Виды генераторов электрического тока: Дизельные, бензиновые, газовые, портативные, передвижные

Содержание

Дизельные, бензиновые, газовые, портативные, передвижные


Использование энергетических ресурсов нуждается в преобразовании одних форм энергии в другие. Устройства, в которых такое преобразование происходит, являются преобразователями энергии. Данное преобразование, как правило, включает в себя промежуточную стадию: энергия простого носителя предварительно преобразуется в механическую, а после этого полученная механическая энергия преобразуется в электрическую энергию.


Энергетический преобразователь, преобразующий механическую энергию в электрическую энергию или наоборот, называется электрической машиной. Электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию, называются электрическим генератором. Любая электрическая машина является электромагнитным устройством, которое включает в себя взаимозависимые магнитные и электрические цепи.


Если встал вопрос, как выбрать электростанцию или генератор, то нужно учитывать множество факторов:


  • мощность,
  • время непрерывной работы,
  • вид топлива,
  • производителя и т.д.

Ниже приведена классификация генераторов по различным параметрам.


По типу первичного двигателя промежуточной стадии электрические генераторы бывают:


  • турбогенераторами, приводимыми в движение газотурбинным двигателем;
  • гидрогенераторами, приводимыми в движение гидравлической турбиной;
  • дизель-генераторами, бензо-генераторами, газогенераторами, приводимыми в движение двигателем внутреннего сгорания;
  • ветрогенераторами, приводимыми в движение энергией ветра.

По виду выходного электрического тока бывают электрические генераторы:


  • Постоянного тока. Их принцип действия основан на законе электромагнитной индукции, открытой Майклом Фарадеем в 1831 году, — электродвижущая сила индуцируется в прямоугольном контуре, который находится в однородном вращающемся магнитном поле. Преобразование в постоянный ток осуществляется посредством электромеханического выпрямителя – коллектора.
  • Переменного тока. В основе их действия также лежит закон электромагнитной индукции. Поток электрических зарядов вызван перемещением электрического проводника. Это движение создает разность напряжений между двумя концами провода, что в свою очередь заставляет двигаться электрические заряды, таким образом, генерируя электрический ток.

По мобильности:


  • Портативные (переносные). Такой тип генератора является одним из наиболее эффективных и удобных решений вопроса резервного электроснабжения загородного дома, обеспечения электричеством в туристическом походе, улучшения условий проживания в длительных путешествиях и экспедициях. Если необходим независимый источник питания, и вы не знаете, как выбрать генератор бензиновый, то первое, что нужно учесть, что его мощность колеблется в пределах от 0,5 до 12 кВт и для крупных объектов не подходит. Хотя малый вес и экономичность делает его популярным резервным источником питания. Эти генераторы оснащены двигателями с воздушным охлаждением.
  • Передвижные. Для такого типа генератора не требуется специальное помещение и монтаж. Оборудование имеет постоянную готовность к срочной эксплуатации. Установка на шасси позволяет доставить оборудование (прицепную электростанцию) в труднодоступную точку, где нет электричества.
  • Стационарные генераторы и электростанции. Применяются для бесперебойной подачи электрической энергии значительных мощностей. Не подлежат транспортировке и имеют постоянное место нахождения. Используются на строительных площадках, различных промышленных объектах непрерывного производства, в торговых центрах и проч. Такие генераторы имеют жидкостное охлаждение с использованием антифриза (радиаторное охлаждение).

В свою очередь стационарные генераторы бывают закрытого и открытого типа (закрытый тип имеет шумопоглощающий всепогодный кожух, открытый тип может быть установлен в помещении, где нет ограничений по уровню шума).


По назначению:


  • Бытовые. Из-за способности эффективного обеспечения электрической энергией не более 8 часов в сутки, бытовые генераторы используются как резервный источник при кратковременных отключениях электроэнергии централизованными линиями электропередач на дачах, в загородных домах, на небольших производствах. Зачастую эти устройства бывают бензиновыми, весят от 25 до 200кг, просты в обслуживании, имеют небольшие габариты.
  • Профессиональные. Предназначены для интенсивного использования на крупных объектах (больницах, супермаркетах, стройплощадках, промышленных предприятиях), а также в жестких условиях эксплуатации. Могут работать в качестве как основных, так и резервных источников электроэнергии. Имеют большой моторесурс.

По применению:


  • Резервные. Используются как резервные источники электроэнергии (при аварийном или временном отключении электричества).
  • Основные. Используются там, где вообще отсутствует электроснабжение.

По числу фаз:


  • Однофазные. Подходят для подключения только однофазных потребителей с нагрузкой 220В.
  • Трехфазные. Этот тип генератора может выдавать как 220В, так и 380В. Он используется для подключения трехфазных потребителей, а также может быть подключен к 1-фазным потребителям, но в этом случае необходимо равномерное распределение нагрузки между фазами (разница мощностей на разных фазах не должна отличаться на 20-25%). Трехфазные дизельные генераторы имеют больший КПД по сравнению с однофазными бензиновыми.

По виду пуска или степени автоматизации:


  • Ручной. Запускается пусковой рукояткой.
  • Электростартерный или автоматический. Запускается поворотом ключа или нажатием на кнопку. Также может иметь дистанционный запуск пультом, соединенным с генератором кабелем.

По виду топлива в двигателе внутреннего сгорания:


  • Бензиновые. Работают на высокооктановых сортах бензина. Расход топлива составляет 1-2,5 л в час. Предел непрерывной работы – 12 часов, в связи с чем не используются в качестве полной замены электроснабжению, но купить электростанцию на бензине для аварийного и резервного источника с небольшими мощностями – оптимальный вариант. Бензиновые генераторы просты в эксплуатации, с низким уровнем шума, однако имеют низкий КПД по сравнению с дизельными аналогами.
  • Дизельные. Работают на дизельном дистиллятном и остаточном топливе. Благодаря обеспечению низкой стоимости вырабатываемой электроэнергии имеют быструю окупаемость. Расход топлива составляет 2-3 л в час. Несмотря на большую стоимость по сравнению с бензиновыми установками, этот тип генераторов экономичнее, имеет больший моторесурс, может работать в суровых условиях с сильной запыленностью и при низких температурах. Купить генератор дизельный – значит обеспечить объект оборудованием, рассчитанным на интенсивное использование.
  • Газовые. Работают на пропан-бутановых смесях и природном газе. Требуют врезку к газовой магистрали или периодическую замену баллона. Отличаются стабильной, надежной и экономичной работой, выдают мощности в диапазоне от 1,5 кВт до десятков тысяч, в результате чего используются на объектах с высоким энергопотреблением. Из-за низкого давления на поршень двигателя, установка работает бесшумно и без вибраций, полное сгорание газа обеспечивает чистоту выхлопа. Особенность: запуск двигателя может быть только при плюсовых температурах, поэтому генератор должен устанавливаться в отапливаемых помещениях.

По производителю


Дизельные: Honda, Kubota, Yamaha (Япония), John Deer (США), Hatz (Германия), Perkins (Великобритая) и др. Продукцию Hondа отличает бесшумность работы и долговечность двигателя. Бензиновые: Mecc Alte, Sincro, Soga (Италия), Stamford (Великобритания) и др. Синхронные генераторы Mecc Alte отличаются высочайшим качеством, безопасностью и надежностью.


Наличие собственного, независимого источника электроэнергии – важное дополнение к техническому оборудованию частного домовладения или предприятия. Электрогенератор решает многие проблемы, связанные с электроснабжением. Правильная эксплуатация и должное сервисное обслуживание позволит использовать электростанции многие годы.



Виды генераторов электрического тока


Другие направления деятельности ООО «Кронвус-Юг»

www.4akb.ru

Оборудование для
обслуживания аккумуляторов

ural-k-s.ru

Промышленное и
автосервисное оборудование

www.metallmeb.ru

Производство мебели
специального назначения

verstaki.com

Слесарные верстаки и
производственная мебель

Генераторы представляют собой устройства, которые преобразуют механическую энергию в электрическую. Как правило, они производят электрический ток двух видов – постоянный и переменный.

Генераторы постоянного и переменного тока

Если рассматривать генератор постоянного тока, то в его состав его конструкции входит неподвижный статор с вращающимся ротором и дополнительной обмоткой. За счет движения ротора вырабатывается электрический ток. Генераторы постоянного тока в основном используются в металлургической промышленности, морских судах и общественном транспорте.

Генераторы переменного тока вырабатывают энергию за счет вращения ротора в магнитном поле. Путем вращения прямоугольного контура вокруг неподвижного магнитного поля, механическая энергия преобразуется в электрический ток. Данный вид генератора имеет преимущество в том, что ротор (основной движущий элемент) вращается быстрее, чем в генераторах переменного тока.

Синхронные и асинхронные генераторы

Генераторы, вырабатывающие переменный ток бывают синхронными и асинхронными. Они отличаются друг от друга своими возможностями. Мы не будем подробно рассматривать их принцип работы, а остановимся лишь на некоторых особенностях.

Синхронный генератор конструктивно сложнее асинхронного, вырабатывает более чистый ток и при этом легко переносит пусковые перегрузки. Синхронные агрегаты отлично используются для подключения техники, которая чувствительно реагирует на перепады напряжения (компьютеры, телевизоры и различные электронные устройства). Также, отлично справляются с питанием электродвигателей и электроинструментов.

Асинхронные генераторы, благодаря простоте конструкции достаточно стойки к короткому замыканию. По этой причине они используются для питания сварочной техники и электроинструментов. К данным агрегатам ни в коем случае нельзя подключать высокоточную технику.

Однофазные и трехфазные генераторы

Необходимо учитывать характеристику, связанную с типом вырабатываемого тока. Однофазные модели выдают 220 В, трехфазные — 380 В. Это очень важные технические параметры, которые необходимо знать каждому покупателю.

Однофазные модели считаются самыми распространенными, поскольку часто используются для бытовых нужд. Трехфазные позволяют напрямую снабжать электроэнергией крупные промышленные объекты, здания и целые поселки.

Перед покупкой генератора, необходимо владеть определенной технической информацией, понимать, чем они отличаются, поскольку это поможет Вам выбрать достойную модель, конкретно для ваших нужд, а также избавиться от лишних хлопот и сэкономить средства.

Компания «ООО «Кронвус-Юг»» реализует и изготавливает бензиновые, дизельные, и газовые электростанции, которые вы можете купить по выгодной цене.

Виды электрических генераторов и принципы их работы

Генераторы переменного тока представляют собой электромашинные агрегаты, выполняющие преобразование механической энергии в электрическую, имеющую переменное поле.

Принцип работы генераторов переменного тока

Принцип действия генераторов переменного тока заключается в использовании в их конструкции специальной системы, посредством которой и получается большой магнитный поток.

В основу конструкции системы включены два сердечника, для изготовления которых используется электротехническая сталь. Пазы одного из элементов предназначены для размещения обмотки, отвечающей за создание магнитного потока, пазы другого отвечают за индукцию ЭДС.

Как правило, внутренний сердечник вращается по горизонтальной или вертикальной орбите и носит название ротора. Статор или второй сердечник остается неподвижным. Уменьшение пространства между этими элементами приводит к увеличению индуктивности магнитного потока.

Основные виды генераторов переменного тока

Существуют асинхронные и синхронные модели. Их основным отличием является конструкция ротора.

В синхронных генераторах переменного тока индуктивные катушки размещены сразу же на самом роторе, в асинхронных на валу предусмотрены пазы, необходимые для размещения обмотки.

Основным эксплуатационным отличием этих типов является то, что синхронные способны выдать на непродолжительное время ток высокой пусковой мощности, которая в несколько раз превышает номинальную.

В этом плане параметры асинхронных моделей несколько скромнее.

Однако при этом производимое ими электричество имеет малые искажения, благодаря чему широко применяются в решении задач по освещению или энергоснабжению бытовой техники.

Очевидно, что потребителей главным образом в плане создания бесперебойного энергоснабжения интересуют устройства, способные соответствовать этому требованию. Для чего и используются именно бытовые генераторы, которые классифицируются по фазности нагрузки, потребляемым энергоресурсам и мощности.

Также основными параметрами генераторов переменного тока являются:

  • мобильность
  • непритязательность
  • надежность
  • простые рекомендации в эксплуатации

Также генераторы переменного тока можно классифицировать по используемым видам топлива. В качестве энергоносителей используются дизельное топливо, природный и биогаз, а также аналогичное сырье, получаемое при переработке химических отходов и хозяйственно-бытовых сточных вод.

Критерии выбора генератора переменного тока

  1. Режим работы. Эти устройства способны работать бесперебойно или как резервный источник очень продолжительное время.
  2. Номинальная мощность. Чтобы установить этот показатель следует сложить активные (коэффициент запаса 1,1) и реактивные (коэффициент запаса 2) мощности всех подключаемых потребителей. Если подключаются мощные нагрузки, то потребуются дополнительные устройства, способные сгладить высокие пусковые токи.
  3. Фазность нагрузки. Для однофазных потребителей требуются соответствующие модели, для трехфазных лучше использовать такие же генерирующие устройства. Однако крайне важно произвести максимально точный расчет нагрузки на каждую фазу, чтобы избежать «перекоса фаз».
  4. Надежность. Во многом зависит от производителя и используемых в сборке компонентов. Важно соблюдать и рекомендации по использованию расходных материалов и топлива.
  5. Финансовые затраты. Генератор переменного тока имеет различную стоимость, что позволяет подобрать модель в соответствии с любыми запросами.

Электрический генератор

Электрогенераторы в начале XX века. Гиндукушская ГЭС, на реке Мургаб, бывшая во время ввода в эксплуатацию мощнейшей в Российской империи. Сделано в Венгрии: Компания Ганц, 1909 год.[1] Фотография Прокудина-Горского, 1911 год.
У этого термина существуют и другие значения, см. Генератор.
Основная статья: Электрическая машина
Запрос «Альтернатор» перенаправляется сюда. На эту тему нужно создать отдельную статью
(см. иноязычные аналоги).

Электри́ческий генера́тор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История

Динамо-машина Йедлика

В 1827 венгерский физик Аньош Иштван Йедлик начал экспериментировать с электромагнитными вращающимися устройствами, которые он называл электромагнитные самовращающиеся роторы. В прототипе его униполярного электродвигателя (был завершён между 1853 и 1856 годами) и стационарная, и вращающаяся части были электромагнитные.

Он сформулировал концепцию динамо-машины по меньшей мере за 6 лет до Сименса и Уитстона, но не запатентовал изобретение, потому что думал, что он не первый, кто это сделал. Суть его идеи состояла в использовании вместо постоянных магнитов двух противоположно расположенных электромагнитов, которые создавали магнитное поле вокруг ротора.

Изобретение Йедлика на десятилетия опередило его время.

Диск Фарадея

Диск Фарадея

В 1831 году Майкл Фарадей открыл принцип работы электромагнитных генераторов. Принцип, позднее названный законом Фарадея, заключался в том, что разница потенциалов образовывалась между концами проводника, который двигался перпендикулярно магнитному полю. Он также построил первый электромагнитный генератор, названный «диском Фарадея», который являлся униполярным генератором, использовавшим медный диск, вращающийся между полюсами подковообразного магнита. Он вырабатывал небольшое постоянное напряжение и сильный ток.

Конструкция была несовершенна, потому что ток самозамыкался через участки диска, не находившиеся в магнитном поле.

Паразитный ток ограничивал мощность, снимаемую с контактных проводов и вызывал бесполезный нагрев медного диска.

Позднее в униполярных генераторах удалось решить эту проблему, расположив вокруг диска множество маленьких магнитов, распределённых по всему периметру диска, чтобы создать равномерное поле и ток только в одном направлении.

Другой недостаток состоял в том, что выходное напряжение было очень маленьким, потому что образовывался только один виток вокруг магнитного потока. Эксперименты показали, что используя много витков провода в катушке можно получить часто требовавшееся более высокое напряжение. Обмотки из проводов стали основной характерной чертой всех последующих разработок генераторов.

Однако, последние достижения (редкоземельные магниты), сделали возможными униполярные двигатели с магнитом на роторе, и должны внести много усовершенствований в старые конструкции.

Динамо-машина

Динамо-машины больше не используются для выработки электроэнергии из-за их размеров и сложности коммутаторов. Эта большая приводимая в действие ременной передачей сильноточная динамо-машина выдавала ток 310 ампер и напряжение 7 вольт или 2170 ватт, когда вращалась с частотой 1400 об/мин.
Основная статья: Динамо-машина

Динамо-машина стала первым электрическим генератором, способным вырабатывать мощность для промышленности. Её работа основана на законах электромагнетизма для преобразования механической энергии в пульсирующий постоянный ток. Постоянный ток вырабатывался благодаря использованию механического коммутатора. Первую динамо-машину построил Ипполит Пикси в 1832 году.

Пройдя ряд менее значимых открытий, динамо-машина стала прообразом, из которого появились дальнейшие изобретения, такие как двигатель постоянного тока, генератор переменного тока, синхронный двигатель, роторный преобразователь.

Динамо-машина состоит из статора, который создаёт постоянное магнитное поле, и набора обмоток, вращающихся в этом поле. На маленьких машинах постоянное магнитное поле могло создаваться с помощью постоянных магнитов, у крупных машин постоянное магнитное поле создаётся одним или несколькими электромагнитами, обмотки которых обычно называют обмотками возбуждения.

Большие мощные динамо-машины сейчас можно редко где увидеть, из-за большей универсальности использования переменного тока в сетях электропитания и электронных твердотельных преобразователей постоянного тока в переменный. Однако до того, как был открыт переменный ток, огромные динамо-машины, вырабатывающие постоянный ток, были единственной возможностью для выработки электроэнергии. Сейчас динамо-машины являются редкостью.

Обратимость электрических машин

Русский учёный Э. Х.

Ленц ещё 1833 году указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если её питать током, и может служить генератором электрического тока, если её ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838 году Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832 году парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжёлый постоянный магнит, чтобы в двух проволочных катушках, укреплённых неподвижно вблизи его полюсов, возникал переменный электрический ток.

Генератор был снабжён устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843 году, был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси.

Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851 года) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851—1867) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами.

Подобная машина была создана англичанином Генри Уальдом в 1863 году.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты.

Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением даёт ток и тогда, когда его запускают из состояния покоя.

В 1866—1867 годах ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870 году бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретённый ещё в 1860 году А. Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укреплённый на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря.

Генератор Грамма давал постоянный ток, который отводился с помощью металлических щёток, скользивших по поверхности коллектора. На Венской международной выставке в 1873 году демонстрировались две одинаковые машины Грамма, соединённые проводами длиной 1 километр.

Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос.

Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики.

Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух принципов:

  • электростатическую индукцию
  • трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Другие электрические генераторы, использующие вращение

Без коммутатора динамо-машина является примером генератора переменного тока. С электромеханическим коммутатором динамо-машина — классический генератор постоянного тока.

Генератор переменного тока должен всегда иметь постоянную частоту вращения ротора и быть синхронизирован с другими генераторами в сети распределения электропитания.

Генератор постоянного тока может работать при любой частоте ротора в допустимых для него пределах, но вырабатывает постоянный ток.

МГД генератор

Магнитогидродинамический генератор напрямую вырабатывает электроэнергию из энергии движущейся через магнитное поле плазмы или другой подобной проводящей среды (например, жидкого электролита) без использования вращающихся частей.

Разработка генераторов этого типа началась потому, что на его выходе получаются высокотемпературные продукты сгорания, которые можно использовать для нагрева пара в парогазовых электростанциях и таким образом повысить общий КПД.

МГД генератор является обратимым устройством, то есть может быть использован и как двигатель.

Классификация

  • Электромеханические
    • Индукционные
    • Электрофорная машина
  • Термоэлектрические
    • Термопары
    • Термоэмиссионные преобразователи
  • Фотоэлементы
  • Магнитогидро (газо)динамические генераторы
  • Химические источники тока
    • Гальванические элементы
    • Топливные элементы
  • Биогенераторы

Электромеханические индукционные генераторы

Электромеханический генера́тор — это электрическая машина, в которой механическая работа преобразуется в электрическую энергию.

E
=

d
Φ

d
t

{displaystyle E=-{frac {dPhi }{dt}}}

 — устанавливает связь между ЭДС и скоростью изменения магнитного потока

Φ

{displaystyle Phi }

пронизывающего обмотку генератора.

Классификация электромеханических генераторов

  • По типу первичного двигателя:
    • Турбогенератор — электрический генератор, приводимый в движение паровой турбиной или газотурбинным двигателем;
    • Гидрогенератор — электрический генератор, приводимый в движение гидравлической турбиной;
    • Дизель-генератор — электрический генератор, приводимый в движение дизельным двигателем;
    • Ветрогенератор — электрический генератор, преобразующий в электричество кинетическую энергию ветра;
  • По виду выходного электрического тока:
    • Трёхфазный
    • Однофазный
  • Вид соединения обмоток:
    • С включением обмоток звездой
    • С включением обмоток треугольником
  • По способу возбуждения
    • С возбуждением постоянными магнитами
    • С внешним возбуждением
    • С самовозбуждением
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением

См. также

  • Тахогенератор
  • Униполярный генератор

Примечания

  1. Studiolum:. Abraham Ganz at the Hindukush (англ.). Архивировано 1 октября 2015 года.

Ссылки

  • Униполярный генератор, Компьютерра
  • Конструкции электрических машин
Для улучшения этой статьи желательно:

  • Проставив сноски, внести более точные указания на источники.

Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.

Виды генераторов электрического тока

Главная » Статьи » Виды генераторов электрического тока

Генераторы представляют собой устройства, которые преобразуют механическую энергию в электрическую. Как правило, они производят электрический ток двух видов – постоянный и переменный.

Генераторы постоянного и переменного тока

Если рассматривать генератор постоянного тока, то в его состав его конструкции входит неподвижный статор с вращающимся ротором и дополнительной обмоткой. За счет движения ротора вырабатывается электрический ток. Генераторы постоянного тока в основном используются в металлургической промышленности, морских судах и общественном транспорте.

Генераторы переменного тока вырабатывают энергию за счет вращения ротора в магнитном поле. Путем вращения прямоугольного контура вокруг неподвижного магнитного поля, механическая энергия преобразуется в электрический ток. Данный вид генератора имеет преимущество в том, что ротор (основной движущий элемент) вращается быстрее, чем в генераторах переменного тока.

Синхронные и асинхронные генераторы

Генераторы, вырабатывающие переменный ток бывают синхронными и асинхронными. Они отличаются друг от друга своими возможностями. Мы не будем подробно рассматривать их принцип работы, а остановимся лишь на некоторых особенностях.

Синхронный генератор конструктивно сложнее асинхронного, вырабатывает более чистый ток и при этом легко переносит пусковые перегрузки.

Синхронные агрегаты отлично используются для подключения техники, которая чувствительно реагирует на перепады напряжения (компьютеры, телевизоры и различные электронные устройства).

Также, отлично справляются с питанием электродвигателей и электроинструментов.

Асинхронные генераторы, благодаря простоте конструкции достаточно стойки к короткому замыканию. По этой причине они используются для питания сварочной техники и электроинструментов. К данным агрегатам ни в коем случае нельзя подключать высокоточную технику.

Однофазные и трехфазные генераторы

Необходимо учитывать характеристику, связанную с типом вырабатываемого тока. Однофазные модели выдают 220 В, трехфазные — 380 В. Это очень важные технические параметры, которые необходимо знать каждому покупателю.

Однофазные модели считаются самыми распространенными, поскольку часто используются для бытовых нужд. Трехфазные позволяют напрямую снабжать электроэнергией крупные промышленные объекты, здания и целые поселки.

Перед покупкой генератора, необходимо владеть определенной технической информацией, понимать, чем они отличаются, поскольку это поможет Вам выбрать достойную модель, конкретно для ваших нужд, а также избавиться от лишних хлопот и сэкономить средства.

Компания «ООО «Кронвус-Юг»» реализует и изготавливает бензиновые, дизельные, и газовые электростанции, которые вы можете купить по выгодной цене.

Виды генераторов (электростанций): Дизельные, бензиновые, газовые, портативные, передвижные

Использование энергетических ресурсов нуждается в преобразовании одних форм энергии в другие. Устройства, в которых такое преобразование происходит, являются преобразователями энергии.

Данное преобразование, как правило, включает в себя промежуточную стадию: энергия простого носителя предварительно преобразуется в механическую, а после этого полученная механическая энергия преобразуется в электрическую энергию.

Энергетический преобразователь, преобразующий механическую энергию в электрическую энергию или наоборот, называется электрической машиной.

Электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию, называются электрическим генератором.

Любая электрическая машина является электромагнитным устройством, которое включает в себя взаимозависимые магнитные и электрические цепи.

Если встал вопрос, как выбрать электростанцию или генератор, то нужно учитывать множество факторов:

  • мощность,
  • время непрерывной работы,
  • вид топлива,
  • производителя и т.д.

Ниже приведена классификация генераторов по различным параметрам.

По типу первичного двигателя промежуточной стадии электрические генераторы бывают:

  • турбогенераторами, приводимыми в движение газотурбинным двигателем;
  • гидрогенераторами, приводимыми в движение гидравлической турбиной;
  • дизель-генераторами, бензо-генераторами, газогенераторами, приводимыми в движение двигателем внутреннего сгорания;
  • ветрогенераторами, приводимыми в движение энергией ветра.

По виду выходного электрического тока бывают электрические генераторы:

  • Постоянного тока. Их принцип действия основан на законе электромагнитной индукции, открытой Майклом Фарадеем в 1831 году, — электродвижущая сила индуцируется в прямоугольном контуре, который находится в однородном вращающемся магнитном поле. Преобразование в постоянный ток осуществляется посредством электромеханического выпрямителя – коллектора.
  • Переменного тока. В основе их действия также лежит закон электромагнитной индукции. Поток электрических зарядов вызван перемещением электрического проводника. Это движение создает разность напряжений между двумя концами провода, что в свою очередь заставляет двигаться электрические заряды, таким образом, генерируя электрический ток.

По мобильности:

  • Портативные (переносные). Такой тип генератора является одним из наиболее эффективных и удобных решений вопроса резервного электроснабжения загородного дома, обеспечения электричеством в туристическом походе, улучшения условий проживания в длительных путешествиях и экспедициях. Если необходим независимый источник питания, и вы не знаете, как выбрать генератор бензиновый, то первое, что нужно учесть, что его мощность колеблется в пределах от 0,5 до 12 кВт и для крупных объектов не подходит. Хотя малый вес и экономичность делает его популярным резервным источником питания. Эти генераторы оснащены двигателями с воздушным охлаждением.
  • Передвижные. Для такого типа генератора не требуется специальное помещение и монтаж. Оборудование имеет постоянную готовность к срочной эксплуатации. Установка на шасси позволяет доставить оборудование (прицепную электростанцию) в труднодоступную точку, где нет электричества.
  • Стационарные генераторы и электростанции. Применяются для бесперебойной подачи электрической энергии значительных мощностей. Не подлежат транспортировке и имеют постоянное место нахождения. Используются на строительных площадках, различных промышленных объектах непрерывного производства, в торговых центрах и проч. Такие генераторы имеют жидкостное охлаждение с использованием антифриза (радиаторное охлаждение).

В свою очередь стационарные генераторы бывают закрытого и открытого типа (закрытый тип имеет шумопоглощающий всепогодный кожух, открытый тип может быть установлен в помещении, где нет ограничений по уровню шума).

По назначению:

  • Бытовые. Из-за способности эффективного обеспечения электрической энергией не более 8 часов в сутки, бытовые генераторы используются как резервный источник при кратковременных отключениях электроэнергии централизованными линиями электропередач на дачах, в загородных домах, на небольших производствах. Зачастую эти устройства бывают бензиновыми, весят от 25 до 200кг, просты в обслуживании, имеют небольшие габариты.
  • Профессиональные. Предназначены для интенсивного использования на крупных объектах (больницах, супермаркетах, стройплощадках, промышленных предприятиях), а также в жестких условиях эксплуатации. Могут работать в качестве как основных, так и резервных источников электроэнергии. Имеют большой моторесурс.

По применению:

  • Резервные. Используются как резервные источники электроэнергии (при аварийном или временном отключении электричества).
  • Основные. Используются там, где вообще отсутствует электроснабжение.

По числу фаз:

  • Однофазные. Подходят для подключения только однофазных потребителей с нагрузкой 220В.
  • Трехфазные. Этот тип генератора может выдавать как 220В, так и 380В. Он используется для подключения трехфазных потребителей, а также может быть подключен к 1-фазным потребителям, но в этом случае необходимо равномерное распределение нагрузки между фазами (разница мощностей на разных фазах не должна отличаться на 20-25%). Трехфазные дизельные генераторы имеют больший КПД по сравнению с однофазными бензиновыми.

По виду пуска или степени автоматизации:

  • Ручной. Запускается пусковой рукояткой.
  • Электростартерный или автоматический. Запускается поворотом ключа или нажатием на кнопку. Также может иметь дистанционный запуск пультом, соединенным с генератором кабелем.

По виду топлива в двигателе внутреннего сгорания:

  • Бензиновые. Работают на высокооктановых сортах бензина. Расход топлива составляет 1-2,5 л в час. Предел непрерывной работы – 12 часов, в связи с чем не используются в качестве полной замены электроснабжению, но купить электростанцию на бензине для аварийного и резервного источника с небольшими мощностями – оптимальный вариант. Бензиновые генераторы просты в эксплуатации, с низким уровнем шума, однако имеют низкий КПД по сравнению с дизельными аналогами.
  • Дизельные. Работают на дизельном дистиллятном и остаточном топливе. Благодаря обеспечению низкой стоимости вырабатываемой электроэнергии имеют быструю окупаемость. Расход топлива составляет 2-3 л в час. Несмотря на большую стоимость по сравнению с бензиновыми установками, этот тип генераторов экономичнее, имеет больший моторесурс, может работать в суровых условиях с сильной запыленностью и при низких температурах. Купить генератор дизельный – значит обеспечить объект оборудованием, рассчитанным на интенсивное использование.
  • Газовые. Работают на пропан-бутановых смесях и природном газе. Требуют врезку к газовой магистрали или периодическую замену баллона. Отличаются стабильной, надежной и экономичной работой, выдают мощности в диапазоне от 1,5 кВт до десятков тысяч, в результате чего используются на объектах с высоким энергопотреблением. Из-за низкого давления на поршень двигателя, установка работает бесшумно и без вибраций, полное сгорание газа обеспечивает чистоту выхлопа. Особенность: запуск двигателя может быть только при плюсовых температурах, поэтому генератор должен устанавливаться в отапливаемых помещениях.

По производителю

Дизельные: Honda, Kubota, Yamaha (Япония), John Deer (США), Hatz (Германия), Perkins (Великобритая) и др. Продукцию Hondа отличает бесшумность работы и долговечность двигателя. Бензиновые: Mecc Alte, Sincro, Soga (Италия), Stamford (Великобритания) и др. Синхронные генераторы Mecc Alte отличаются высочайшим качеством, безопасностью и надежностью.

Наличие собственного, независимого источника электроэнергии – важное дополнение к техническому оборудованию частного домовладения или предприятия. Электрогенератор решает многие проблемы, связанные с электроснабжением. Правильная эксплуатация и должное сервисное обслуживание позволит использовать электростанции многие годы.

Электрический генератор. Основное оборудование электрических станций и подстанций

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История изобретения генератора электрического тока

Русский ученый Э.Х.Ленц еще в 1833г.

указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток.

Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси.

Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами.

Подобная машина была создана англичанином Генри Уальдом в 1863г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты.

Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг.

ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря.

Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км.

Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос.

Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.

Принцип работы любого электрического генератора

Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую.

Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки.

Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения.

Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения.

Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR.

Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать.

Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе.

Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Устройство генератора

Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле.

При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение).

В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.

Составные части генератора:

  • коллектор,
  • щетки,
  • магнитные полюса,
  • витки,
  • вал,
  • якорь.

Принцип действия генератора

Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.

Виды генераторов

  • электрогенераторы,
  • бензогенераторы,
  • дизельгенераторы,
  • инверторные генераторы.

Применение

Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах.

Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования.

Такие электростанции исспользуются организациями, использующими различную электронную технику.



Основные виды генераторов и принципы их работы

Генератор — прибор, который вырабатывает электроэнергию за счет преобразования ее из механической энергии ДВС, ротора или турбины. Эти устройства бывают двух видов — генератор переменного тока и постоянного.

Генератор переменного тока использует в работе магнитное поле вращения (электромагнитную индукцию).

То есть, он оснащен ротором, за счет вращательных движений которого в магнитном поле происходит выработка электроэнергии.

Такой генератор имеет некоторое преимущество, и заключается оно в том, что движущий элемент устройства (ротор) совершает вращающиеся движения намного быстрее, чем в генераторе постоянного тока.

Генератор переменного тока может быть синхронным и асинхронным. На сегодняшний день практически везде используются синхронные устройства. Наиболее популярными являются трехфазные, так как они имеют более высокие качественные и эксплуатационные характеристики, нежели однофазные. 

Более мощные генераторы используются, как правило, на электрических станциях, а те, которые не отличаются особой силой, прекрасно служат для автономного электроснабжения, устанавливаются в преобразователях частоты (дизель-генератор), автомобилях или на морском транспорте.

Дизель-генератор — устройство, состоящее из генератора электрического тока и электродвигателя, которые соединяются друг с другом. Оно служит для преобразования одного вида тока в другой (как правило, переменного в постоянный). И, кроме того, используется для преобразования частоты тока и числа фаз.

Дизель-генератор устанавливали, например, на металлургических производствах, для питания электролитических ванн и проч. Но с 60-х годов прошлого века эти устройства практически везде заменены на более совершенные и экономичные статические полупроводниковые преобразователи.

Устройство, преобразовывающее механическую энергию в постоянный ток за счет, опять же, вращения двигателя или ротора — это генератор постоянного тока. Но он сложнее, его вес и стоимость намного больше, чем генератора переменного тока.

Применяется генератор постоянного тока, в основном, в тех отраслях, в которых предпочтительным или необходимым является именно переменный ток. Например, это — предприятия металлургии и электролизной промышленности.

Часто генератор постоянного тока используется на электростанциях в качестве возбудителя цепи синхронных генераторов или основного источника энергии, а также находит применение на транспорте и морских судах.

Генератор. Его специфика и принцип работы

Генератор – это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в исходную электрическую энергию.

Необходимо знать, что генератор вовсе не “производит” электрическую энергию. На самом деле прибор применяет механическую энергию, которая подается к нему, чтобы направить электрические заряды, движущиеся в проводе, через внешнюю электрическую цепь.

Эта совокупность электрических зарядов составляет выходной электрический ток, подаваемый генератором.

Рабочий механизм такого устройства понятен, если учитывать то, что генератор является аналогом водяного насоса, что способствует потоку воды, однако не «производит» воду, которая движется сквозь него.

Нововведенные генераторы выполняют свою работу исходя из принципа электромагнитной индукции, впервые исследованной Майклом Фарадеем.

Изобретатель сделал открытие, согласно которому заряженный электрический поток может быть спровоцирован переносом непосредственного руководителя электроэнергии, такого как проволока с электрическим зарядом, к центру магнитного поля.

Это перемещение генерирует различное напряжение между двумя концами проволоки или электропроводника, что провоцирует электрические заряды, которые в дальнейшем будут производить электрический ток.

Основные составляющие генератора:

  1. Двигатель
  2. Генератор переменного тока
  3. Топливная система
  4. Регулятор напряжения
  5. Системы охлаждения и выхлопа
  6. Смазочная система
  7. Зарядное устройство
  8. Панель управления
  9. Каркас

1. Двигатель является основой механической энергии, поставляемой к генератору. Размер двигателя прямо пропорционален максимальному объёму выходной энергии, которую способен обеспечить генератор.

К тому же, топливо, используемое в двигателях, зависит от габаритов самого устройства.

Двигатели малой емкости функционируют на дизельном топливе, а большие двигатели – на природном газе, бензине, а также на пропане в сжиженной или газообразной форме.

Кроме того, внутри цилиндра двигателя есть специальный чехловой рукав в качестве своеобразной обшивки, что, в свою очередь, предотвращает износ внутренней конструкции.

Ученые создали еще один вид двигателя с расположением клапанов сверху. Такая конструкция не похожа на другие виды двигателей, поскольку впускные и выпускные клапаны расположены в передней части цилиндра.

Такие двигатели удобны в использовании благодаря компактному дизайну, легкому принципу работы, массивности каркаса, низких уровнях шума и загрязнения окружающей среды в процессе работы.

Однако, стоимость двигателей такого качества значительно выше других.

2. Генератор переменного тока – это один из элементов генератора, который преобразует механическую входную энергию двигателя в электрическую выходную.

В нем содержатся стойкие и движущиеся детали, что в дальнейшей работе вызывает движение между магнитным и электрическим полями, которые создают электрическую энергию, а его металлический корпус обеспечивает долговечность устройства.

Примером неподвижной детали есть статор. В нем содержится скопление проводников электроэнергии, намотанных на катушки. Ротор – движущийся компонент, который вращается внутри магнитного поля благодаря индукции магнитов источника постоянного тока.

3. Топливная система. Стандартный топливный бак с достаточной емкостью и мощностью может обеспечить работу генератора на протяжении 6-8 часов. Трубы топливного бака и двигателя соединены между собой.

По ним топливо поступает из бака к двигателю (линия подачи), а затем из двигателя в резервуар (линия отдачи). Вентиляционная труба предотвращает накопление давления или вакуума установки.

Переливная труба в качестве посредника между топливным баком и дренажной трубой не позволяет переполнять бак при заправке и предупреждает попадание жидкости на генератор. Электрический топливный насос поставляет топливо из резервуара к дневному баку.

Фильтр очищает топливо от воды и примесей во избежание коррозии и загрязнения. Распылитель топлива распределяет необходимый объём топлива в камеру сгорания двигателя.

4. Регулятор напряжения настраивает выходное напряжение генератора и превращает его переменный ток в постоянный.

Затем регулятор напряжения направляет этот постоянный ток на подборку вторичных обмоток в статоре, которые в свою очередь провоцируют поток переменного тока.

В данных обмотках содержатся выпрямители тока, которые отвечают за конвертирование тока в постоянный. Этот поток постоянного тока подается к ротору (установке) для создания переменного тока соответственно.

Этот цикл длится до момента производства генератором выходного напряжения, равного его полной рабочей способности. В условиях большей емкости генератора, регулятор напряжения генерирует меньший поток переменного тока. Когда генератор работает на полную мощность, этот регулятор вызывает достаточный поток постоянного тока для поддержания генератора при полном ходе работы.

5. Система охлаждения. При непрерывном процессе работы генератора (обязательно в хорошо проветриваемом помещении), его составляющие в определенной степени нагреваются.

Для этого и необходима система охлаждения и вентиляции, чтобы удалить тепло, которое накопилось во время рабочего цикла.

Для охлаждения обычно применяют пресную воду или водород, которые изымают тепло из генератора и транспортируют его по теплообменнику ко вторичной обмотке, в ней содержится химическая формула Н2О с минералами в качестве охладителя.

Система выхлопа. Выхлопные газы, выделяемые генератором, подобные тем, что возникают в дизельных или газовых двигателях и содержат ядовитые токсичные вещества.

Поэтому, необходимо обеспечить дизельный генератор выхлопной системой высокого качества для утилизации опасных газов во избежание смерти на предприятиях в результате удушения чадным газом.

Составляющие элементы стандартных выхлопных труб – это чугун, кованое железо или сталь для большей безопасности.

6. Смазочная система. Так как внутри генератора имеются движущиеся детали, для этого них необходима регулярная смазка специальными маслами для долговечности и плавного скольжения по внутренней конструкции генератора.

7. Зарядное устройство. Запуск генератора осуществляется при помощи батареек, а его зарядка – при помощи автоматического аккумулятора. Если напряжение при зарядке выше нормы, это сокращает продолжительность работы аккумулятора. Нержавеющая сталь, из которой изготавливаются такие зарядные устройства, останавливает процесс коррозии.

8.

На панели управления отображаются различные приложения, датчики параметров двигателя, которые включают в себя давление масла, температуру теплоносителя, напряжение аккумулятора, скорость вращения двигателя и срок службы, датчики генератора, а именно счетчики для измерения выходного тока и напряжения, рабочей частоты, а также автоматический включение и отключение. Другие элементы управления представляют собой переключатель фазового селектора, частотный выключатель и переключатель управления двигателем на ручной или автоматический режим.

9. Каркас. Дизельные генераторы покрыты заземленным прочным корпусом для обеспечения крепления всех частей.

Преимущества дизельных генераторов

Дизельные генераторы устанавливают непрерывный равномерный поток напряжения на других устройствах, позволяют регулировать колебания.

Они изготавливаются для стабильного использования и имеют меньшее количество подвижных частей в отличие от других типов генераторов. А значит, для них не обязательное постоянное техническое обслуживание и ремонт.

Дизельные генераторы экономнее бензиновых. Это обеспечивает более длинную продолжительность рабочего цикла при одинаковой мощности.

Дизельное топливо дешевле, чем бензин, потому дизельные генераторы дешевле в использовании. Частично это связано с тем, что дизельные двигатели не содержат в себе свечи зажигания или карбюраторы. Главным постоянным требованием к обслуживанию дизельного двигателя является регулярная смена масла.

Также одним из преимуществ таких видов генератора является его долговечность. В отличие от бензинового генератора, дизельный работает на 3 года дольше. Кроме того, дизельное топливо менее легковоспламеняющееся по сравнению с бензином.

Во избежание потенциальных убытков

Одной из самых распространенных причин повреждения дизельных генераторов является их недостаточная загруженность. То есть, дизельные генераторы работают более продуктивно именно при полной мощности. Во время выполнения задач на низкой мощности они способны выделять углекислый газ.

В результате сажа и остатки от неиспользованного топлива могут скапливаться, что негативно влияет на поршневые кольца генератора. Во избежание этого, необходимо использовать генератор примерно на 70% от максимальной нагрузки.

Хотя эти генераторы составляют высокую стоимость, однако они являются надежным источником электроэнергии, что значительно улучшит работу на предприятии.

Использование дизельных генераторов в промышленности:

  1. для энергообеспечения населенных пунктов, заводов, аэродромов и аэропортов;
  2. для обеспечения электроснабжением водного, железнодорожного видов транспорта и с/х техники;
  3. в качестве вспомогательного источника энергии для карьерных самосвалов.

Электрический генератор. Основное оборудование электрических станций и подстанций.

Основное оборудование электрических станций и подстанций

Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

История изобретения генератора электрического тока

Русский ученый Э.Х.Ленц еще в 1833г. указал на обратимость электрических машин: одна и та же машина может работать как электродвигатель, если ее питать током, и может служить генератором электрического тока, если ее ротор привести во вращение каким-либо двигателем, например паровой машиной. В 1838г. Ленц, один из членов комиссии по испытанию действия электрического мотора Якоби, на опыте доказал обратимость электрической машины.

Первый генератор электрического тока, основанный на явлении электромагнитной индукции, был построен в 1832г. парижскими техниками братьями Пиксин. Этим генератором трудно было пользоваться, так как приходилось вращать тяжелый постоянный магнит, чтобы в двух проволочных катушках, укрепленных неподвижно вблизи его полюсов, возникал переменный электрический ток. Генератор был снабжен устройством для выпрямления тока. Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Одной из таких машин, построенной в 1843г., был генератор Эмиля Штерера. У этой машины было три сильных подвижных магнита и шесть катушек, вращавшихся от рук вокруг вертикальной оси. Таким образом, на первом этапе развития электромагнитных генераторов тока (до 1851г.) для получения магнитного поля применяли постоянные магниты. На втором этапе (1851-1867гг.) создавались генераторы, у которых для увеличения мощности постоянные магниты были заменены электромагнитами. Их обмотка питалась током от самостоятельного небольшого генератора тока с постоянными магнитами. Подобная машина была создана англичанином Генри Уальдом в 1863г.

При эксплуатации этой машины выяснилось, что генераторы, снабжая электроэнергией потребителя, могут одновременно питать током и собственные магниты. Оказалось, что сердечники электромагнитов сохраняют остаточный магнетизм после выключения тока. Благодаря этому генератор с самовозбуждением дает ток и тогда, когда его запускают из состояния покоя. В 1866-1867гг. ряд изобретателей получили патенты на машины с самовозбуждением.

В 1870г. бельгиец Зеноб Грамм, работавший во Франции, создал генератор, получивший широкое применение в промышленности. В своей динамо-машине он использовал принцип самовозбуждения и усовершенствовал кольцевой якорь, изобретенный еще в 1860 г.А.Пачинотти.

В одной из первых машин Грамма кольцевой якорь, укрепленный на горизонтальном валу, вращался между полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводной шкив, обмотки электромагнитов были включены последовательно с обмоткой якоря. Генератор Грамма давал постоянный ток, который отводится с помощью металлических щеток, скользивших по поверхности коллектора. На Венской международной выставке в 1873г. демонстрировались две одинаковые машины Грамма, соединенные проводами длиной 1 км. Одна из машин приводилась в движение от двигателя внутреннего сгорания и служила генератором электрической энергии. Вторая машина получала электрическую энергию по проводам от первой и, работая как двигатель, приводила в движение насос. Это была эффектная демонстрация обратимости электрических машин, открытой Ленцем, и демонстрация принципа передачи энергии на расстояние.

До того, как была открыта связь между электричеством и магнетизмом, использовались электростатические генераторы, которые работали на основе принципов электростатики. Они могли вырабатывать высокое напряжение, но имели маленький ток. Их работа была основана на использовании наэлектризованных ремней, пластин и дисков для переноса электрических зарядов с одного электрода на другой.

Заряды вырабатывались, используя один из двух механизмов:

  • Электростатическую индукцию
  • Трибоэлектрический эффект, при котором электрический заряд возникал из-за механического контакта двух диэлектриков

По причине низкой эффективности и сложностей с изоляцией машин, вырабатывающих высокие напряжения, электростатические генераторы имели низкую мощность и никогда не использовались для выработки электроэнергии в значимых для промышленности масштабах. Примерами доживших до наших дней машин подобного рода являются электрофорная машина и генератор Ван де Граафа.




Принцип работы любого электрического генератора

Принцип работы любого электрического генератора основан на явлении электромагнитной индукции. Электромагнитная индукция преобразовывает механическую энергию двигателя (вращение0 в энергию электрическую. Принцип магнитной индукции: если в однородном магнитном поле В равномерно вращается рамка, то в ней возникает, переменная Э.Д.С., частота которой равна частоте вращения рамки. Будем ли мы вращать рамку в магнитном поле, или магнитное поле вокруг рамки, либо магнитное поле внутри рамки, результат будет один — Э.Д.С., изменяющаяся по гармоническому закону.

Вот теперь и поговорим о асинхронном и синхронном генераторе более подробно.

Синхронный электрогенератор

Синхронный электрогенератор — это синхронная машина, работающая в режиме генератора в которой частота вращения магнитного поля статора равна частоте вращения ротора. Ротор с магнитными полюсами создает вращающееся магнитное поле, которое пересекая обмотку статора, наводит в ней ЭДС. В синхронном генераторе ротор выполнен виде постоянного магнита или электромагнита.

Число полюсов ротора может быть два, четыре и т.д., но кратно двум. В бытовых электростанциях используется, как правило, ротор с двумя полюсами, чем и обусловлена частота вращения двигателя электростанции 3000 об/мин. Ротор, при запуске электростанции, создает слабое магнитное поле, но с увеличением оборотов, увеличивается и ЭДС в обмотке возбуждения. Напряжение с этой обмотки через блок автоматической регулировки (AVR) поступает на ротор, контролируя выходное напряжение за счет изменения магнитного поля. Например, подключенная индуктивная нагрузка размагничивает генератор и снижает напряжение, а при подключении емкостной нагрузки происходит подмагничивание генератора и повышение напряжения. Это называется «реакцией якоря».

Для обеспечения стабильности выходного напряжения необходимо изменять магнитное поле ротора путем регулирования тока в его обмотке, что и обеспечивается блоком AVR. Преимуществом таких генераторов является высокая стабильность выходного напряжения, а недостатком — возможность перегрузки по току, так как при завышенной нагрузке, регулятор может чрезмерно повысить ток в обмотке ротора. Еще к недостаткам синхронного генератора можно отнести наличие щеточного узла, который рано или поздно придется обслуживать. Благодаря такому способу регулировки, вне зависимости от изменения тока нагрузки и оборотов двигателя электростанции стабильность выходного напряжения генератора остается очень высокой, примерно ±1%.

Асинхронный электрогенератор

Асинхронный электрогенератор — асинхронная машина (двигатель) работающая в режиме торможения, ротор которой вращается с опережением, но в том же направлении что и магнитное поле статора. В зависимости от типа обмотки, ротор может быть короткозамкнутым либо фазным.

Вращающееся магнитное поле, созданное вспомогательной обмоткой статора, индуцирует на роторе магнитное поле, которое вращаясь вместе с ротором, наводит ЭДС в рабочей обмотке статора, так же как и в синхронном генераторе. Вращающееся магнитное поле остается всегда неизменным и не регулируемо, вследствие чего напряжение и частота на выходе генератора зависит от частоты оборотов ротора, а следовательно от стабильности работы двигателя электростанции.

Несмотря на простоту обслуживания, малую чувствительность к короткому замыканию и невысокую стоимость, асинхронные генераторы применяются достаточно редко, так как имеются ряд недостатков: асинхронный генератор всегда потребляет намагничивающий ток значительной силы, поэтому для его работы необходим источник реактивной мощности (конденсаторы), зависящий от активно-индуктивного характера нагрузки; ненадежность работы в экстремальных условиях; возбуждение асинхронного генератора зависит от случайных факторов и происходит, как правило, при скорости превышающей или равной синхронной; зависимость выходного напряжения и частоты тока от устойчивости работы двигателя и т.д.

Устройство генератора

Основными частями любого генератора являются: система магнитов (или, чаще всего, электромагнитов), создающих магнитное поле, и система проводников, пересекающих это магнитное поле. При пропускании магнитного поля через катушку магнитный поток принудит свободные электроны сместиться на концы проводника. Подобное смещение отрицательно заряженных частиц становится источником возникновения электродвижущей силы — ЭДС (напряжение). В результате у генератора при вращении его оси идёт постоянное воздействие магнитного потока на обмотки, на которых и возникает ЭДС.

Составные части генератора:

  • коллектор,
  • щетки,
  • магнитные полюса,
  • витки,
  • вал,
  • якорь.

Принцип действия генератора

Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник можно использовать как источник электрической энергии.

Виды генераторов

  • электрогенераторы,
  • бензогенераторы,
  • дизельгенераторы,
  • инверторные генераторы.

Применение

Генераторы используются во многих сферах жизнедеятельности и производства, при различных условиях. Бензогенераторы незаменимы в случае отключения электричества в небольших загородных домах и дачах. Кроме того, их удобно применять в тех местах, где нет электроэнергии (отдаленные районы, горы, леса). Дизельные генераторы применяется в качестве основного или резервного источника электропитания. Инверторные генераторы незаменимы как источник дополнительного питания для электронного оборудования. Такие электростанции исспользуются организациями, использующими различную электронную технику.



Виды генераторов и особенности их выбора


Нас часто спрашивают, «как выбрать генератор?», «какие виды генераторов бывают?», «чем отличаются разные типы генераторов?». В этой статье мы подробно рассмотрим различные виды генераторов, их отличия и последовательность правильного выбора. Как ясно из названия генератор (электрогенератор) — это электрическая машина, использующаяся для получения электрической энергии за счет преобразования в неё химической энергии топлива или механической энергии вращения (химическая энергия топлива — в механическую энергию вращения, а та — в электрическую). Однако сегодня под генератором чаше всего подразумевают полноценный бензогенератор или дизельгенератор. О них и пойдёт речь.

Виды генераторов по их назначению и использованию


Когда человек выбирает транспортное средство для личного передвижения, он сначала выбирает не вид топлива (дизель или бензин), а выбирает тип транспорта (автомобиль или мотоцикл). Такая же ситуация и с генераторами — прежде всего они отличаются не по топливу, а по назначению, по типу охлаждения.

Бытовые (портативные) генераторы:

Небольшие, лёгкие, недорогие генераторы с воздушным охлаждением (как мотоцикл). Для коротких запусков, для кратковременной работы. В свою очередь, бытовые портативные генераторы могут отличаться между собой:

Профессиональные (стационарные) генераторы:

Тяжелые, надежные и долговечные. Рассчитаны на долговременную работу, большие интервалы между техническими обслуживаниями и низкий расход топлива (как промышленный автомобиль или грузовик).


Обратите внимание, если портативные (бытовые) генераторы бывают на любом виде топлива, но небольшой мощности, то стационарные в основном дизельные. Таким образом, если вам нужен генератор мощностью 30 кВт, то он однозначно будет дизельным, а если вам нужен бензиновый, то он будет точно портативным. Отдельно можно упомянуть маломощные инверторные генераторы, которые бывают только бензиновыми и, естественно, портативными.

Виды генераторов и их отличия по типу топлива

Если взять два одинаковых генератора, дизельный и бензиновый (естественно, оба они будут портативными, так как стационарных бензиновых генераторов не существует), то их отличия за счет разного типа топлива будут следующими:

  • По габаритам: дизельный генератор будет более массивным, более тяжелым.
  • По расходу топлива: бензиновый генератор более прожорлив.
  • По запуску в холодное время: бензиновый генератор запускается лучше.
  • По долговечности: дизельный в два-три раза более долговечен.
  • По стоимости: Цена бензинового в два раза ниже.


Практика показывает, что в генераторах малой мощности, до 3-4 кВт наиболее часто используются бензиновые двигатели, а с ростом мощности всё более популярными становятся дизельные.

Виды генераторов по напряжению

  • Однофазные генераторы, вырабатывающие 220В или 230В (европейский стандарт) могут работать только с однофазными приборами. Однофазные генераторы чаще всего портативные и бензиновые, небольшой мощности. Максимальная мощность однофазных генераторов — 10 кВт.
  • Трехфазные генераторы, вырабатывающие 380В или 400В (европейский стандарт) могут работать с трехфазными потребителями и, частично, пофазно, питать однофазных потребителей. Трехфазные генераторы чаще всего дизельные.
  • Высоковольтные генераторы — большие мощные дизельные электростанции, мощностью, чаще всего от 1000 кВт, для специфических промышленных решений.

Генераторы по типу запуска

  • Ручной запуск — запуск стартерным шнуром, как у бензопилы. Дергаем шнур — заводится генератор. Для запуска генераторов мощностью 6 кВт и более, оснащенных только ручным запуском нужно иметь хорошую физическую форму. 
  • Электростартер — запуск кнопкой, ключом, или удаленным сигналом.
  • Автозапуск — расширение электростартерной версии, запуск автоматический по сигналу от АВРа, при пропадании сети.


Итак, в зависимости от задачи и потребности удалось определить, какой нужен генератор: маленький портативный бензиновый, средний портативный дизельный или большой стационарный, естественно, дизельный. После этого (в зависимости от задач) был определен тип запуска и напряжение. Последнее что стоит сделать, это определить исполнение (открытые, в кожухе или в контейнере) и марку (производителя). Сделанный таким образом выбор наверняка будет успешным.

Генератор для дома и дачи

Почти каждый владелец загородного дома или дачи сталкивается с перебоями в работе централизованных электросетей, недостаточной мощностью подключения, а то и вовсе невозможностью подключения к централизованной электросети. Как же в таких условиях поступить современному сельскому жителю, который благами технического прогресса избалован не меньше горожанина? Как избежать владельцу дачи замораживания системы водоснабжения и отопления в суровую и морозную зиму, когда количество аварийных ситуаций резко возрастает? Ответ один: владельцу загородного дома или дачи необходим топливный электрогенератор, автономная мини-электростанция.

Электрогенератор – это устройство, преобразующее механическую энергию в электрическую при вращении его подвижной части (ротора) относительно неподвижной части (статора). Наибольшее распространение получили однофазные и трёхфазные генераторы переменного тока. Топливный генератор – это агрегат, состоящий из конструктивно объединённых двигателя внутреннего сгорания и генератора переменного тока. Таким образом, автономная топливная мини-электростанция позволяет обеспечить аварийное, резервное, либо полностью автономное электропитание загородного дома или дачи при сжигании топлива. Существуют бензиновые, дизельные, газовые и мультитопливные (бензин/газ) мини-электростанции.

Чтобы понять, какой именно генератор вам нужен, прежде всего, необходимо определить, каким будет режим его эксплуатации.

  • Аварийный режим для дома или дачи предполагает автоматический или полуавтоматический запуск генератора при пропадании напряжения в основной электросети и запитывание только самых необходимых, приоритетных устройств. Обычно в качестве таких устройств выступает аварийное освещение, охранная система, интернет-роутер. Рабочий ресурс установки в этом режиме не важен, поскольку предполагаются нечастые и непродолжительные запуски. Наиболее подходящими для данного режима работы являются бензогенераторы мощностью 0,5–2 кВт.
  • Резервный режим предполагает более частое использование электростанции по сравнению с аварийным режимом, а также подключение большего количества приборов-потребителей. Типичными потребителями электроэнергии дачной резервной системы являются освещение, холодильник, телевизор и электронные устройства, бытовые приборы, маломощный инструмент, а также система отопления для поддержания минимально допустимой температуры в помещениях дачи в зимний период. Мощности соответствующих мини-электростанций обычно лежат в пределах от 2 до 15 кВт.
  • Полностью автономный режим используется при невозможности, либо при длительном отсутствии подключения к внешней электросети. Необходимая мощность соответствует требуемой владельцем дома полноценной нагрузке на электросеть. Рабочий ресурс энергоустановки становится приоритетным параметром при выборе конкретного устройства. Ещё один важный параметр в этом режиме – предельно допустимое время непрерывной работы установки, которое может существенно отражаться на её стоимости. Домовые хозяйства с высоким уровнем требований к автономному питанию требуют индивидуальных технических решений, которые могут включать в себя использование альтернативных энергоустановок или системы автозапуска, позволяющей сделать необходимый технический перерыв с работой системы питания от аккумулятора и последующим повторным запуском двигателя.

Каким образом вычисляется необходимая мощность генератора для дома или дачи?

Она соответствует сумме мощностей всех подключаемых приборов со следующими поправками.

  • Для каждого генератора устанавливается предел нагрузок, меньший его предельной мощности. Суммарная мощность подключаемых нагрузок не должна превышать данный предел.
  • Каждый тип электроприборов имеет свой пусковой ток. В случае индуктивных приборов (попросту, в которых присутствует электродвигатель) этот ток, хотя и на короткое время, в разы превышает ток номинальный. Запас мощности генератора выбирается с учётом этого параметра подключаемых приборов и может достигать 25%.
  • Мощность может измеряться в ваттах (Вт) и вольт-амперах (ВА). Для перевода кВА в кВт необходимо значение в вольт-амперах умножить на коэффициент мощности (cos ȹ). Коэффициент мощности равен единице для активных нагрузок (осветительные и обогревательные приборы, электроника) и меньше единицы для реактивных нагрузок (емкостные и индуктивные нагрузки).
  • К однофазной электростанции можно подключать только однофазных потребителей, а к трёхфазной – как трёхфазных, так и однофазных. При этом для большинства генераторов максимально допустимая нагрузка на каждой фазе не должна превышать 30%. Т.е. если, например, у трехфазного генератора номинальная мощность 6 кВт, то с одной розетки в 220 В можно снять не более 2 кВт. Если все потребители электропитания однофазные, нет смысла выбирать трёхфазный генератор.

Основные типы генераторов

Широкое распространение получили асинхронные, синхронные и инверторные генераторы – они различаются как конструктивно, так и по своим возможностям.

Наиболее простую и надёжную конструкцию имеют асинхронные генераторы. Ротор такого генератора не имеет обмоток и, следовательно, не нагревается, поэтому в корпусе генератора не требуются теплоотводящие отверстия. Полностью закрытый в своей оболочке генератор защищен от пыли и влаги и поэтому демонстрирует высокую устойчивость к воздействиям внешней среды. Эти генераторы не боятся коротких замыканий, однако качество вырабатываемого ими тока невысокое, а допустимые пиковые нагрузки малы. Если асинхронный генератор оснащается устройством стартового усиления и электронным стабилизатором напряжения, ограничения по характеру приборов-потребителей для него практически отсутствуют, но стоимость агрегата повышается.

Синхронные генераторы легче переносят пусковые перегрузки и вырабатывают ток с меньшим количеством электрических помех. Именно синхронный генератор способен кратковременно выдавать ток в 3-4 раза выше номинального. Поэтому синхронные генераторы оптимальны для подключения оборудования с высокими стартовыми токами (электродвигатели, насосы, компрессоры и т.д.). Основным достоинством синхронного генератора является высокая стабильность выходного напряжения. Однако такой генератор чувствителен к перегрузке и может потребовать технического обслуживания. Практически все современные генераторы выпускаются с защитой от перегрузок, но она не может предотвратить остановки подачи электроэнергии при перегрузке.

Наиболее сложную конструкцию имеет инверторный генератор, который предназначен для получения свободного от помех переменного тока с правильной синусоидальной характеристикой, пригодного для питания высокоточного электронного оборудования без применения дополнительных фильтров и стабилизаторов напряжения. Высокие характеристики тока, вырабатываемого таким генератором, обеспечиваются применением в его конструкции управляемого полупроводникового инвертора. Предельное значение мощности вырабатываемого тока составляет для него 7 кВА. Современные инверторные генераторы выпускаются с высоким уровнем защиты от перегрузок и воздействий внешней среды.

Какой двигатель выбрать?

В топливных генераторах используются одноцилиндровые и двухцилиндровые бензиновые двигатели. Для генераторов мощностью от 7 кВт рекомендуется выбирать двухцилиндровый двигатель. Наличие специального газового карбюратора превращает бензогенератор в газовый или мультитопливный, т.е. сам двигатель в газовых установках может ничем не отличаться от бензинового. Использование электростартера и электронного зажигания позволяет легко запускать такие двигатели в т.ч. при отрицательных температурах до минус двадцати градусов Цельсия. Относительно низкий уровень шума бензиновых/газовых двигателей, обычно не превышающий 50 дБ, позволяет размещать их без использования специальной звукоизоляции даже внутри дома. Ещё одним их преимуществом является относительно низкая цена.

Недостатком бензиновых двигателей является меньший, чем у дизельных двигателей, рабочий ресурс и менее экономичный расход топлива, который, однако, можно компенсировать использованием газа. Используя бензин в системах аварийного электропитания, особенно в аварийных системах для дачи, когда запуски достаточно редки, следует помнить о том, что длительное хранение бензина (более шести месяцев) ухудшает его свойства, что может привести к потере мощности и даже поломке агрегата. Другие виды топлива более устойчивы к длительному хранению.

Дизельные двигатели имеют больший рабочий ресурс и более экономичный расход топлива, что обуславливает их частое применение в системах, требующих длительной автономной работы. Однако они заметно дороже бензиновых. Кроме того, они имеют более высокий уровень шума, который может достигать 100 дБ, что обычно предполагает их размещение в подвале с газоотводом, либо снаружи дома при использовании звукоизоляции. Существенной особенностью, ограничивающей применение дизельных двигателей в автоматических аварийных системах для дачи, является невозможность их запуска при температурах ниже минус пяти градусов Цельсия.

Считается, что если за 100% принять стоимость ГСМ, затрачиваемых для производства одного киловатт часа электроэнергии при использовании бензина, тогда стоимость ГСМ при использовании дизельного топлива составит 75%, а при использовании газа – порядка 60%.

Рекомендации по выбору топливного генератора для дома и дачи

  • Ограничение работы мини-электростанции аварийным режимом для дачи является практически безальтернативным показанием к применению бензогенератора.  В случае использования данного режима для питания охранной системы со сложными электронными компонентами необходимо использование инверторного бензогенератора.
  • К достоинствам мини-электростанций с двигателем бензинового типа следует отнести малый уровень шума, что позволяет размещать их даже внутри дома без специальной звукоизоляции.
  • В резервном режиме может применяться топливный генератор любого типа в зависимости от конкретных потребностей домовладельца. Главными ограничениями для применения дизельного генератора являются высокая стоимость агрегата, высокий уровень шума и затруднённость запуска при низких температурах.
  • В полностью автономном режиме электропитания загородного дома высокий рабочий ресурс энергоустановки становится одним из приоритетных требований, что говорит в пользу выбора дизельного двигателя. Однако, требование экономии может определить выбор газового генератора.
  • Сочетание достаточно высокой мощности электросети с требованием минимизации электрических помех и устойчивости сети к возможным перегрузкам (при использовании мощного электроинструмента, насосов системы водоснабжения и отопления и т.п.) делает наиболее целесообразным использование синхронного генератора.
  • Размещение электроустановки на открытом воздухе, возможность короткого замыкания, использование сварочного аппарата говорит в пользу выбора асинхронного генератора.
  • Если все приборы-потребители электропитания однофазные, нет смысла выбирать трёхфазный генератор.

 













Лучшие генераторы для дома и дачи:
ФотоМодельМощность, кВтНапряжение, ВТип электростанцииЗапуск

Fubag TI 30032,8220

Бензиновая


Инверторная

Ручной


Электрический


Fubag BS 22002220БензиноваяРучной

Fubag BS 6600 ES/A + АВР6220Бензиновая

Электрический


Автоматический


ТСС SGG 7500 E6.2220Бензиновая

Ручной


Электрический


ТСС SGG 10000EH10220Бензиновая

Ручной


Электрический


ТСС SDG 10000ES10220ДизельнаяЭлектрический

ТСС АД-10С-230-2РКМ10 в кожухе10220ДизельнаяАвтоматический

Yamaha EF6600E5220БензиноваяЭлектрический

Honda EU20i1.6220

Бензиновая


Инверторная

Ручной

Gazvolt Standard 5000E4.6/4.2220Газовая

Электрический


Автоматический


ФАС-10-1/ВП9,5220ГазоваяЭлектростарт

Электрический генератор, как он работает

Электрический генератор — устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию.

Функция любого электрического генератора — вырабатывать электрический ток. Но на самом деле генератор ничего не производит, а лишь преобразует один вид энергии — в другой (как это и свойственно всем энергетическим процессам в природе). Чаще всего, произнося словосочетание «электрический генератор», имеют ввиду машину, преобразующую механическую энергию — в электрическую.

Механическая энергия может быть получена от расширяющегося под давлением газа или пара, от падающей воды или даже вручную. В любом случае для получения от генератора электрической энергии, ему необходимо сначала передать эту энергию в приемлемой форме, чаще всего в механической.

Генераторы, работающие посредством механического привода, — доминирующий вид генераторов в современном мире. Такие генераторы работают на атомных и гидроэлектростанциях, в автомобилях, в дизельных и бензиновых генераторах, на ветряках, в ручных динамо-машинах и т. д. Пар, бензин, ветер — служат источниками механической энергии, вращающей ротор генератора.

Пример работы простого электрогенератора:

На роторе генератора закреплена обмотка намагничивания или постоянные магниты. В последние годы широкое распространение получают генераторы с неодимовыми магнитами на роторе, так как современные неодимовые магниты не уступают по своим характеристикам мощной обмотке намагничивания.

Принцип выработки электрической энергии в генераторе основан на явлении электромагнитной индукции, которое заключается в том, что изменяющийся в пространстве магнитный поток индуцирует вокруг этого пространства электрическое поле.

И если в область где присутствует это индуцированное электрическое поле поместить проводник, то в нем наведется (будет индуцирована) ЭДС — электродвижущая сила, и между концами проводника можно будет наблюдать (измерить, использовать для питания нагрузки) соответствующее напряжение.

Изменяющийся магнитный поток получается в генераторе при помощи движущихся вместе с ротором магнитов или полюсных наконечников, намагничиваемых специальными обмотками — обмотками намагничивания. Обмотки намагничивания обычно получают питание через щетки и контактные кольца.

Применение генератора для электрификации модели железной дороги:

Провода, в которых наводится ЭДС (электрическое напряжение) в генераторе, представляют собой обмотку статора, расположенную, как правило, в магнитопроводе, закрепленном на неподвижной части электрической машины. Эта обмотка у генераторов разного типа может быть выполнена различным образом.

В трехфазных генераторах переменного тока приняты обмотки статора, изготовленные по трехфазной схеме, — три части такой трехфазной обмотки могут быть соединены «звездой» или «треугольником».

Соединение звездой позволяет получить от генератора напряжение большей величины, чем при соединении треугольником. Разница в напряжениях составит корень из 3 раз (около 1,73). Чем больше напряжение — тем меньше максимальный ток, который можно получить от данного генератора на нагрузке.

Работа электрического генератора на электростанции:

Номинальная мощность генератора зависит от нескольких факторов, которые определяют его номинальные ток и напряжение. Напряжение на выходных клеммах генератора зависит от длины обмотки (провода) статора, от скорости вращения ротора и от индукции магнитного поля на его полюсах. Чем эти параметры больше — тем большее напряжение получается с генератора на холостом ходу и под нагрузкой.

Портативный генератор (мини-электростанция) для автономного электроснабжения:

Максимальный ток, который можно получить от генератора, теоретически ограничен его током короткого замыкания. Практически при номинальных оборотах он зависит от толщины провода обмотки статора и от общего магнитного потока ротора.

Если магнитного потока не достаточно, в некоторых случаях прибегают к увеличению оборотов. Но тогда генератор обязательно должен быть оснащен автоматическим регулятором напряжения, как это реализовано в автомобильных генераторах, которые способны выдавать приемлемый для зарядки аккумулятора ток в широком диапазоне оборотов.

Ранее ЭлектроВести писали, что создан генератор энергии, работающий на смене пресной и морской воды.

По материалам: electrik.info.

Различные типы генераторов электрического тока

Генераторы электрического тока — это устройства, предназначенные для обеспечения длительного длительного перепада мощности. Он должен задаться вопросом, почему необходимо гарантировать существование этой разницы. Для работы оборудования, которое питается от электрического тока, необходимо, чтобы электрический ток также выполнял свою функцию.

Что происходит, так это то, что электрический ток возникает только с момента возникновения электрического напряжения или разности потенциалов.Однако это электрическое напряжение имеет тенденцию быстро исчезать, поскольку «тела» входят в состояние равновесия, и поскольку электрические генераторы предназначены для продления электрического напряжения в течение более длительного периода, электрический ток может существовать и оставаться стабильным для поддержания оборудование в исправном состоянии.

Генераторы электрического тока имеют два различных полюса:
  • Положительный полюс, характеризующийся постоянным недостатком электронов
  • Отрицательный полюс, противоположный, характеризующийся постоянным избытком электронов

Если хотите Чтобы использовать электрогенераторы для питания определенного оборудования, существует очень дифференцированная поставка и для разных типов нужд.Вы можете найти генераторы электрического тока в соответствии с типом работы , а именно:

  • Механические генераторы : которые используют механическую энергию для запуска генератора. Это наиболее распространенные генераторы в промышленном секторе, а также те, которые обладают, по сравнению с другими, более высокой способностью преобразования энергии, а также являются наиболее эффективными и диверсифицированными. Промышленные компании обычно используют этот тип генераторов.
  • Солнечные генераторы : имеет функцию улавливания солнечной энергии, чтобы преобразовать ее в электрическую, чтобы мы могли использовать наше оборудование.Солнечные кремниевые пластины — это пример солнечного генератора.
  • Тепловые генераторы : это генераторы, преобразующие тепловую энергию в электрическую. Непосредственно преобразовывать энергию из тепла, используя ее для создания энергии.
  • Химические генераторы : отвечают за преобразование химической энергии в электрическую для питания различного оборудования. То есть они преобразуют энергию, генерируемую в различных химических реакциях, в электрическую. Примерами генераторов этого типа являются аккумуляторные батареи.Обычно они используются в оборудовании с низким энергопотреблением. Например, телевизионные команды, радио, часы и другое оборудование, которое мы регулярно используем в повседневной жизни.

Как видите, существует несколько типов генераторов электрического тока , которые совершенно разные, и которые могут преобразовывать солнечную , тепловую , механическую или химическую энергию в электрическую. Таким образом получается многоразовая энергия, которая будет обеспечивать работу оборудования, которое хочет оставаться активным.

Портативный, промышленный, резервный: разные типы генераторов и их применение

Если вы находитесь дома или в офисе, едете в машине или летите в самолете, смотрите фильм в мультиплексе или по телевизору, вам не обойтись без электричества . Точно так же, если вы ведете бизнес в таких секторах, как строительство, горнодобывающая промышленность, нефть и газ, гостиничный бизнес, здравоохранение или транспорт, вам также нужна электроэнергия. Если вы управляете коммерческим предприятием, вам также потребуется электричество. Обычно вы получаете постоянную и стабильную электроэнергию через сеть, когда вы подписываетесь на ее услуги.

Но что вы делаете, когда есть сбой в электроснабжении? Как вы удовлетворяете потребности в электроэнергии в таких предприятиях, как строительство дорог, горнодобывающая промышленность, бурение на море, съемка фильмов на открытом воздухе или организация мероприятий, где электроснабжение невозможно? Ответ через генераторы.

Давайте посмотрим, что такое генераторы, и рассмотрим различные типы генераторов и их применение.

Что такое генераторы?

Генераторы — это машины, вырабатывающие электрическую энергию в виде напряжения и тока.Они производят электричество по принципу электромагнитной индукции. Существует два основных типа генераторов, известных как генераторы переменного (переменного тока) и постоянного тока (постоянного тока). Хотя технология производства электроэнергии одинакова для обоих типов, мощность переменного и постоянного тока различается с точки зрения их применения — способа, которым нагрузки получают электроэнергию. Например, домашние генераторы вырабатывают переменный ток, в то время как в автомобилях используются двигатели-генераторы, вырабатывающие постоянный ток.

Типы генераторов

Различные типы генераторов неразрывно связаны со своими приложениями.На основе этих приложений различные типы генераторов включают портативные генераторы, инверторные генераторы, резервные генераторы, промышленные генераторы и индукционные генераторы.

Генераторы переносные

Портативные генераторы очень полезны в самых разных приложениях. Они бывают разной конфигурации мощности, подходящей для разных типов использования.

Переносные генераторы удобны во время стихийных бедствий или бедствий, когда происходит сбой в электросети. Они обеспечивают питание во время плановых или внеплановых отключений электроэнергии.Они больше подходят для жилых помещений и небольших коммерческих предприятий, таких как торговые точки и магазины, на строительных площадках для питания небольших инструментов, кемпинга, свадеб на открытом воздухе, мероприятий на открытом воздухе и питания сельскохозяйственного оборудования, такого как скважины или системы капельного орошения.

Инверторные генераторы

Инверторные генераторы вырабатывают мощность переменного тока и с помощью выпрямителя, который преобразует мощность переменного тока в мощность постоянного тока, а затем инвертирует ее в переменный ток для обеспечения постоянного тока для приборов.Они очень полезны для таких устройств, как кондиционеры, холодильники, автомобили, лодки и транспортные средства для отдыха, которым требуются определенные значения напряжения и частоты, которые способны обеспечить инверторные генераторы. Кроме того, они легкие и компактные, поэтому отлично подходят для таких применений.

Резервные генераторы

Резервные генераторы служат для автоматического включения при отключении электроэнергии. Они очень полезны для жилых квартир, отелей, ресторанов, больниц и коммерческих учреждений, подключенных к электросети.

Промышленные генераторы

Промышленное применение генераторов сильно отличается от бытового или небольшого коммерческого применения. Промышленные генераторы или крупные коммерческие генераторы должны быть более прочными и надежными и работать в суровых условиях. Они также должны обеспечивать широкий диапазон характеристик электропитания — от 20 кВт до 2500 кВт, от 120 до 48 вольт и от однофазного до трехфазного питания. Обычно эти генераторы более индивидуализированы, чем другие типы генераторов.Существует много типов промышленных генераторов, и их можно классифицировать по-другому в зависимости от типа топлива, используемого для работы двигателей, которые помогают вырабатывать электроэнергию. К ним относятся такие виды топлива, как дизельное топливо, бензин, природный газ, керосин и пропан. В категории промышленных генераторов есть портативные промышленные генераторы, которые находят применение в различных приложениях, где нельзя установить большие генераторы.

Генераторы индукционные

Они состоят из двух типов — генераторы с внешним возбуждением и генераторы с самовозбуждением.

Генераторы с внешним возбуждением находят применение в системах рекуперативного торможения, необходимых в подъемниках, кранах, лифтах и ​​электровозах.

Генераторы с самовозбуждением находят применение в ветряных мельницах, где ветер как нетрадиционный источник энергии преобразуется в электроэнергию.

Свяжитесь с ближайшими к вам ведущими дилерами генераторов и получите бесплатные расценки

(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и аналитические материалы по GST, экспорту, финансированию, политике и управлению малым бизнесом.)

Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.

Типы генераторов

Генераторы в самом широком смысле этого слова представляют собой устройства, которые могут производить желаемый выходной сигнал в той или иной форме. Чаще всего этот выход рассматривается как электрическая мощность, но это также может быть туман или туман, специальный газ, такой как углекислый газ, водород, кислород, азот или хлор, заряженная частица, такая как ион, или определенная форма. электрических сигналов, таких как синусоидальная волна или электрический импульс с желаемыми характеристиками по форме волны.

В этом руководстве основное внимание уделяется генераторам, вырабатывающим электроэнергию. Как правило, этот тип генератора преобразует движение, генерируемое входным источником энергии, в электрическую мощность с желаемым напряжением и частотой. Большинство из этих устройств установлены на постоянной основе и используются в ситуациях, когда возникает необходимость в резервном генераторе или аварийном генераторе энергии на случай отключения электроэнергии, влияющей на основной источник энергии объекта. Существует также большой рынок для небольших бытовых генераторов, которые могут быть развернуты, когда шторм или ураган приводят к временной потере электроэнергии в домах.

Терминология, используемая для описания генераторов электроэнергии, частично пересекается. Термин «электрическая генераторная установка» (или генераторная установка) обычно используется для обозначения генератора, который соединен с двигателем, работающим на определенном типе топлива, например, на дизельном топливе. Однако вместо того, чтобы говорить «дизель-генераторная установка», это устройство иногда упоминается как «дизельный генератор», при этом под ним понимается генератор, который соединен с дизельным двигателем в качестве входного источника энергии.

В этой статье будет представлен обзор различных типов существующих генераторов. Характеристики генераторов могут быть выполнены в нескольких измерениях, а именно:

  1. По источнику энергии, используемому как ввод
  2. По области применения или отрасли, в которой используется генератор

В разделах ниже обсуждаются генераторы с разбивкой по источникам энергии, применению или отрасли. Сразу после этого идет раздел, посвященный генераторам, которые подходят для домашнего использования.

Генераторы по источникам энергии

Обычные входящие источники энергии для генераторов — это либо ископаемое топливо, которое сжигается в двигателе для создания вращательного движения внутри генератора, либо естественный источник энергии, который улавливается и приводится в движение, либо существующая форма энергии, которая уже была произведена, которая может использоваться как входной источник.

Генераторы, работающие на ископаемом топливе

Генераторы, основанные на источнике энергии ископаемого топлива, включают дизельные топливные генераторные установки, которые иногда называют дизель-электрическими генераторными установками или дизельными генераторами, бензино-электрические генераторные установки, также называемые бензиновыми генераторами, генераторами природного газа и генераторами пропана.Хотя по большей части выходная мощность, генерируемая этими устройствами, представляет собой переменный ток (AC), существуют электрические генераторные установки постоянного тока.

Генераторы природных источников энергии

Другие типы генераторов, которые используют преимущества природного источника энергии, включают солнечные генераторы, ветряные генераторы и гидроэлектрические генераторные установки, которые используют движение текущей воды для производства электроэнергии. Эти устройства относятся к общей категории систем производства зеленой энергии.

Генераторы, использующие существующую энергию

Когда форма энергии уже была создана другой машиной или процессом, эту энергию иногда можно уловить и использовать для производства электроэнергии. Примеры этого включают гидравлические генераторы, которые используют преимущество гидравлического давления, которое уже было создано машиной, используя эту жидкость под давлением для работы генератора, вырабатывающего электроэнергию. В другом примере термоэлектрические генераторы могут использоваться для выработки электроэнергии из источника температурного градиента на основе явления, известного как эффект Зеебека.

Большинство генераторов являются синхронными генераторами, что означает, что в генераторе вращающийся компонент, известный как ротор, движется с той же скоростью, что и магнитное поле, а выходная частота электрического тока является прямой функцией скорости вращения генератора.

Генераторы по областям применения и отраслям

Генераторы, которые вырабатывают электричество для электрического освещения и питания, хотя и являются наиболее распространенными, никоим образом не являются единственным применением этих устройств. Подобно тому, как электростанции могут использовать генераторы с приводом от паровых турбин или газотурбинные генераторные установки, другие отрасли промышленности имеют особые потребности, и для удовлетворения этих потребностей существуют промышленные генераторы.

Взять, к примеру, авиастроение. Генераторы самолетов различаются по типу в зависимости от таких факторов, как размер самолета и конкретные требования к мощности. В небольших самолетах может использоваться простой генератор постоянного тока или генератор переменного тока с приводом от двигателя. Вместо этого в более крупных самолетах могут использоваться генераторы переменного тока и комбинация шин переменного и постоянного тока для питания бортовых электрических систем. Это может включать в себя так называемые турбогенераторы или гондолы с набегающим потоком воздуха для самолетов, которые используют давление воздуха, возникающее в результате скорости движущегося по воздуху самолета, для вращения турбины, которая может быть присоединена к электрическому генератору.Это один из примеров турбины или турбогенератора. В аэропортах генераторы наземной поддержки и стартовые генераторы самолетов используются для обеспечения питания, когда самолет выключает свои двигатели и, следовательно, больше не вырабатывает электроэнергию для управления освещением кабины и другими системами.

Автомобильные генераторы обычно называются генераторами переменного тока и вырабатывают на выходе переменный ток, который преобразуется в источник постоянного тока для электроники и систем транспортного средства. Существуют генераторы для других транспортных средств, которым требуется большая мощность, например, генераторы для транспортных средств для отдыха (RV).

Судовые генераторы вырабатывают электроэнергию на борту судов и обычно используют судовые двигатели в качестве источника входной энергии.

Пример гидравлического генератора отбора мощности

Изображение предоставлено: WPT Power

На фермах генераторы с приводом от коробки отбора мощности используют вращение карданного вала двигателя трактора для выработки электроэнергии. Это один из примеров портативного генератора.

Операторы сварки нуждаются в генераторе определенного типа, соответствующем требованиям по напряжению и току, связанным с дуговой сваркой.Генераторы для дуговой сварки специально разработаны для обеспечения чрезвычайно высокого выходного тока, который легко может составлять сотни ампер и более.

Генераторы для домашнего использования

В то время как генераторы широко используются в промышленности, бытовые генераторы, предназначенные для электроснабжения домов, представляют собой еще один большой сегмент применения генераторов. В домах, которые получают питание от электросетей, может наблюдаться отключение электроэнергии из-за погодных условий, таких как грозы, тропические штормы, торнадо, ураганы, снежные и ледяные бури.Когда питание пропадает на короткие периоды времени, это раздражает, но с ним можно мириться, при условии, что эти отключения происходят нечасто. Однако сильные ураганы могут нанести ущерб инфраструктуре энергосистемы и, таким образом, привести к отключениям на несколько дней или более недели. Если дерево упадет и выйдет из строя линия обслуживания, которая соединяет дом с опорой электросети, эти отключения могут занять больше всего времени для восстановления коммунальной службы, учитывая, что они обычно отдают приоритет восстановлению в зависимости от количества затронутых потребителей.

По этим причинам многие домовладельцы могут решить инвестировать в использование генератора для домашнего использования.

Большинство бытовых генераторов делятся на две большие категории:

  • Переносные генераторы, предназначенные для временного обеспечения электропитанием ограниченного числа приборов или устройств во время перебоев в подаче электроэнергии
  • Резервные генераторные системы, которые интегрированы в домашнюю панель автоматического выключателя и подключаются через автоматические переключатели для автоматического включения при отключении электроэнергии в коммерческом секторе.

Каждый из этих типов подробно описан ниже.

Переносные генераторы для домашнего использования

Переносные генераторы обычно используются для обеспечения временных потребностей домов в электроэнергии. Эти устройства меньше по размеру и легко транспортируются из хранилища во внешние места, где их можно разместить для работы. Большинство этих генераторов оснащены двигателем внутреннего сгорания, работающим на бензине, пропане или природном газе. Некоторые модели могут работать от нескольких или всех этих видов топлива. Поскольку при сжигании ископаемого топлива они производят дымовые газы, они не могут работать внутри зданий или сооружений и должны находиться снаружи во время работы.Переносные генераторы можно легко приобрести в магазинах бытовой техники и хозяйственных товаров, и они, как правило, недороги. Наше соответствующее руководство по лучшим портативным генераторам на 2020 год дает представление о некоторых из самых популярных моделей.

В большинстве случаев портативные генераторы обеспечивают питание ограниченного числа приборов и оборудования, которые считаются критически важными для работы во время отключения электроэнергии. Покупатели должны принять решение относительно своих потребностей в электроэнергии в случае аварийного отключения электроэнергии и выбрать модель надлежащего размера, способную обеспечить достаточную мощность для этого оборудования.(Для получения дополнительной информации о размерах генератора см. Соответствующее руководство. Какой размер генератора мне нужен для моего дома?). Как правило, на генераторе имеется ряд электрических розеток, к которым можно подключить удлинительные шнуры и проложить их для временного включения необходимых приборов, таких как холодильники, морозильники или микроволновые печи. Функции, которые часто доступны на этих устройствах, включают защиту автоматического выключателя, автоматический электрический запуск, отсечку низкого уровня масла, счетчики часов работы и датчики перегрева.Хотя эти генераторы доступны по цене и портативны, они предназначены для временного использования. Поскольку многие из них предназначены для работы с бензином, легкодоступным топливом, емкость бака является ограничивающим фактором, требующим дозаправки. Модели на основе пропана могут иметь доступ к топливным бакам большего размера, если в доме есть пропан. Природный газ, если он доступен, также может использоваться для питания некоторых моделей портативных генераторов, тем самым уменьшая проблему заправки топливом.

Системы резервного генератора

По сравнению с портативными генераторами, системы резервного генератора отличаются по нескольким ключевым параметрам:

  • Это более крупные блоки с большей мощностью, способные обеспечить большую часть или все электрические потребности дома, а не только критически важные приборы.
  • Они постоянно устанавливаются и готовы к подключению к сети при отключении электроэнергии в коммерческих целях, вместо того, чтобы хранить и требовать настройки.
  • Они полностью интегрированы в электрическую систему дома за счет прямого подключения к панели автоматического выключателя, вместо того, чтобы полагаться на временную проводку с использованием удлинителей.
  • Они питаются от домашнего природного газа или пропана, что исключает частую дозаправку, связанную с портативными генераторами, работающими на бензине.
  • У них есть возможности автоматического обнаружения и запуска, что означает, что устройство будет определять, когда коммерческое электричество пропадает, и автоматически запускает генератор, чего не делают портативные генераторы.
  • В отличие от портативных устройств, они размещены в корпусах, чтобы выдерживать воздействие условий окружающей среды.

Системы резервного генератора требуют значительно больших вложений, чем портативные генераторы. Помимо закупочной цены устройства, которая выше, поскольку системы резервных генераторов имеют гораздо большую мощность, существуют дополнительные единовременные расходы, связанные с установкой.Эти затраты на установку включают физическое размещение системы генератора, затраты на прокладку газопровода к генератору и затраты на электромонтаж до дома. Система работает электрически через устройство, называемое передаточным переключателем. Передаточный переключатель позволяет генератору безопасно контролировать работу домашней электросети. Когда система обнаруживает, что произошел сбой, она сигнализирует генератору о запуске, и как только он достигает стабильного рабочего состояния, передаточный переключатель изолирует электрические цепи дома от электросети, а затем переключает питание генератора на электрические цепи дома. .Этот процесс известен как последовательность «взлом, затем создание». Используя промежуточное положение переключателя, которое находится в выключенном состоянии между положением сетевого питания и положением источника питания генератора, передаточный переключатель обеспечивает необходимую изоляцию и гарантирует, что искрение и короткое замыкание не произойдет во время переключения с сетевого питания на питание генератора.

Автоматические переключатели рассчитаны на электрическую мощность дома или офиса, для которого устанавливается система генератора. Итак, если в доме есть электрическая сеть на 200 ампер, передаточный переключатель также рассчитан на 200 ампер.В системах резервного генератора, предназначенных для автоматического переключения, будут использоваться автоматические переключатели. Существуют также ручные переключатели резерва, которые можно установить и использовать с генераторами меньшего размера и даже с портативными генераторами. Как следует из названия, переключатели ручного переключения требуют вмешательства человека, чтобы физически переключиться на питание генератора от сети.

Выбор системы генератора для домашнего использования в чрезвычайных ситуациях представляет собой компромисс между стоимостью и удобством.Решение также зависит от наличия топлива для работы устройства. Для домов или предприятий, работающих на природном газе или пропане, система резервного генератора является жизнеспособным вариантом. В местах, где нет доступа к такой услуге, возможно, придется полагаться на портативные бензиновые генераторы меньшего размера, чтобы обеспечить электроэнергию в случае отключения электроэнергии.

Резюме

В этой статье представлен краткий обзор распространенных типов генераторов, характеризующихся источником топлива и применением, в том числе предназначенных для домашнего использования.Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://www.wpowerproducts.com/
  2. https://www.homestratosphere.com/types-of-generators/

Прочие изделия о генераторах

Прочие «виды» статей

Больше от компании Electric & Power Generation

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям.Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели.Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Особой формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1.Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены, и в результате получится одна и та же форма. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc.
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Структура ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Как генератор вырабатывает электроэнергию? Статья о том, как работают генераторы

Генераторы

— это полезные устройства, которые подают электроэнергию во время отключения электроэнергии и предотвращают прерывание повседневной деятельности или прерывание бизнес-операций. Генераторы доступны в различных электрических и физических конфигурациях для использования в различных приложениях.В следующих разделах мы рассмотрим, как работает генератор, основные компоненты генератора и как генератор работает в качестве вторичного источника электроэнергии в жилых и промышленных помещениях.

Как работает генератор?

Электрический генератор — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе.

Важно понимать, что генератор на самом деле не «создает» электрическую энергию.Вместо этого он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь. Этот поток электрических зарядов составляет выходной электрический ток, подаваемый генератором. Этот механизм можно понять, рассматривая генератор как аналог водяного насоса, который вызывает поток воды, но фактически не «создает» воду, текущую через него.

Современный генератор работает на принципе электромагнитной индукции, открытом Майклом Фарадеем в 1831-32 гг.Фарадей обнаружил, что вышеупомянутый поток электрических зарядов может быть вызван перемещением электрического проводника, такого как провод, содержащий электрические заряды, в магнитном поле. Это движение создает разность напряжений между двумя концами провода или электрического проводника, что, в свою очередь, вызывает протекание электрических зарядов, генерируя электрический ток.

Основные компоненты генератора

Основные компоненты электрического генератора можно в общих чертах классифицировать следующим образом:

  • Двигатель
  • Генератор
  • Топливная система
  • Регулятор напряжения
  • Системы охлаждения и выхлопа
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборка / рама

Описание основных компонентов генератора приведено ниже.

Двигатель

Двигатель является источником подводимой механической энергии к генератору. Размер двигателя прямо пропорционален максимальной выходной мощности, которую может выдать генератор. При оценке двигателя вашего генератора необходимо учитывать несколько факторов. Для получения полных рабочих характеристик двигателя и графиков технического обслуживания необходимо проконсультироваться с производителем двигателя.

(a) Тип используемого топлива — двигатели генераторов работают на различных видах топлива, таких как дизельное топливо, бензин, пропан (в сжиженном или газообразном виде) или природный газ. Меньшие двигатели обычно работают на бензине, в то время как более крупные двигатели работают на дизельном топливе, жидком пропане, пропане или природном газе. Некоторые двигатели также могут работать на двойной подаче дизельного и газового топлива в двухтопливном режиме.

(b) Двигатели с верхним расположением клапанов (OHV) по сравнению с двигателями без OHV — двигатели OHV отличаются от других двигателей тем, что впускные и выпускные клапаны двигателя расположены в головке цилиндра двигателя, а не на двигателе. блокировать.Двигатели OHV имеют ряд преимуществ перед другими двигателями, такими как:

• Компактная конструкция
• Более простой механизм управления
• Прочность
• Удобство эксплуатации
• Низкий уровень шума при работе
• Низкий уровень выбросов

Однако OHV-двигатели также дороже других двигателей.

(c) Чугунная гильза (CIS) в цилиндре двигателя — CIS — это накладка в цилиндре двигателя.Это снижает износ и обеспечивает долговечность двигателя. Большинство двигателей OHV оснащены системой CIS, но очень важно проверить наличие этой особенности в двигателе генератора. CIS — это не дорогая функция, но она играет важную роль в долговечности двигателя, особенно если вам нужно использовать генератор часто или в течение длительного времени.

Генератор

Генератор переменного тока, также известный как «генератор», является частью генератора, который вырабатывает электрическую мощность за счет механического входа, подаваемого двигателем.Он содержит набор неподвижных и подвижных частей, заключенных в корпус. Компоненты работают вместе, вызывая относительное движение между магнитным и электрическим полями, которое, в свою очередь, генерирует электричество.

(а) Статор — это стационарный компонент. Он содержит набор электрических проводников, намотанных катушками на железный сердечник.

(b) Ротор / Якорь — это движущийся компонент, который создает вращающееся магнитное поле любым из следующих трех способов:

(i) Индукционным способом — они известны как бесщеточные генераторы переменного тока и обычно используются в больших генераторах.
(ii) Постоянными магнитами — это обычное дело в небольших генераторах переменного тока.
(iii) Использование возбудителя. Возбудитель представляет собой небольшой источник постоянного тока (DC), который питает ротор через совокупность токопроводящих контактных колец и щеток.

Ротор создает движущееся магнитное поле вокруг статора, которое вызывает разность напряжений между обмотками статора. Это производит переменный ток (AC) на выходе генератора.

При оценке генератора переменного тока необходимо учитывать следующие факторы:

(a) Металлический корпус по сравнению с пластиковым корпусом — цельнометаллическая конструкция обеспечивает долговечность генератора.Пластиковые корпуса со временем деформируются, что приводит к обнажению движущихся частей генератора. Это увеличивает износ и, что более важно, опасно для пользователя.

(b) Шариковые подшипники по сравнению с игольчатыми подшипниками. Шариковые подшипники предпочтительнее и служат дольше.

(c) Бесщеточная конструкция — генератор, в котором не используются щетки, требует меньшего технического обслуживания, а также производит более чистую мощность.

Топливная система

Топливный бак обычно имеет достаточную емкость, чтобы генератор работал в среднем от 6 до 8 часов.В случае малых блоков генератора, топливный бак является частью занос базы генератора или смонтирован на верхней части корпуса генератора. Для коммерческого использования может потребоваться установка внешнего топливного бака. Все подобные установки должны быть одобрены Управлением городского планирования. Щелкните следующую ссылку для получения дополнительных сведений о топливных баках для генераторов.

Общие характеристики топливной системы включают следующее:

(a) Соединение трубопровода от топливного бака к двигателю — линия подачи направляет топливо из бака в двигатель, а обратная линия направляет топливо от двигателя в бак.

(b) Вентиляционная труба для топливного бака — Топливный бак имеет вентиляционную трубу для предотвращения повышения давления или вакуума во время заправки и опорожнения бака. При заправке топливного бака убедитесь, что металл-металл соприкасается с заправочной форсункой и топливным баком, чтобы избежать искр.

(c) Переливное соединение от топливного бака к сливной трубе — это необходимо для того, чтобы любой перелив во время заправки бака не вызывал разлив жидкости на генераторную установку.

(d) Топливный насос — перекачивает топливо из основного накопительного бака в дневной.Топливный насос обычно работает от электричества.

(e) Топливный водоотделитель / топливный фильтр — он отделяет воду и посторонние вещества от жидкого топлива для защиты других компонентов генератора от коррозии и загрязнения.

(f) Топливная форсунка — распыляет жидкое топливо и распыляет необходимое количество топлива в камеру сгорания двигателя.

Регулятор напряжения
Как следует из названия, этот компонент регулирует выходное напряжение генератора.Механизм описан ниже для каждого компонента, который участвует в циклическом процессе регулирования напряжения.

(1) Регулятор напряжения: преобразование переменного напряжения в постоянный ток — регулятор напряжения принимает небольшую часть выходного переменного напряжения генератора и преобразует его в постоянный ток. Затем регулятор напряжения подает этот постоянный ток на набор вторичных обмоток статора, известных как обмотки возбудителя.

(2) Обмотки возбудителя: преобразование постоянного тока в переменный — обмотки возбудителя теперь работают аналогично первичным обмоткам статора и генерируют небольшой переменный ток.Обмотки возбудителя подключены к блокам, известным как вращающиеся выпрямители.

(3) Вращающиеся выпрямители: преобразование переменного тока в постоянный — они выпрямляют переменный ток, генерируемый обмотками возбудителя, и преобразуют его в постоянный ток. Этот постоянный ток подается на ротор / якорь для создания электромагнитного поля в дополнение к вращающемуся магнитному полю ротора / якоря.

(4) Ротор / якорь: преобразование постоянного тока в переменное напряжение — ротор / якорь теперь индуцирует большее переменное напряжение на обмотках статора, которое генератор теперь производит как большее выходное переменное напряжение.

Этот цикл продолжается до тех пор, пока генератор не начнет выдавать выходное напряжение, эквивалентное его полной рабочей мощности. По мере увеличения выходной мощности генератора регулятор напряжения вырабатывает меньше постоянного тока. Когда генератор достигает полной рабочей мощности, регулятор напряжения достигает состояния равновесия и вырабатывает постоянный ток, достаточный для поддержания выходной мощности генератора на полном рабочем уровне.

Когда вы добавляете нагрузку к генератору, его выходное напряжение немного падает.Это вызывает действие регулятора напряжения, и начинается вышеуказанный цикл. Цикл продолжается до тех пор, пока выходная мощность генератора не достигнет своей первоначальной полной рабочей мощности.

Система охлаждения и выпуска
(а) Система охлаждения
Продолжительное использование генератора вызывает нагрев различных его компонентов. Очень важно иметь систему охлаждения и вентиляции для отвода тепла, выделяемого в процессе.

Неочищенная / пресная вода иногда используется в качестве охлаждающей жидкости для генераторов, но в основном это ограничивается конкретными ситуациями, такими как небольшие генераторы в городских условиях или очень большие агрегаты мощностью более 2250 кВт и выше.Водород иногда используется в качестве хладагента для обмоток статора больших генераторных установок, поскольку он более эффективно поглощает тепло, чем другие хладагенты. Водород отводит тепло от генератора и передает его через теплообменник во вторичный контур охлаждения, который содержит деминерализованную воду в качестве хладагента. Вот почему очень большие генераторы и малые электростанции часто имеют рядом с собой большие градирни. Для всех других распространенных применений, как жилых, так и промышленных, стандартный радиатор и вентилятор устанавливаются на генераторе и работают как основная система охлаждения.

Необходимо ежедневно проверять уровень охлаждающей жидкости в генераторе. Систему охлаждения и насос неочищенной воды следует промывать через каждые 600 часов, а теплообменник следует очищать через каждые 2400 часов работы генератора. Генератор следует размещать на открытом и вентилируемом месте с достаточным притоком свежего воздуха. Национальный электротехнический кодекс (NEC) требует, чтобы со всех сторон генератора оставалось минимум 3 фута, чтобы обеспечить свободный поток охлаждающего воздуха.

(б) Выхлопная система
Выхлопные газы, выделяемые генератором, такие же, как выхлопные газы любого другого дизельного или газового двигателя, и содержат высокотоксичные химические вещества, с которыми необходимо обращаться должным образом. Следовательно, важно установить соответствующую выхлопную систему для удаления выхлопных газов. Этот момент невозможно переоценить, поскольку отравление угарным газом остается одной из наиболее частых причин смерти в пострадавших от урагана районах, потому что люди, как правило, даже не думают об этом, пока не становится слишком поздно.

Выхлопные трубы обычно изготавливаются из чугуна, кованого железа или стали. Они должны быть отдельно стоящими и не должны поддерживаться двигателем генератора. Выхлопные трубы обычно прикрепляются к двигателю с помощью гибких соединителей, чтобы минимизировать вибрации и предотвратить повреждение выхлопной системы генератора. Выхлопная труба заканчивается снаружи и ведет от дверей, окон и других отверстий в дом или здание. Вы должны убедиться, что выхлопная система вашего генератора не подключена к выхлопной системе любого другого оборудования.Вам также следует проконсультироваться с местными городскими постановлениями, чтобы определить, нужно ли для эксплуатации вашего генератора получить разрешение от местных властей, чтобы убедиться, что вы соблюдаете местное законодательство и защитите себя от штрафов и других санкций.

Смазочная система
Поскольку генератор содержит движущиеся части в своем двигателе, он требует смазки для обеспечения долговечности и бесперебойной работы в течение длительного периода времени. Двигатель генератора смазывается маслом, хранящимся в насосе.Уровень смазочного масла следует проверять каждые 8 ​​часов работы генератора. Вы также должны проверять отсутствие утечек смазки и менять смазочное масло каждые 500 часов работы генератора.

Зарядное устройство
ST e art функция генератора работает от батареи. Зарядное устройство поддерживает заряд аккумуляторной батареи генератора, подавая на нее точное «плавающее» напряжение. Если напряжение холостого хода очень низкое, аккумулятор останется недозаряженным.Если напряжение холостого хода очень высокое, это сократит срок службы батареи. Зарядные устройства для аккумуляторов обычно изготавливаются из нержавеющей стали для предотвращения коррозии. Они также полностью автоматические и не требуют каких-либо регулировок или изменений каких-либо настроек. Выходное напряжение постоянного тока зарядного устройства устанавливается на уровне 2,33 В на элемент, что является точным значением напряжения холостого хода для свинцово-кислотных аккумуляторов. Зарядное устройство аккумулятора имеет изолированный выход постоянного напряжения, который мешает нормальному функционированию генератора.

Панель управления
Это пользовательский интерфейс генератора, в котором находятся электрические розетки и элементы управления. В следующей статье представлены дополнительные сведения о панели управления генератором. Различные производители предлагают различные функции в панелях управления своих устройств. Некоторые из них упомянуты ниже.

(a) Электрический запуск и отключение — панели управления автоматическим запуском автоматически запускают ваш генератор при отключении электроэнергии, контролируют генератор во время работы и автоматически отключают агрегат, когда он больше не нужен.

(b) Манометры двигателя. Различные датчики показывают важные параметры, такие как давление масла, температура охлаждающей жидкости, напряжение аккумуляторной батареи, скорость вращения двигателя и продолжительность работы. Постоянное измерение и мониторинг этих параметров позволяет отключать генератор, когда любой из них превышает соответствующие пороговые уровни.

(c) Датчики генератора. На панели управления также есть счетчики для измерения выходного тока и напряжения, а также рабочей частоты.

(d) Другие элементы управления — переключатель выбора фазы, переключатель частоты и переключатель управления двигателем (ручной режим, автоматический режим) среди прочего.

Основной узел / рама

Все генераторы, переносные или стационарные, имеют индивидуальные корпуса, которые обеспечивают структурную опору основания. Рама также позволяет заземлить генерируемые элементы в целях безопасности.

Портативный, промышленный, резервный: разные типы генераторов и их применение

Если вы находитесь дома или в офисе, управляете автомобилем или летите в самолете, смотрите фильм в мультиплексе или по телевизору, вам не обойтись без электричества.Точно так же, если вы ведете бизнес в таких секторах, как строительство, горнодобывающая промышленность, нефть и газ, гостиничный бизнес, здравоохранение или транспорт, вам также нужна электроэнергия. Если вы управляете коммерческим предприятием, вам также потребуется электричество. Обычно вы получаете постоянную и стабильную электроэнергию через сеть, когда вы подписываетесь на ее услуги.

Но что вы делаете, когда есть сбой в электроснабжении? Как вы удовлетворяете потребности в электроэнергии в таких предприятиях, как строительство дорог, горнодобывающая промышленность, бурение на море, съемка фильмов на открытом воздухе или организация мероприятий, где электроснабжение невозможно? Ответ через генераторы.

Давайте посмотрим, что такое генераторы, и рассмотрим различные типы генераторов и их применение.

Что такое генераторы?

Генераторы — это машины, вырабатывающие электрическую энергию в виде напряжения и тока. Они производят электричество по принципу электромагнитной индукции. Существует два основных типа генераторов, известных как генераторы переменного (переменного тока) и постоянного тока (постоянного тока). Хотя технология производства электроэнергии одинакова для обоих типов, мощность переменного и постоянного тока различается с точки зрения их применения — способа, которым нагрузки получают электроэнергию.Например, домашние генераторы вырабатывают переменный ток, в то время как в автомобилях используются двигатели-генераторы, вырабатывающие постоянный ток.

Типы генераторов

Различные типы генераторов неразрывно связаны со своими приложениями. На основе этих приложений различные типы генераторов включают портативные генераторы, инверторные генераторы, резервные генераторы, промышленные генераторы и индукционные генераторы.

Генераторы переносные

Портативные генераторы очень полезны в самых разных приложениях.Они бывают разной конфигурации мощности, подходящей для разных типов использования.

Переносные генераторы удобны во время стихийных бедствий или бедствий, когда происходит сбой в электросети. Они обеспечивают питание во время плановых или внеплановых отключений электроэнергии. Они больше подходят для жилых помещений и небольших коммерческих предприятий, таких как торговые точки и магазины, на строительных площадках для питания небольших инструментов, кемпинга, свадеб на открытом воздухе, мероприятий на открытом воздухе и питания сельскохозяйственного оборудования, такого как скважины или системы капельного орошения.

Инверторные генераторы

Инверторные генераторы вырабатывают мощность переменного тока и с помощью выпрямителя, который преобразует мощность переменного тока в мощность постоянного тока, а затем инвертирует ее в переменный ток для обеспечения постоянного тока для приборов. Они очень полезны для таких устройств, как кондиционеры, холодильники, автомобили, лодки и транспортные средства для отдыха, которым требуются определенные значения напряжения и частоты, которые способны обеспечить инверторные генераторы. Кроме того, они легкие и компактные, поэтому отлично подходят для таких применений.

Резервные генераторы

Резервные генераторы служат для автоматического включения при отключении электроэнергии. Они очень полезны для жилых квартир, отелей, ресторанов, больниц и коммерческих учреждений, подключенных к электросети.

Промышленные генераторы

Промышленное применение генераторов сильно отличается от бытового или небольшого коммерческого применения. Промышленные генераторы или крупные коммерческие генераторы должны быть более прочными и надежными и работать в суровых условиях.Они также должны обеспечивать широкий диапазон характеристик электропитания — от 20 кВт до 2500 кВт, от 120 до 48 вольт и от однофазного до трехфазного питания. Обычно эти генераторы более индивидуализированы, чем другие типы генераторов. Существует много типов промышленных генераторов, и их можно классифицировать по-другому в зависимости от типа топлива, используемого для работы двигателей, которые помогают вырабатывать электроэнергию. К ним относятся такие виды топлива, как дизельное топливо, бензин, природный газ, керосин и пропан. В категории промышленных генераторов есть портативные промышленные генераторы, которые находят применение в различных приложениях, где нельзя установить большие генераторы.

Генераторы индукционные

Они состоят из двух типов — генераторы с внешним возбуждением и генераторы с самовозбуждением.

Генераторы с внешним возбуждением находят применение в системах рекуперативного торможения, необходимых в подъемниках, кранах, лифтах и ​​электровозах.

Генераторы с самовозбуждением находят применение в ветряных мельницах, где ветер как нетрадиционный источник энергии преобразуется в электроэнергию.

Свяжитесь с ближайшими к вам ведущими дилерами генераторов и получите бесплатные расценки

(Единый пункт назначения для MSME, ET RISE предоставляет новости, обзоры и аналитические материалы по GST, экспорту, финансированию, политике и управлению малым бизнесом.)

Загрузите приложение The Economic Times News, чтобы получать ежедневные обновления рынка и новости бизнеса в реальном времени.

Типы электрических генераторов переменного и постоянного тока

Электромагнитные электрические генераторы делятся на две большие категории: динамо-машины и генераторы переменного тока.

  • Динамо генерирует постоянный ток, обычно с колебаниями напряжения или тока, обычно за счет использования коммутатора
  • Генераторы переменного тока вырабатывают переменный ток, который может быть выпрямлен другой системой (внешней или напрямую встроенной).

Генератор постоянного тока

Динамо-машина была первым электрическим генератором , способным обеспечивать электроэнергию для промышленности. Динамо-машина использует электромагнитную индукцию для преобразования механического вращения в постоянный ток с помощью коммутатора. Первая динамо-машина была построена Ипполитом Пикси в 1832 году. Электрический генератор Вулриха в Thinktank, Бирмингеме — самый ранний электрический генератор, использовавшийся в промышленном процессе. Он использовался фирмой Elkingtons для промышленного гальванического покрытия.
В «динамо-электрической машине» для создания поля статора использовались автономные катушки электромагнитного поля , а не постоянные магниты. Модель Уитстона была похожа на конструкцию Сименса, с той разницей, что в конструкции Сименса электромагниты статора были включены последовательно с ротором, а в конструкции Уитстона они были параллельны. Использование электромагнитов вместо постоянных магнитов значительно увеличило выходную мощность динамо-машины и впервые позволило выработать высокую мощность.Это изобретение привело к первому значительному промышленному использованию электричества. Например, в 1870-х годах Сименс использовал электромагнитные динамо-машины для питания электродуговых печей для производства металлов и других материалов.

Разработанная динамо-машина состояла из стационарной конструкции, обеспечивающей магнитное поле, и набора вращающихся обмоток, которые вращаются в этом поле. На более крупных машинах постоянное магнитное поле создается одним или несколькими электромагнитами, которые обычно называют катушками возбуждения.

Типы генераторов постоянного тока

Униполярный генератор — это электрический генератор постоянного тока, содержащий электропроводящий диск или цилиндр, вращающийся в плоскости, перпендикулярной однородному статическому магнитному полю. Между центром диска и ободом (или концами цилиндра) создается разность потенциалов, электрическая полярность которой зависит от направления вращения и ориентации поля.

Он также известен как униполярный генератор , ациклический генератор , дисковый динамо-машина или диск Фарадея .Напряжение обычно низкое, порядка нескольких вольт в случае небольших демонстрационных моделей, но большие исследовательские генераторы могут вырабатывать сотни вольт, а в некоторых системах есть несколько генераторов, подключенных последовательно, для создания еще большего напряжения. Они необычны тем, что могут производить огромный электрический ток, иногда более миллиона ампер, потому что униполярный генератор может иметь очень низкое внутреннее сопротивление.

Магнитогидродинамический генератор напрямую извлекает электроэнергию из движущихся горячих газов через магнитное поле без использования вращающихся электромагнитных механизмов.Первоначально МГД-генераторы были разработаны, потому что выходной сигнал плазменного МГД-генератора представляет собой пламя, способное нагревать котлы паровой электростанции. Первой практичной конструкцией был AVCO Mk. 25, разработанная в 1965 году. Правительство США профинансировало значительные разработки, кульминацией которых стала демонстрационная установка мощностью 25 МВт в 1987 году. В Советском Союзе с 1972 года до конца 1980-х годов МГД-установка U 25 находилась в регулярной коммерческой эксплуатации в Московской энергосистеме с рейтинг 25 МВт, самый большой рейтинг МГД в мире на то время.Генераторы MHD, работающие в режиме долива, в настоящее время (2007 г.) менее эффективны, чем газовые турбины комбинированного цикла.

Генераторы переменного тока

Системы генерации переменного тока были известны в простых формах благодаря первоначальному открытию Майклом Фарадеем магнитной индукции электрического тока. Сам Фарадей построил первый генератор переменного тока. Его машина представляла собой «вращающийся прямоугольник», действие которого было гетерополярным, — каждый активный проводник последовательно проходил через области, где магнитное поле было в противоположных направлениях.
Большие двухфазные генераторы переменного тока были построены британским электриком J.E.H. Гордон, в 1882 году. Первая публичная демонстрация «системы генератора переменного тока» была проведена Уильямом Стэнли-младшим, сотрудником Westinghouse Electric в 1886 году.

Типы генераторов переменного тока

Некоторые двигатели переменного тока могут использоваться в качестве генераторов, преобразующих механическую энергию в электрический ток. Индукционные генераторы работают за счет механического вращения ротора со скоростью, превышающей синхронную, что приводит к отрицательному скольжению.Обычный асинхронный двигатель переменного тока обычно можно использовать в качестве генератора без каких-либо внутренних модификаций. Индукционные генераторы полезны в таких приложениях, как мини-гидроэлектростанции, ветряные турбины или для снижения газовых потоков высокого давления до более низкого давления, поскольку они могут восстанавливать энергию с помощью относительно простых средств управления.

Для работы индукционный генератор необходимо возбуждать опережающим напряжением; Обычно это делается путем подключения к электрической сети, или иногда они самовозбуждаются с помощью фазокорректирующих конденсаторов.

  • Линейный электрогенератор

В простейшей форме линейного электрического генератора скользящий магнит перемещается вперед и назад через соленоид — катушку с медной проволокой. Переменный ток индуцируется в проволочных петлях по закону индукции Фарадея каждый раз, когда магнит скользит через них. Этот тип генератора используется в фонарике Фарадея. В волновых схемах питания используются более крупные линейные генераторы электроэнергии.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *