, Дэйв,

    Текст был следующий:

    «При восстановлении клапанной магнитолы обработайте все подключенные слюдяные конденсаторы.
    к высоким напряжениям, например, между анодами и землей, как потенциальные повреждения и
    замените их новым слюдяным компонентом из магазина компонентов AVRS ».

    Многие из слюдяных конденсаторов австралийской марки Simplex 1940-х гг.
    и 50-е страдают от миграции серебра через слюду, и кажется, что
    это связано с пористостью слюды, которая использовалась в то время.Если снаружи
    литье повреждено или пропускает влагу, тогда неисправность
    ускоренный. Когда серебро проникает сквозь слюду, маленькие
    «усы» с обеих сторон соприкасаются и могут быть унесены ветром (если
    имеется достаточное напряжение или ток), что приводит к прерывистому
    потрескивание и другие неисправности при попадании высокого напряжения в места
    где этого быть не должно.

    Режим отказа возникает только тогда, когда одна сторона конденсатора подключена к
    одно высокое напряжение, а другое — точку с низким потенциалом или землю.

    Как правило, к ним нужно относиться с подозрением и, чтобы
    безопасная сторона, заменил.

    Я слышал, как некоторые реставраторы из США говорили: «Я никогда не менял
    Слюда в моей жизни «и, хотя это может быть преувеличением, я обнаружил, что
    довольно старые колпачки из слюды американского производства, похоже, не страдают теми же проблемами, что и
    наши собственные. Может быть, они использовали слюду другого сорта в своих
    строительство.

    Погруженные типы, которые мы покупаем у вас, не вызывают никаких проблем.

    С уважением,

    Warwick
    Ноябрь 2014 г.

    После прочтения вышеизложенного тайна была раскрыта. Я заметил, что зарубежные клиенты гораздо чаще заказывают слюдяные конденсаторы, чем американские. Необходимость замены слюдяных конденсаторов должна зависеть от качества оригинального слюдяного конденсатора. Ламповые радиоприемники, изготовленные в США и Канаде, в которых использовались высококачественные слюдяные конденсаторы, редко выходят из строя, тогда как слюдяные конденсаторы, используемые в радиостанциях Австралии, Великобритании и других странах, должны быть «не такими хорошими», эти радиоприемники с гораздо большей вероятностью нуждаются в слюдяных конденсаторах. замены.

  • Керамические конденсаторы тоже очень редко выходят из строя. Не заменяйте керамические дисковые конденсаторы, если вы не уверены, что один из них вышел из строя. Также существуют керамические конденсаторы разных типов с разными рабочими характеристиками. Если керамический конденсатор относится к типу «универсального / термостабильного», его обычно можно заменить слюдяным или пленочным конденсатором … но керамические колпачки «термокомпенсирующего типа» следует заменять на такие же.
  • В некоторых радиостанциях используются так называемые конденсаторы «линейного фильтра».Эти конденсаторы подключаются к линии электропередачи радиостанции и / или идут от линии электропередачи к земле. При замене этих конденсаторов следует использовать специальные предохранительные конденсаторы номиналом переменного тока . Эти специальные конденсаторы повысят безопасность, производительность и надежность вашего радио. Если вы хотите узнать больше об этих «предохранительных конденсаторах», внизу этой страницы есть ссылка на Азбуку предохранительных конденсаторов.
  • Получите схему (и список деталей) перед тем, как приступить к составлению резюме.Часто невозможно прочитать значения, указанные на оригинальных конденсаторах. Кроме того, если радио когда-то ремонтировалось, есть большая вероятность, что кто-то вставил конденсаторы неправильного размера, просто чтобы радио заработало. Без схемы вы будете гадать.
  • Перед заменой конденсаторов проверьте все резисторы радиостанций. Поскольку вы будете заменять конденсаторы, вам следует отрезать один вывод всех бумажных и электролитических конденсаторов. Также снимите все трубки. Эти шаги помогут предотвратить ложные показания сопротивления.В большинстве случаев резисторы можно измерить в цепи, не снимая их.

    Все резисторы, не соответствующие спецификации, следует заменить . Что касается ламповой электроники … «не все резисторы одинаковы».

    Почти все типы резисторов, производимые в настоящее время, производятся либо с корпусами «малых» размеров, либо с корпусами «нормальных» размеров. Резисторы с корпусом малого размера имеют более низкое рабочее напряжение, чем резисторы с «нормальным» размером корпуса. Обычные и более дешевые «маленькие» резисторы корпусного типа (которые почти всегда рассчитаны на напряжение менее 350 вольт) подходят для большинства транзисторных радиоприемников…. но они не справляются с 350В, которые обычно необходимы для ламповых радиоприемников. Миниатюрные корпусные резисторы дешевле для производителя и дешевле, чем «обычные» корпусные резисторы. СОВЕТ : Если вы восстанавливаете ламповую электронику, избегайте «маленьких» корпусных резисторов. Эти дешевые миниатюрные резисторы легко найти на Ebay, На Amazon и на сайтах, которые рекламируют, самые низкие цены. Как говорится, «вы получаете то, за что платите».

    Подробнее о резисторах для ламповой электроники .

  • Путь

    термоусадочные (спагетти) трубки

    на ведущих
    конденсаторы
    и резисторы перед тем, как впаивать их в схему.
    Это поможет предотвратить опасные шорты. Если вам нужно немного тепла
    термоусадочные трубки, просто «дайте нам знать», и мы будем рады добавить их к вашим
    заказ конденсатора бесплатно.

  • Всегда проверяйте конденсатор перед его установкой.Хотя это очень редко, но каждый раз в синюю луну новый конденсатор будет неисправен или не соответствует требованиям. Если вы потратите десять секунд на проверку конденсатора, это сэкономит вам часы на поиск и устранение неисправностей… только чтобы узнать, что вы случайно установили новый «плохой» конденсатор.
  • Если вам нужен более высокий мкФ, чем можно у продавца, вы можете подключить пару конденсаторов параллельно (бок о бок). Например, если вам нужно 200 мкФ при 450 вольт, вы можете подключить два конденсатора по 100 мкФ / 450 вольт параллельно, и вы получите 200 мкФ при 450 вольт.Вы сохранили напряжение на том же уровне при удвоении мкФ.
  • «Теоретически» подключение конденсаторов последовательно (сквозное) должно приводить к более высокому рабочему напряжению. Например, «теоретически» два последовательно соединенных конденсатора по 100 мкФ при 450 вольт должны дать вам 50 мкФ при 900 вольт (удвоенное напряжение и половина мкФ) ….. однако последовательно подключать конденсаторы не рекомендуется. (& voids наша гарантия), потому что при последовательном подключении один конденсатор обычно получает больше напряжения, чем другой.Это связано с тем, что сопротивления утечки двух конденсаторов редко бывают одинаковыми, и конденсатор с более высоким сопротивлением получит большую долю напряжения (что часто приводит к выходу из строя последовательно соединенных конденсаторов).
  • Не забывайте всегда работать безопасно. Высокое напряжение, хранящееся в конденсаторах большой емкости, может убить! Если в последние недели было включено радио, некоторые конденсаторы (особенно электролитические конденсаторы) могут удерживать смертельный заряд напряжения.Перед работой с этими конденсаторами их следует полностью разрядить. Это может быть достигнуто путем (перемычки) соединения двух концов рассматриваемого конденсатора с резистором высокой мощности 1000 Ом через изолированные зажимы и провода.
  • И последнее, но не менее важное: где можно купить конденсаторы подходящего размера и нужного типа.
    восстановить ламповое радио? Вы нашли нужное место. Мы — Дэйв и Бэбилин Кантелон.
    Мы специализируемся на конденсаторах для старинных ламповых радиоприемников.Получил ламповый радиоконденсатор
    вопрос. напишите нам по адресу [email protected] Как поставить конденсатор
    порядок вот наш
    Форма заказа конденсатора.

    .

  • О нас

    : Мы Дэйв и Бэбилин
    Cantelon и, как и вы, мы (ну, по крайней мере, один из нас) любим восстанавливать старые ламповые радиоприемники. Мы также активны
    в ряде клубов Vintage Radio (AWA, MARC, IARC, LVRC, OVRA, OVRC, CVRS), как к северу, так и к югу от границы США и Канады.Ознакомьтесь с нашими радио-ссылками
    страницу, если вы хотите найти радиоклуб, в который можно вступить. Если вы ремонтируете или восстанавливаете старые
    ламповые радиоприемники, вы знаете, может быть сложно найти подходящие высоковольтные конденсаторы, конденсаторы с правильными значениями емкости
    … конденсаторы с высоким рабочим напряжением и конденсаторы с длинными выводами для ручной проводки. Мы верим, что ты найдешь
    Наша линейка конденсаторов пригодится при ремонте и реставрации старинных ламповых радиоприемников

    Дэйв и Бэбилин Кантелон, 6 Ferncrest Gate, Скарборо, Онтарио, Канада, M1W_1C2

    Бесплатная доставка авиапочтой по всему миру

    для всех комплектов конденсаторов и
    Комплекты резисторов

    Конденсаторы для ламповых радиоприемников

    :

    горячий
    Комплекты конденсаторов для ламповых радиоприемников

    Конденсаторы из металлизированного полипропилена — 630 В и 1000 В Осевые Трубчатые
    Конденсаторы из металлизированной полиэфирной пленки — 630 В и 1000 В Осевые трубчатые Трубчатые
    Металлизированные пленочные конденсаторы из полиэстера — 6000 В Осевые конденсаторы Трубчатые полипропиленовые полипропиленовые Металлические 69630 Orange Dips
    Конденсаторы из металлизированной полиэфирной пленки — 630 вольт Orange Dips
    Металлизированные полипропиленовые конденсаторы — 1600 вольт Orange Dips
    Silver Конденсаторы MICA — 500 вольт
    Конденсаторы из лавсановой полиэфирной пленки —
    в продаже по 50-дюймовым Керамические дисковые конденсаторы — 1600 В
    Высоковольтные электролитические конденсаторы — Радиальные выводы
    Высоковольтные электролитические конденсаторы — Осевые выводы
    Односекционные Банка Электролитические конденсаторы — 500 Вольт
    Двухсекционные Банка Электролитические конденсаторы — 500 Вольт
    Зажимы для конденсаторов для электролитических банок Конденсаторы
    90 937 X1 / Y2 Disc Защитные конденсаторы — 250 В переменного тока
    Пленочные Y2 Защитные конденсаторы / помехоподавляющие конденсаторы — 250 В переменного тока
    X2 Film Защитные конденсаторы / подавители помех — 275 В переменного тока

    РЕЗИСТОРЫ для ламповых радиоприемников
    Резисторы $ Прайс-лист
    Резисторы КОМПЛЕКТЫ

    Термоусадочные трубки (спагетти)
    Винтажные ламповые радиоприемники Ремни с циферблатом

    Антикварные радиосхемы — JustRadios

    ABC Защитные конденсаторы для ламповых радиоприемников.

    Related Posts

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *