Как из 24 вольт сделать 12 вольт своими руками: КАК СДЕЛАТЬ ИЗ 12 ВОЛЬТ 24

Содержание

КАК СДЕЛАТЬ ИЗ 12 ВОЛЬТ 24

   Недавно мы рассматривали устройство понижающее напряжение с 24 до 12 вольт, а теперь изучим повышающий преобразователь 12-24 В. Этот DC-DC преобразователь собран на основе специализированной микросхемы LM2585 производства Texas Instruments. Схема понадобилась для использования в авто (в частности для зарядки ноутбука на 20 В) и была выбрана за предельную простоту, требующую минимального числа внешних компонентов. Элемент переключения — транзистор, интегрирован внутрь регулятора, и способен выдерживать максимальный ток 3А и 60V напряжения. Частота переключения определяется параметрами внутреннего генератора и зафиксирована на 100 кГц. Дополнительные функции — схема плавного пуска, чтобы устранить скачки тока во время пуска и внутреннее ограничение тока. Поддержание точности выходного напряжения составляет 4% в зависимости от нагрузки.

Схема преобразователя 12-24 В

Плата печатная преобразователя 12-24

Технические характеристики преобразователя

  • Vin 10-15V DC 
  • Vout 24V
  • Iout 1А
  • частота 100 кГц

   Вообще сама микросхема обладает более широким диапазоном напряжений и токов. Входное напряжение 4-40 В, выходное до 60 вольт, а предельный ток 3 ампера. Более подробно изучайте в даташите на LM2585.

   Входные конденсаторе и диоде должны располагаться достаточно близко к регулятору, чтобы свести к минимуму индуктивности. Элементы IC1, L1, D1, C1, C2, C5, C6 — основные части, используемые в преобразователе напряжения. Конденсатор С3 при монтаже должен располагаться как можно ближе к IC1. Конденсаторы выбирайте типа low ESR с низким сопротивлением постоянному току.

   При максимальной выходной мощности, заметна значительная выработка тепла, по этой причине микросхема монтируется непосредственно на общей земле платы.

Графики работы инвертора

   Последний график показывает пульсации выходного напряжения и тока индуктивности. Мы видим, что пульсации выходного напряжения составляет около 0,6 Vpp и пиковый ток 2,4 А. Дроссель в конструкции использован на 5 A постоянного тока, поэтому он может легко выдержать такой ток и без особого нагрева катушки.

Originally posted 2018-11-01 01:59:05. Republished by Blog Post Promoter

Преобразователь постоянного напряжения с 12 В до 24 В

Преобразователь напряжения пригодиться во многих случаях. Во-первых, этот прибор пригодится для получения напряжения 28 В, при питании коммутатора ADC гигабайтного Интернета, а также при подключении блока Macintosh G4s от стандартного блока питания компьютера ATX. Да ещё есть много случаев, когда вам пригодится отличное от стандартного напряжение.

Возможно даже вам потребуется подключить электрооборудование на 12 В к сети туристического прицепа или мотоцикла на 6 В. Также вы можете применить преобразователь для питания компьютерного кулера от 24 В, когда недостаточно обычной скорости вращения вентилятора от 12 В. В каких случаях нужно повысить скорость вращения кулера, вы можете узнать из других статей. Особенно нелишне будет прочесть рассказ о том, как собрать самодельный, мощный обогреватель для автомобиля.

Предложенная схема преобразователя напряжения используется для питания флуоресцентной лампы в планшетном сканнере.

Пояснения к схеме.

Трансформатор необходимо собрать на ферритовом сердечнике. Преобразователь отлично будет работать на тороидальном сердечнике диаметром 30 мм, который похож на миниатюрный пончик. Если использовать броневой ферритовый магнитопровод, то преобразователь будет работать тоже. К тому же, состоящий из двух Ш-образных половинок сердечник легче найти, и наматывать проволоку на него легче. Броневой ферритовый магнитопровод можно найти, например: в поломанном компьютерном блоке питания, в цоколе сгоревшей компактной люминесцентной лампы (КЛЛ или экономлампе).

Обмоточной проволоки на сердечник трансформатора придётся мотать совсем не много, поэтому витки можно намотать даже тонким проводом в поливиниловой изоляции. Первичная обмотка повышающего трансформатора состоит всего лишь из 4 витков, две вторичные обмотки наматываются из 13 витков каждая.

Не ошибитесь, и соберите трансформатор правильно. Первичная обмотка наматывается в противоположном направлении, чем вторичные обмотки, которые намотаны в одном направлении. Начало одной вторичной обмотки соединено с концом другой. На схеме, точками возле «спиралек», обозначены начала обмоток трансформатора.

Транзисторы нужны для ключей преобразователя биполярные. Так как, для выше названных целей применения нашего преобразователя, ток на выходе не может превысить 500 мА, то можно использовать распространённые транзисторы: 2N3904, 2N4401, PN2222, MPS2222, C945, NTE123AP. Если вы собираетесь запустить от преобразователя плазменный монитор, тогда нужно взять два транзистора помощнее, такие как D965, которые устанавливаются в фотовспышку фотоаппарата. Если же вам нужно подключить к преобразователю нагрузку мощностью более 5 А, тогда устанавливайте ключи на составных транзисторах, например TIP120 или TIP3055. Но тогда не забудьте поменять диоды в схеме, на такие которые выдержат токи свыше 10 А, а сами транзисторы уже понадобиться закрепить на радиаторы.

Диоды устанавливайте не любые, которые найдёте, а те которые могут закрываться при обратной полярности тока за время 35 наносекунд, и меньше. Отлично, по этому показателю, для преобразователя подходят диоды 1N914 и 1N4148, но они выдерживают прямой ток не более 4 А. При подключении к преобразователю нагрузки более низкоомной, чем кулер, нужно поставить выпрямители SUF30J, UF510, UF540, которые могут работать при токах 15 – 20 А.

Конденсаторы можно выбрать с изоляционной обкладкой, как из полиэстера, так и из полипропилена. Конденсаторы на 100 пФ и 470 пФ не электролитические, а неполярные, они нужны для фильтрации высоких частот. Конденсатор на выходе, имеющий ёмкость 1,5 мФ, является электролитическим. По напряжению конденсаторы выбирайте в два раза больше, того напряжения, что действует в цепи.

Катушка нужна на величину индуктивности около 1 мГн. Таких катушек полно в радио- и телеаппаратуре, а также в тех же экономлампах.

Резисторы обязательно выбирайте по мощности с запасом. Оптимально для данной схемы подходят резисторы по 0,5 Вт. При увеличении выходного напряжения вдвое, необходимо также и сопротивление резисторов увеличивать вдвое.

Как ранее упоминалось, приведённая схема в первую очередь предназначена для питания компьютерного вентилятора завышенным вдвое входным напряжением. А вы можете, изменив соотношение витков на трансформаторе, изменять входное напряжение и в других пределах. В этом вам поможет умная голова, и умелые руки.

Автор: Виталий Петрович. Украина.

 


 

Преобразователь 24/12 своими руками | КОНВЕРТОР™

Принципиальная схема понижающего преобразователя напряжения 24 на 12-5В номинальным током 10А.

Представленная схема низковольтного DC-DC преобразователя 24/12-5 В., представляет собою импульсный преобразователь с регулировкой напряжения на выходе от 5В. до 15В с защитой от перенапряжения, по току и неправильной полярности на входе. Данная схема разработана* главным инженер-конструктором Конвертор™, проверена на практике и является рабочей. Схема достаточно проста и практически любой радиолюбитель сможет собрать данный преобразователь, и подключить 5-ти или 12-ти вольтовое оборудование к 24-вольтой бортовой сети транспорта. Обычно напряжение 5В используют для подключения зарядки для смартфона или видеорегистратора и дополнительных аксессуаров, а выходное напряжение 12В. позволяет подключить большинство автомобильного оборудования, к примеру сигнализацию.

Следует учитывать, что номинальный ток данного преобразователя напряжения на выходе составляет 10А, а максимальный ток 15А.

Соответственно не следует подключать оборудование с током потребления выше указанных  параметров.

Диапазон входного напряжения составляет 18-32В., что позволяет применить преобразователь для любого коммерческого автомобильного и большинства водного транспорта. Защита от перенапряжения срабатывает при 15В., которая пресекает превышение напряжения и обеспечивает сохранность подключенного оборудования. На входе расположен плавкий предохранитель номиналом 10А, который обеспечивает защиту от превышения по току, а от неправильной полярности – диод VD4 (см.схему).

Дроссель намотан на кольцевом сердечнике на основе распыленного железа внешним диаметром 33 мм. , с магнитной проницаемостью 100 мкГн и содержит 30 витков медного провода диаметром 1,5 мм. Для увеличения тока полевой транзистор и диод шоттки крепятся на радиаторе либо вместо радиатора используется корпус из рифленого алюминиевого профиля с утолщенными стенками.

Чтобы получить список электронных элементов, необходимо поставить отметку “мне нравится” и подписаться на наши страницы в facebook и instagram, далее поделится ссылкой на эту статью в своем профиле, затем ссылку на пост об этой статье в социальных сетях необходимо отправить через контактную форму.

Предупреждение! *Копирование и перепечатка данной статьи (принципиальная схема преобразователя 24/12-5. далее – схема) запрещена. Данная схема предназначена для частного и любительского применения. Любое частичное или полное использование авторской схемы в коммерческих целях запрещено согласно законов прав интеллектуальной собственности и действующим законодательством Украины.

Категории:24-12 Без рубрики

Автомобильный преобразователь напряжения с 12 вольт на 5 вольт 📹

 Всем хорошо известно, что номинальное бортовое напряжение легковых автомобилей составляет 12 вольт.   Может в некоторых случаях оно может быть 24 вольта, поскольку аккумуляторы на такое напряжение тоже встречаются, но мы об этом не знаем:)…
Однако напряжение 12 вольт не всегда является подходящим для многих электронных устройств, где применяется цифровая логика. Исторически сложилось так, что большинство логических микросхем работают с напряжением 5 вольт. Именно это напряжение зачастую и обеспечивается в машине с помощью зарядных устройств, адаптеров, стабилизаторов… Кстати, о таком зарядном устройстве мы уже рассказывали в одной из наших статей «Зарядной устройство на 5 вольт для применения в машине». Если сказать более того, то по сути, эта статья является неким продолжением приведенной нами статьи выше, с одним лишь исключением. Здесь будут собраны все возможные варианты обеспечивающие преобразование 12 вольт в 5 вольт. То есть мы разберем и относительно бесперспективные варианты на резисторах и транзисторе и поговорим о микросборках и схемах с использованием ШИМ, для реализации преобразователей напряжения в машине с 12 на 5 вольт. Итак, начнем.

Как из 12 вольт сделать 5 вольт с помощью резисторов

Использование резистора для снижения питающего напряжения  нагрузки это один из самых «неблагодарных» способов. Такое заключение можно сделать даже из самого определения  резистора. Резистор — пассивный элемент электрической цепи, обладающий определенным сопротивлением для электрического тока. Здесь ключевым будет слово «пассивный». Действительно, такая  пассивность не позволяет гибко реагировать на изменения напряжения, обеспечивая стабилизацию питания для нагрузки.
 Второй минус резистора это его относительно небольшая мощность.  Применять резистор, более чем на 3-5 Ватт смысла нет. Если необходимо рассеять большую мощность, то резистор будет слишком большим, а ток при рассеиваемой мощности не трудно посчитать. I=P/U=3/12=0,25 А. То есть 250 мА. Этого явно не хватит ни на видеорегистратор, ни навигатору. По крайней мере, с должным запасом.
 Все же ради интереса и ради тех, кому надо небольшой ток и нестабилизированное напряжение мы посчитаем и этот вариант. Так напряжение бортовой сети машины (автомобиля) 14 вольт, а надо 5 вольт. 14-5=9 вольт, которые надо сбросить. Ток скажем ток нагрузки будет те же 0,25 А при 3 Ваттном резисторе. R=9/0.25=36 Ом.  То есть можно взять 36 Омный резистор при токе потребления нагрузки 250 мА и на ней получится питающее напряжение 5 вольт.
 Теперь давайте поговорим о более «цивилизованных» вариантах преобразователя напряжения с 12 на 5 вольт.

Как из 12 вольт сделать 5 вольт с помощью транзистора

 Эта схема на транзисторе не самая простая в производстве, но при этом самая простая в функциональности. Сейчас мы говорим о том, что схема не защищена от короткого замыкания, от перегрева. Отсутствие такой защиты является неким недостатком. Актуальность этой схемы можно отнести к еще тем временам, когда не существовало микросборок (микросхем), преобразователей. Благо сейчас энных уйма и этот вариант, как и предыдущий, можно рассматривать также как один из возможных, но не предпочтительных.  Самым большим плюсом относительно варианта с резисторами будет активное изменение сопротивления, за счет применяемого стабилитрона и транзистора.   Именно эти радиоэлементы способны обеспечит стабилизацию. Теперь обо всем подробнее.

 Первоначально транзистор закрыт и не пропускает напряжение. Но после прохождения напряжения через резистор R1 и стабилитрон VD1 он открывается на уровень соответствующий напряжению стабилитрона. Ведь именно стабилитрон обеспечивает опорное напряжение для базы транзистора. В итоге, транзистор всегда открыт (закрыт) прямо пропорционально входному напряжению. Именно так обеспечивается снижение напряжения, а также его стабилизация. Конденсаторы выполняют функцию неких «электрических буферов», в случае резких скачков и провалов. Это придает схеме больше стабильности.  Итак, схема на транзисторе вполне работоспособна и применима. Ток для питания нагрузки здесь будет уже гораздо больше. Так скажем для транзистора указанного в схеме КТ815, это ток 1,5 А. Этого уже вполне достаточно, чтобы подключить навигатор, планшет или ведеорегистратор, но не все сразу!

Как из 12 вольт сделать 5 вольт с помощью микросхемы

 На смену транзисторным сборкам пришли микросхемы. Их плюсы очевидны. Здесь и электронщиком совсем не надо быть, можно все собрать без представлений, как и что работает. Хотя даже специалист не скажет, что же вшил в корпус производитель той или иной микросхемы, коих развелось на нашем рынке великое множество. Это собственно на руку нам, мы можем выбрать лучшее, за меньшие деньги. Также плюсами микросборок будет использование всевозможных защит, которые были недоступны в предыдущих вариантах. Это защита от КЗ и от перегрева. Как правило, это по умолчанию. Теперь давайте разберем подобные примеры.

Применения таких микросборок оправдано для случая, если вам необходимо питать одно из устройств, так как питающий ток соизмерим с предыдущим вариантом, порядка 1,5 А. Однако ток также будет зависеть и от корпуса сборки. Ниже приведены те же микросхемы, но в других типах корпусов. В этих случаях ток питания будет порядка 100 мА. Это вариант для маломощных потребителей. В любом случае ставим на микросхемы радиаторы.

Итак, в случае подключения нескольких устройств, придется подключать микросборки параллельно, по одной микросхеме на каждое устройство.  Согласитесь, сто это не совсем корректный вариант. Здесь лучше идти по пути увеличения выходного тока питания, и повышения КПД. Именно этот вариант нам предлагают микросхемы с ШИМ. О нем далее…

Как из 12 вольт сделать 5 вольт с помощью микросхемы с ШИМ

 Очень кратко и непрофессионально расскажем о широтно-импульсной модуляции. Вся ее суть сводится к тому, что питание осуществляется не постоянным током, а импульсами. Частота импульсов и их диапазон подбирается таким образом, чтобы питающая нагрузка воспринимала питание, словно ток постоянен, то есть не было отклонений в работе, отключений, миганий и т.д. Однако за счет того, что ток импульсный, и за счет того что он прерывистый, все элементы схемы работают уже со своеобразными «перерывам на отдых». Это позволяет сэкономить на потреблении, а также разгрузить рабочие элементы схемы. Именно из-за этого импульсные блоки питания и преобразователи такие маленькие, то такие «удаленькие».  Использование ШИМ позволяет повысить КПД схемы до 95-98 процентов. Поверьте это очень хороший показатель. Итак, приводим схему для преобразователя с 12 на 5 вольт использующего ШИМ.

Вот так она выглядит «вживую».

Более подробно об этом варианте все в той же статье про зарядное устройство на 5 вольт, которое мы упоминали ранее. 

Подводя итог о преобразователе напряжения с 12 на 5 вольт

 Все схемы и варианты преобразователей, про которые мы вам рассказали в этой статье, имеют право на жизнь. Самый простой вариант с резистором будет незаменим для варианта, когда вам необходимо подключить что-то маломощное и не требующее стабилизированного  напряжения.  Скажем пару светодиодов, подключенных последовательно. Кстати, о подключении светодиодов к 12 вольтам, вы можете узнать из статьи «Как подключить светодиод к 12 вольтам».
 Второй вариант будет уместен тогда, когда преобразователь вам нужен уже сейчас, а времени или возможности, сходить в магазин, нет. Найти транзистор и стабилитрон можно практически в любой технике под списание.
 Применение микросхем один из наиболее распространенных вариантов на сегодняшний день. Ну, а микросхемы с ШИМ это то, к чему все и идет. Именно так видятся наиболее перспективные и выгодные варианты преобразователей напряжения с 12 на 5 вольт.
 Последнее по хронологии статьи, но не по информативности нам хотелось напомнить о том, как должно подключаться питание к USB разъемам, будь то mini, micro разъемы.

Теперь вы сможете не только выбрать и собрать нужный вам вариант преобразователя, но и подключить его вашему электронному девайсу через разъем USB, ориентируясь на принятые стандарты питания.

Как из 12 вольт получить 24 вольта

Преобразователь напряжения пригодиться во многих случаях. Во-первых, этот прибор пригодится для получения напряжения 28 В, при питании коммутатора ADC гигабайтного Интернета, а также при подключении блока Macintosh G4s от стандартного блока питания компьютера ATX. Да ещё есть много случаев, когда вам пригодится отличное от стандартного напряжение.

Возможно даже вам потребуется подключить электрооборудование на 12 В к сети туристического прицепа или мотоцикла на 6 В. Также вы можете применить преобразователь для питания компьютерного кулера от 24 В, когда недостаточно обычной скорости вращения вентилятора от 12 В. В каких случаях нужно повысить скорость вращения кулера, вы можете узнать из других статей. Особенно нелишне будет прочесть рассказ о том, как собрать самодельный, мощный обогреватель для автомобиля.

Предложенная схема преобразователя напряжения используется для питания флуоресцентной лампы в планшетном сканнере.

Пояснения к схеме.

Трансформатор


необходимо собрать на ферритовом сердечнике. Преобразователь отлично будет работать на тороидальном сердечнике диаметром 30 мм, который похож на миниатюрный пончик. Если использовать броневой ферритовый магнитопровод, то преобразователь будет работать тоже. К тому же, состоящий из двух Ш-образных половинок сердечник легче найти, и наматывать проволоку на него легче. Броневой ферритовый магнитопровод можно найти, например: в поломанном компьютерном блоке питания, в цоколе сгоревшей компактной люминесцентной лампы (КЛЛ или экономлампе).

Обмоточной проволоки на сердечник трансформатора придётся мотать совсем не много, поэтому витки можно намотать даже тонким проводом в поливиниловой изоляции. Первичная обмотка повышающего трансформатора состоит всего лишь из 4 витков, две вторичные обмотки наматываются из 13 витков каждая.

Не ошибитесь, и соберите трансформатор правильно. Первичная обмотка наматывается в противоположном направлении, чем вторичные обмотки, которые намотаны в одном направлении. Начало одной вторичной обмотки соединено с концом другой. На схеме, точками возле «спиралек», обозначены начала обмоток трансформатора.

Транзисторы


нужны для ключей преобразователя биполярные. Так как, для выше названных целей применения нашего преобразователя, ток на выходе не может превысить 500 мА, то можно использовать распространённые транзисторы: 2N3904, 2N4401, PN2222, MPS2222, C945, NTE123AP. Если вы собираетесь запустить от преобразователя плазменный монитор, тогда нужно взять два транзистора помощнее, такие как D965, которые устанавливаются в фотовспышку фотоаппарата. Если же вам нужно подключить к преобразователю нагрузку мощностью более 5 А, тогда устанавливайте ключи на составных транзисторах, например TIP120 или TIP3055. Но тогда не забудьте поменять диоды в схеме, на такие которые выдержат токи свыше 10 А, а сами транзисторы уже понадобиться закрепить на радиаторы.

Диоды

устанавливайте не любые, которые найдёте, а те которые могут закрываться при обратной полярности тока за время 35 наносекунд, и меньше. Отлично, по этому показателю, для преобразователя подходят диоды 1N914 и 1N4148, но они выдерживают прямой ток не более 4 А. При подключении к преобразователю нагрузки более низкоомной, чем кулер, нужно поставить выпрямители SUF30J, UF510, UF540, которые могут работать при токах 15 – 20 А.

Конденсаторы

можно выбрать с изоляционной обкладкой, как из полиэстера, так и из полипропилена. Конденсаторы на 100 пФ и 470 пФ не электролитические, а неполярные, они нужны для фильтрации высоких частот. Конденсатор на выходе, имеющий ёмкость 1,5 мФ, является электролитическим. По напряжению конденсаторы выбирайте в два раза больше, того напряжения, что действует в цепи.

Катушка


нужна на величину индуктивности около 1 мГн. Таких катушек полно в радио- и телеаппаратуре, а также в тех же экономлампах.

Резисторы

обязательно выбирайте по мощности с запасом. Оптимально для данной схемы подходят резисторы по 0,5 Вт. При увеличении выходного напряжения вдвое, необходимо также и сопротивление резисторов увеличивать вдвое.

Как ранее упоминалось, приведённая схема в первую очередь предназначена для питания компьютерного вентилятора завышенным вдвое входным напряжением. А вы можете, изменив соотношение витков на трансформаторе, изменять входное напряжение и в других пределах. В этом вам поможет умная голова, и умелые руки.

Преобразователи напряжения (инверторы) 12/24 В в 220 В.


Мощность от 100 до 1000Вт.
Собственное производство. Гарантия на инверторы 5 лет.

Преобразователи напряжения 12 в 24В и 24 в 12В

Для таких случаев мы предлагаем преобразователь напряжения ПН12/24-150
, обеспечивающий получение стабилизированного напряжения 24В от автомобильного аккумулятора 12В. Этот преобразователь имеет номинальную выходную мощность 100Вт (выходной ток 4,2А) и максимальную 150Вт (выходной ток 6,3А). Подробное описание и электрическую схему преобразователя ПН12/24-150
смотрите на нашем сайте radio-nn.ru

Также мы предлагаем универсальные преобразователи ПН12/24/220 — 400 и ПН24/12/220-400, имеющие два выходных напряжения: постоянное 12В (24В) и переменное 220В 50Гц. Эти преобразователи построены на базе выпускаемых нашим предприятием преобразователей напряжения ПН12/220-400 и ПН24/220-400. При сохранении своей основной функции, получения переменного напряжения 220В, в преобразователь добавляется дополнительный выход постоянного напряжения 12В (24В). Мощность нагрузки по дополнительному выходу равна номинальной мощности преобразователя. Естественно, что суммарная мощность при работе обоих выходов не должна превышать номинальную.

Рассмотрим схему получения в преобразователе дополнительных выходных напряжений. Наиболее просто решается задача преобразования постоянного напряжения 12В в 24В.

Преобразователи напряжения 12В в 24В

Так как в подавляющем большинстве случаев 12-вольтовые инверторы построены по полумостовой схеме (см. раздел «Основные типы преобразователей напряжения «), то в этом случае достаточно заменить в выходном каскаде диоды FR207 на более мощные и увеличить емкость злектролитического конденсатора до 2000-4000 мкФ на напряжение 35-50В. Фрагмент электрической принципиальной схемы инвертора с этими элементами показан на рис.1.

Выходной каскад преобразователя напряжения ПН 12/200-300

Так как форма выходного сигнала преобразователя напряжения прямоугольная, то больших значений емкости не требуется. В качестве мощных выпрямительных диодов удобно использовать КД206, так как у них катод соединён с корпусом, и следовательно, их можно установить без изоляции на радиаторы мощных выходных транзисторов. В зависимости от требуемого максимального тока по выходу 24В устанавливаются параллельно один или два диода в каждое плечо мостовой схемы. С целью снижения потерь можно использовать диоды Шоттки, например, SR510 (5А, 100В) или диодные сборки с общим катодом SB16100CT (16A 100В).

Преобразователи напряжения 24В в 12В

Для преобразования постоянного напряжения 24В в 12В в трансформаторе приходится делать дополнительную обмотку, напряжение с которой выпрямляется и фильтруется. Конечно, это не так удобно, как в предыдущем случае, поэтому иногда проще применить отдельный адаптер 24/12В. Такие устройства в большом ассортименте выпускаются промышленностью и достаточно дешевы. Строятся они по принципу линейного (параметрического) или импульсного источника питания.
(Подробнее см. «

Недавно мы рассматривали устройство понижающее напряжение с 24 до 12 вольт, а теперь изучим повышающий преобразователь 12-24 В. Этот DC-DC преобразователь собран на основе специализированной микросхемы LM2585 производства Texas Instruments. Схема понадобилась для использования в авто (в частности для зарядки ноутбука на 20 В) и была выбрана за предельную простоту, требующую минимального числа внешних компонентов. Элемент переключения — транзистор, интегрирован внутрь регулятора, и способен выдерживать максимальный ток 3А и 60V напряжения. Частота переключения определяется параметрами внутреннего генератора и зафиксирована на 100 кГц. Дополнительные функции — схема плавного пуска, чтобы устранить скачки тока во время пуска и внутреннее ограничение тока. Поддержание точности выходного напряжения составляет 4% в зависимости от нагрузки.
Схема преобразователя 12-24 В

Технические характеристики преобразователя

  • Vin 10-15V DC
  • Vout 24V
  • Iout 1А
  • частота 100 кГц
  • Вообще сама микросхема обладает более широким диапазоном напряжений и токов. Входное напряжение 4-40 В, выходное до 60 вольт, а предельный ток 3 ампера. Более подробно изучайте в даташите на LM2585.

    Входные конденсаторе и диоде должны располагаться достаточно близко к регулятору, чтобы свести к минимуму индуктивности. Элементы IC1, L1, D1, C1, C2, C5, C6 — основные части, используемые в преобразователе напряжения. Конденсатор С3 при монтаже должен располагаться как можно ближе к IC1. Конденсаторы выбирайте типа low ESR с низким сопротивлением постоянному току.

    При максимальной выходной мощности, заметна значительная выработка тепла, по этой причине микросхема монтируется непосредственно на общей земле платы.
    Графики работы инвертора

    Последний график показывает пульсации выходного напряжения и тока индуктивности. Мы видим, что пульсации выходного напряжения составляет около 0,6 Vpp и пиковый ток 2,4 А. Дроссель в конструкции использован на 5 A постоянного тока, поэтому он может легко выдержать такой ток и без особого нагрева катушки.

    Простой преобразователь с 12 на 220 В своими руками

    Сделать своими руками преобразователь 12-220 В для питания приборов мощностью до 1000 Вт и выше можно разными методами. Наиболее доступный вариант – поместить приобретенный блок инвертора в корпус с теплоотводом.

    Немного сложнее собрать такой блок из печатной платы и дополнительных компонентов. Для этого нужно уметь паять и пользоваться мультиметром, знать разводки выводов активных элементов или уметь их находить. Также необходимо уметь рассчитывать подходящее сечение провода с учетом силы тока и знать правила добавления в схему электролитических конденсаторов, диодов и других полярных компонентов.

    Еще один способ создания инвертора 12-220 В – использовать для этих целей UPS от компьютера. К нему подключается автоаккумулятор. Заряжается он отдельно. И последний, самый сложный метод – выбрать вариант преобразования и схему в соответствии с имеющимися потребностями и деталями, выполнить расчет и собрать ее самостоятельно. Для решения этой задачи элементарных электронных навыков недостаточно. Необходимо еще уметь пользоваться разнообразными приборами для измерений и выполнять расчеты.

    Как сделать преобразователь с 12 на 220 В из готового модуля

    Корпуса инверторов дополнительно выполняют функции теплоотводов для находящихся в них транзисторных ключей высокой мощности. При самостоятельной сборке преобразователя необходимо найти подходящий радиатор или сделать его самостоятельно. Он должен иметь толщину от 4 мм в области размещения ключей и достаточную площадь, чтобы на 1 кВт отдаваемой мощности каждого из ключей обеспечивалось минимум 50 см2 радиатора.

    Если требуется обдув от кулера на 12 В 110-130 мА, то дополнительно нужно от 30 см2 на 1 кВт каждого ключа. Кроме радиатора понадобятся теплопроводящие прокладки для изоляции, чашечки и шайбы под винты, провода, для модуля с тепловой защитой – термопаста для его крепления.

    Как сделать простой преобразователь с 12 на 220 В из UPS

    Чтобы сделать из UPS от компьютера инвертор 12-220 В для подключения всевозможных устройств в рамках допустимой мощности, следует заменить имеющиеся провода, идущие к «родной» батарее, длинными проводами с зажимами под клеммы автоаккумулятора. Их сечение подбирается с учетом допустимых значений плотности тока 20–25 А/мм2.

    UPS обычно содержат свинцово-кислотные батареи. Их разряд контролируется по напряжению, и контроллер ИБП не допустит чрезмерного разряда используемой батареи. Но в штатных батареях UPS находится гелевый электролит, а в авто АКБ – жидкий. Принципы восполнения заряда у них отличаются, поэтому в дополнение к инвертору на UPS необходимо соответствующее зарядное устройство.

    Алгоритм создания инвертора 12-220 В

    Для создания преобразователя с выходными параметрами 220 В, 50 Гц необходим частотомер. Подойдет простейшая модель – электромеханический резонансный прибор или стрелочный вариант произвольного типа. Он обеспечит контроль частоты, колебания которой в электросети допускаются в диапазоне 48–53 Гц. К отклонениям от нормы частоты напряжения питания наиболее чувствительны электродвигатели переменного тока. В таких ситуациях они нагреваются и отклоняются от номинальных оборотов, что особенно рискованно для кондиционеров и холодильников (риск разгерметизации).

    Как правило, питание 220 В, 50 Гц необходимо потребителям небольшой мощности – в пределах 350 Вт. В подобных случаях можно создать преобразователь на базе ИБП от компьютера. Отдаваемая в нагрузку мощность примерно будет составлять 0,7 от номинала мощности ИБП.

    Читайте в нашей предыдущей статье о видах АКБ для систем видеоконтроля.

    Преобразователь напряжения 12 на 220 и 220 на 12 вольт своими руками — ВикиСтрой

    Корпус для инвертора

    Первое, что нужно учесть — потери преобразования электричества, выделяющиеся в виде тепла на ключах схемы. В среднем эта величина составляет 2–5% от номинальной мощности устройства, но показатель этот имеет свойство расти из-за неправильного подбора или старения комплектующих.

    Отвод тепла от полупроводниковых элементов имеет ключевое значение: транзисторы очень чувствительны к перегреву и выражается это в быстрой деградации последних и, вероятно, их полному отказу. По этой причине основанием для корпуса должен служить теплоотвод — алюминиевый радиатор.

    Из радиаторных профилей хорошо подойдёт обычная «расчёска» шириной 80–120 мм и длиной около 300–400 мм. к плоской части профиля винтами крепятся экраны полевых транзисторов — металлические пятачки на их задней поверхности. Но и с этим не всё просто: электрического контакта между экранами всех транзисторов схемы быть не должно, поэтому радиатор и крепления изолируются слюдяными плёнками и картонными шайбами, при этом по обе стороны диэлектрической прокладки металлсодержащей пастой наносится термоинтерфейс .

    Определяем нагрузку и закупаем компоненты

    Крайне важно понимать, почему инвертор — это не просто трансформатор напряжения, а также почему существует столь разнообразный перечень подобных устройств. Прежде всего помните, что подключив трансформатор к источнику постоянного тока, вы ничего не получите на выходе: ток в АКБ не меняет полярности, соответственно, явление электромагнитной индукции в трансформаторе отсутствует как таковое.

    Первая часть схемы инвертора — входной мультивибратор, имитирующий колебания сети для совершения трансформации. Собирается он обычно на двух биполярных транзисторах, способных раскачать силовые ключи (например, IRFZ44, IRF1010NPBF или мощнее — IRF1404ZPBF), для которых важнейший параметр — предельно допустимый ток. Он может достигать нескольких сотен ампер, но в целом вам достаточно умножить значение тока на вольтаж аккумуляторной батареи, чтобы получить ориентировочное количество ватт выходной мощности без учёта потерь.

    Простой преобразователь на основе мультивибратора и силовых полевых ключей IRFZ44

    Частота работы мультивибратора непостоянна, рассчитывать и стабилизировать её — пустая трата времени. Вместо этого ток на выходе трансформатора снова превращается в постоянный с помощью диодного моста. Такой инвертор может быть пригоден для питания чисто активных нагрузок — ламп накаливания или электрических нагревателей, печек.

    На основе полученной базы можно собирать и другие схемы, отличающиеся частотой и чистотой выходного сигнала. Подбор компонентов для высоковольтной части схемы сделать проще: токи здесь не такие высокие, в ряде случаев сборку выходного мультивибратора и фильтра можно заменить парой микросхем с соответствующей обвязкой. Конденсаторы для нагрузочной сети следует использовать электролитические, а для цепей с низким уровнем сигнала — слюдяные.

    Вариант преобразователя с генератором частоты на микросхемах К561ТМ2 в первичном контуре

    Стоит также заметить, что для увеличения итоговой мощности вовсе не обязательно закупать более мощные и стойкие к нагреву компоненты первичного мультивибратора. Задачу можно решить увеличением числа преобразовательных контуров, включенных параллельно, но для каждого из них потребуется собственный трансформатор.

    Вариант с пареллельным подключением контуров

    Борьба за синусоиду — разбираем типовые схемы

    Инверторы напряжения сегодня используются повсеместно как автолюбителями, желающими пользоваться бытовой техникой вдалеке от дома, так и обитателями автономных жилищ, питающихся солнечной энергией. И в целом можно сказать, что от сложности устройства преобразователя напрямую зависит ширина спектра токоприёмников, которые можно к нему подключить.

    К сожалению, чистый «синус» присутствует только в магистральной электросети, добиться преобразования постоянного тока в него очень и очень сложно. Но в большинстве случаев этого и не требуется. Чтобы подключать электрические двигатели (от дрели до кофемолки), достаточно пульсирующего тока с частотой от 50 до 100 герц без сглаживания.

    ЭСЛ, светодиодные лампы и всевозможные генераторы тока (блоки питания, зарядные устройства)более критичны к выбору частоты, поскольку именно на 50 Гц основана схема их работы. В таких случаях следует включать во вторичный вибратор микросхемы, зовущиеся генератором импульсов. Они могут коммутировать небольшую нагрузку непосредственно, либо исполнять роль «дирижёра» для серии силовых ключей выходной цепи инвертора.

    Но даже такой хитрый план не сработает, если вы планируете использовать инвертор для стабильного питания сетей с массой разнородных потребителей, включая асинхронные электрические машины. Здесь чистый «синус» очень важен и реализовать такое под силу лишь преобразователям частоты с цифровым управлением сигналом.

    Трансформатор: подберём или сами

    Для сборки инвертора нам не хватает всего одного элемента схемы, выполняющего трансформацию низкого напряжения в высокое. Вы можете использовать трансформаторы из блоков питания персональных компьютеров и старых ИБП, их обмотки как раз рассчитаны на трансформацию 12/24–250 В и обратно, остаётся лишь правильно определить выводы.

    И всё же лучше намотать трансформатор своими руками, благо что ферритовые кольца дают возможность сделать это самому и с любыми параметрами. Феррит обладает отличной электромагнитной проводимостью, а значит, потери при трансформации будут минимальными даже если провод намотан вручную и не плотно. К тому же вы легко рассчитаете необходимое количество витков и толщину провода по имеющимся в сети калькуляторам.

    Перед намоткой кольцо сердечника нужно подготовить — снять надфилем острые кромки и плотно обмотать изолятором — стеклотканью, пропитанной эпоксидным клеем. Далее следует намотка первичной обмотки из толстого медного провода расчётного сечения. После набора нужного количества витков их необходимо равномерно распределить по поверхности кольца с равным интервалом. Выводы обмотки соединяются согласно схеме и изолируются термоусадкой.

    Первичная обмотка покрывается двумя слоями лавсановой изоленты, затем наматывается высоковольтная вторичная обмотка и ещё один слой изоляции. Важный момент — мотать «вторичку» нужно в обратном направлении, иначе трансформатор работать не будет. В завершение к одному из отводов нужно припаять в разрыв полупроводниковый термопредохранитель, ток и температура срабатывания которого определяются параметрами провода вторичной обмотки (корпус предохранителя нужно плотно примотать к трансформатору). Сверху трансформатор обматывается двумя слоями виниловой изоляции без клейкой основы, конец закрепляется стяжкой или цианакрилатным клеем.

    Монтаж радиоэлементов

    Осталось собрать устройство. Поскольку компонентов в схеме не так много, можно размещать их не на печатной плате, а навесным монтажом с креплением к радиатору, то есть к корпусу устройства. К штыревым ножкам подпаиваемся моножильным медным проводом достаточно большого сечения, затем место соединения укрепляется 5–7 витками тонкой трансформаторной проволоки и небольшим количеством припоя ПОС-61. После остывания соединения оно изолируется тонкой термоусадочной трубкой.

    Схемы высокой мощности и со сложным вторичным контуром могут потребовать изготовления печатной платы, на краю которой в ряд размещены транзисторы для свободного крепления к теплоотводу. Для изготовления печатки пригоден стеклотекстолит с толщиной фольги не менее 50 мкм, если же покрытие более тонкое — усиливайте цепи низкого напряжения перемычками из медного провода.

    Изготовить печатную плату в домашних условиях сегодня просто — программа Sprint-Layout позволяет рисовать обтравочные трафареты для схем любой сложности, в том числе и для двухсторонних плат. Полученное изображение распечатывается лазерным принтером на качественной фотобумаге. Затем трафарет прикладывается к очищенной и обезжиренной меди, проглаживается утюгом, бумага размывается водой. Технология получила название «лазерно-утюжной» (ЛУТ) и описана в сети достаточно подробно.

    Вытравливать остатки меди можно хлорным железом, электролитом или даже поваренной солью, способов предостаточно. После вытравливания припекшийся тонер нужно смыть, просверлить монтажные отверстия сверлом в 1 мм и пройтись по всем дорожкам паяльником (под флюсом), чтобы залудить медь контактных площадок и улучшить проводимость каналов.

    рмнт.ру

    16.09.16

    Как соединить две 12-вольтовые батареи для получения 24 вольт

    Батареи можно соединить в электрическую цепь так, чтобы их напряжения складывались. Это необходимо, когда у вас нет ни одной батареи, обеспечивающей напряжение, необходимое для определенного электрического устройства. Это особенно распространенная проблема с морским оборудованием, которое часто использует 24 вольта, в то время как многие батареи только 12 вольт.

    При наличии достаточного терпения и внимательного следования инструкциям 12-вольтовые батареи могут мгновенно обеспечить 24-вольтовые батареи.

    Подключение аккумуляторов

    Подключите положительный полюс аккумулятора к положительному выводу (провод питания) электрического устройства с помощью кабеля аккумулятора. Подключите отрицательную клемму аккумулятора к отрицательной клемме электрического устройства (заземление) с помощью другого электрического кабеля. Важно убедиться, что ваше рабочее место чистое и чистое и не содержит каких-либо легковоспламеняющихся материалов, таких как спирт, бензин или других простых предметов домашнего обихода, таких как легковоспламеняющиеся чистящие растворы, а также предметов одежды, полотенец и одеял, которые могут легко воспламениться. если рядом с пламенем.

    Также будьте осторожны, чтобы во время работы не было стоячей или лужи воды. При работе с батареями и напряжением вблизи воды и вокруг нее очень легко получить удар током. Работая с любым типом электрического заземления или без него, всегда есть элемент опасности поражения электрическим током, пожара или чего-то худшего. Всегда соблюдайте осторожность.

    Какой ток у батареи?

    Обратите внимание, что это устройство обеспечивает 12 вольт тока. Если электрическое устройство представляет собой троллинговый двигатель на 24 В, аккумулятор будет обеспечивать двигатель только 12 из 24 вольт электричества, необходимого для запуска лодки.

    Добавление дополнительной батареи

    Добавьте в цепь вторую батарею на 12 В. Отсоедините кабель от заземления стартера и подключите его к отрицательной клемме второй аккумуляторной батареи. Подключите аккумуляторный кабель от отрицательной клеммы второй аккумуляторной батареи к заземлению стартера.

    Сколько энергии потребляет батарея?

    Рассчитайте полное напряжение в цепи. В этой схеме батареи подключены последовательно, что означает, что напряжения складываются.Таким образом, общее напряжение в цепи будет 24 вольта, и стартер сможет работать от аккумуляторов.

    Используйте 12-вольтовые батареи для работы 12-вольтовых и 24-вольтовых устройств. Например, на лодке может быть стартер на 12 В для главного двигателя и троллинговый двигатель на 24 В. Подключив пару батарей на 12 В последовательно, вы можете использовать одни и те же батареи для выполнения двух разных задач.

    Как и при любой процедуре проб и ошибок, важно правильно утилизировать все использованные и неиспользованные материалы.Бросок материалов в мусор может по незнанию создать опасность пожара.

    Как и зачем подключать 12-вольтовую систему с двумя батареями для получения 12 или 24 вольт

    В зависимости от того, как они подключены, две 12-вольтовые батареи дают 12-вольтовую систему с удвоенным током или Более эффективная 24-вольтовая система с удвоенной скоростью вращения коленчатого вала

    Легковые автомобили, грузовики, жилые автофургоны и дома на колесах работают от двух 12-вольтных батарей по разным причинам. В зависимости от того, как вы подключаете 12-вольтовую систему с двумя батареями, результатом может быть 12-вольтовая система или 24-вольтовая система — или даже одновременно 12 и 24 вольта.

    • Будет 12 вольт (около 14,2 вольт с генератором переменного тока), если батареи не соединены вместе, а изолированы друг от друга. Вы можете использовать два отдельных жгута или использовать разъединитель аккумулятора или селекторный переключатель.
    • Будет 12 вольт, если батареи соединены вместе по параллельно : положительный вывод к положительному выводу, а отрицательный к отрицательному. Выход усилителя будет суммой нескольких батарей, подключенных таким образом.
    • Будет 24 В (около 28 В с генератором), если две 12-вольтовые батареи соединены вместе в серии : Подключите положительный полюс одной батареи к отрицательной клемме другой батареи.Напряжение удваивается, но ампер остается прежним.

    Примеры использования двух батарей:

    Балласт гоночного автомобиля: Две установленные в багажнике батареи могут обеспечить критический балласт, особенно в классах, где правила запрещают использование специального балласта.

    Автомобиль без генератора переменного тока: Если вы не используете генератор переменного тока, но используете современную систему зажигания высокой мощности и другие энергоемкие устройства (например, электрический водяной насос, электрический топливный насос, транс- тормоза, азотные соленоиды и коробки задержки) в тягаче одна батарея может быть выделена только для системы зажигания, а другая питает оставшихся потребителей тока.

    Посмотреть все 3 фотографии Изолятор батареи отделяет вспомогательную батарею от основной, чтобы дополнительные нагрузки не разряжали батарею. Powermaster PN 194, показанный здесь, имеет номинальную мощность 200 ампер и (по состоянию на июнь 2020 года) стоит 143,99 доллара на Summit Racing.

    Фото предоставлено: Summit Racing

    Высококачественные «шоу-машины» с аудиосистемой high-zoot: Отдельная батарея, предназначенная только для звуковой системы и изолированная от остальной электрической системы, может потребоваться, если автомобиль сидит на парковке с динамиками, излучающими большую вибрацию в течение длительного периода времени.Подобная установка будет включать две батареи, механический морской переключатель с двумя батареями и изолятор батареи. Это позволяет генератору перезаряжать как основную, так и вспомогательную батареи, когда автомобиль работает, но при выключении вспомогательная батарея, используемая для питания звуковой системы, разряжается.

    Жесткий запуск с высокой степенью сжатия и большим ускорением: Параллельная работа нескольких аккумуляторов генерирует больше тока холодного запуска во время запуска, хотя напряжение все еще составляет 12 вольт.Современные аккумуляторные батареи и стартеры настолько эффективны, что обычно это не проблема; Прежде чем что-либо делать, сначала проверьте, нет ли чрезмерного падения напряжения или плохого заземления на проводах стартера, а не на разряженной батарее или стартере.

    Посмотреть все 3 фотографии В основном это разница между последовательным и параллельным подключением двух 12-вольтовых батарей. Параллельная цепь по-прежнему генерирует 12 вольт, но удваивает выходную силу тока. Последовательная цепь дает 24-вольтовую систему, но сила тока не меняется.24 вольта на стартер и соленоид заставляют его проворачивать в два раза быстрее, чем 12 вольт.

    Фото предоставлено: MARLAN DAVIS

    Максимальная мощность запуска: Когда даже две 12-вольтовые батареи, подключенные параллельно, не могут выполнить свою работу, или если вы — автомобиль аварийной службы AAA, который должен Crook, начни что-нибудь, пора сжечь 24 вольта, подключив батареи последовательно. Подключите положительную клемму одной батареи к отрицательной клемме другой батареи (см. Рисунок).Это обеспечивает большую мощность запуска, чем даже две 12-вольтовые батареи, подключенные параллельно. Пускатели с прерывистым режимом работы могут работать с напряжением 24 В, ну, с перебоями.

    Постоянные 24вольта: Если этого достаточно для реактивного истребителя, то для моей машины вполне достаточно. Кроме того, я просто пускаю слюни на все эти уловки в магазине излишков. Проблема в том, что полное преобразование на 24 В в автомобиле может оказаться непрактичным в реальном мире. Автомобильные аксессуары для постоянного режима работы не выдерживают 24 вольт в течение длительного времени (если вообще), а 24-вольтовые эквиваленты для повседневных автомобильных запчастей могут оказаться непрактичными или недоступными.(Но если две 12-вольтовые батареи подключены для получения 24-вольтовой системы, вы все равно можете использовать 12-вольтовый генератор переменного тока для их зарядки.)

    Двойная 12/24-вольтовая система: Еще один «поворот» проводки заключается в использовании соленоида длительного режима Littelfuse (ранее Cole Hersee) для создания распределительной цепи « серия / параллель », которая генерирует 24 В при проворачивании коленчатого вала, а затем по умолчанию возвращается к 12 В для питания всего остального при нормальных условиях работы.

    Littelfuse Inc., Чикаго, Иллинойс, 773.628.1000, Littelfuse.com
    Powermaster Motorsports, W. Чикаго, Иллинойс, 630.957.4019 (продажи) или 630.849.7754 (технические), PowermasteMotorsports.com
    Summit Racing Equipment, Акрон, Огайо, 800.230.3030 (США) или 330.630. 3030 (за пределами США), SummitRacing.com

    Дает ли соединение двух 12-вольтовых батарей вместе 24 вольта?

    • Две или более 12-вольтовых батареи, подключенные параллельно — положительный к положительному, отрицательный к отрицательному — все еще представляют собой 12-вольтовую систему.
    • Две или более 12-вольтовых батареи, соединенных последовательно — положительный полюс одной батареи, соединенный с отрицательной клеммой второй батареи — вырабатывают 24 вольта, но сила тока не меняется.

    Просмотреть все 3 фотографииRon Rollings

    Общие сведения о конфигурациях батарей | Аккумулятор

    Что такое банк батарей? Нет, аккумуляторные банки — это не какие-то финансовые учреждения. Блок батарей — это результат соединения двух или более батарей вместе для одного приложения. Что это дает? Ну, подключив батареи, вы можете увеличить напряжение, силу тока или и то, и другое. Когда вам нужно больше мощности, вместо того, чтобы обзавестись огромным супертанкером с батареей для дома на колесах.Например, вы можете построить аккумуляторную батарею, используя мощную аккумуляторную батарею AGM для автофургона, кемпинга или прицепа.

    Первое, что вам нужно знать, это то, что существует два основных способа успешного соединения двух или более батарей: первый — через серию, а второй — параллельный. Начнем с метода серий, сравнивая серию и параллель.

    Как подключить батареи последовательно: При последовательном подключении батарей добавляется напряжение двух батарей, но сохраняется одинаковая сила тока (также известная как ампер-часы).Например, эти две 6-вольтовые батареи, соединенные последовательно, теперь вырабатывают 12 вольт, но их общая емкость по-прежнему составляет 10 ампер.

    Для последовательного соединения батарей используйте перемычку для соединения отрицательной клеммы первой батареи с положительной клеммой второй батареи. Используйте другой набор кабелей для подключения открытых положительных и отрицательных клемм к вашему приложению.

    При подключении аккумуляторов: Никогда не перекрещивайте оставшиеся разомкнутые положительный и открытый отрицательный полюсы друг с другом, так как это приведет к короткому замыканию аккумуляторов и вызовет повреждение или травму.

    Убедитесь, что подключаемые батареи имеют одинаковое напряжение и емкость. В противном случае у вас могут возникнуть проблемы с зарядкой и сокращение срока службы батареи.

    Как подключить батареи параллельно: Другой тип подключения — параллельно. Параллельное соединение увеличит ваш номинальный ток, но напряжение останется прежним. На «параллельной» диаграмме мы вернулись к 6 вольт, но ампер увеличился до 20 Ач. Важно отметить, что из-за увеличения силы тока аккумуляторов вам может потребоваться более прочный кабель, чтобы кабели не перегорели.

    Чтобы соединить батареи параллельно, используйте перемычку для соединения положительных клемм и другую перемычку для соединения отрицательных клемм обеих батарей друг с другом. От отрицательного к отрицательному и от положительного к положительному. Вы МОЖЕТЕ подключить нагрузку к ОДНОЙ из батарей, и она будет разряжать обе батареи одинаково. Однако предпочтительный метод поддержания уровня заряда батарей — это подсоединение к плюсу на одном конце батарейного блока и к минусу на другом конце блока.

    Также возможно подключение аккумуляторов последовательно и параллельно. Это может показаться запутанным, но мы объясним ниже. Таким образом вы можете увеличить выходное напряжение и номинальный ток в ампер / час. Чтобы сделать это успешно, вам понадобится как минимум 4 батарейки.

    Если у вас есть два набора батарей, уже подключенных параллельно, вы можете соединить их вместе, чтобы сформировать серию. На диаграмме выше у нас есть аккумуляторная батарея, которая выдает 12 вольт и рассчитана на 20 ампер-часов.

    Не теряйся сейчас. Помните, что электричество проходит через параллельное соединение так же, как и в одиночной батарее. Разницы не видно. Таким образом, вы можете последовательно соединить два параллельных соединения, как две батареи. Требуется только один кабель; мост между положительной клеммой одного параллельного банка и отрицательной клеммой другого параллельного банка.

    Это нормально, если к терминалу подключено более одного кабеля. Необходимо успешно строить такие аккумуляторные батареи.

    Теоретически вы можете подключить столько батарей, сколько захотите. Но когда вы начинаете собирать путаницу из батарей и кабелей, это может сбивать с толку, а путаница может быть опасной. Помните о требованиях к вашему приложению и придерживайтесь их. Также используйте батареи той же мощности. По возможности избегайте смешивания и соответствия размеров батарей.

    Всегда помните о безопасности и следите за своими связями. Если это поможет, сделайте схему своих батарейных блоков, прежде чем пытаться их построить.Удачи!


    Краткий справочник по словарю:

    Ампер-час — это единица измерения электрической емкости аккумулятора. Стандартный номинал усилителя рассчитан на 20 часов.

    Напряжение представляет собой давление электричества. Некоторые приложения требуют большего «давления», что означает более высокое напряжение.

    Выберите более мощный аккумулятор

    Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.

    Соединяя батареи вместе | Учебники по альтернативной энергии

    Соединение батарей вместе
    Статья
    Учебники по альтернативной энергии
    08.12.2013
    05.02.2021

    Учебники по альтернативной энергии

    Соединение аккумуляторов для увеличения емкости аккумулятора

    Большинство систем производства альтернативной энергии делятся на две основные категории: «системы, подключенные к сети» и «системы вне сети». Системы, подключенные к сети, названы так потому, что они подключаются непосредственно к электросети, и если электрическое генерирующее устройство, солнечные панели, ветряные турбины, гидрогенератор и т. Д. Вырабатывают больше электроэнергии, чем необходимо, избыток подается в сеть.

    Но также возможны подключенные к сети системы с резервным аккумулятором (гибридные системы). Для систем с подключением к сети на базе аккумуляторных батарей требуется инвертор другого типа и контроллер заряда для контроля потока электричества в аккумуляторную батарею и из нее.

    Автономные или автономные системы используют батареи для хранения электроэнергии. Автономные системы идеальны для удаленных сельских районов и приложений, где подключение к коммунальной сети непрактично или недоступно.В этих случаях более рентабельно установить единую автономную автономную систему, чем оплачивать расходы на продление местной электроэнергетической компании линий электропередач и кабелей непосредственно к дому.

    Типичная батарея глубокого разряда

    Все автономные и альтернативные системы с резервным аккумулятором, будь то ветряные, солнечные или гидроэнергетические системы, требуют некоторой формы хранения аккумуляторов, поэтому важно, чтобы соединение аккумуляторов было выполнено правильно. Электрический генератор заряжает батареи, обычно в светлое время суток для солнечной энергии, а батареи подают энергию, когда это необходимо, часто ночью и в пасмурную погоду, поэтому соединение батарей вместе для хранения этой свободной солнечной энергии является важной частью любого выключения. система возобновляемых источников энергии.

    В настоящее время используются два наиболее распространенных типа аккумуляторных батарей: свинцово-кислотные и щелочные. Свинцово-кислотные батареи имеют пластины, сделанные из свинца, смешанного с другими материалами и погруженного в раствор серно-кислотного электролита. Свинцово-кислотная батарея является неотъемлемой частью любой автономной электрической системы с альтернативной энергией, и фундаментальная свинцово-кислотная технология не изменилась с момента ее изобретения.

    Свинцово-кислотные батареи являются наиболее распространенными в системах зарядки возобновляемых источников энергии, потому что их начальная стоимость ниже и потому, что они легко доступны почти повсюду в мире.Свинцово-кислотные аккумуляторы глубокого цикла называются вторичными аккумуляторами, так как их можно заряжать током. Первичная батарея — это аккумулятор, который нельзя перезаряжать. Следовательно, все батареи глубокого разряда являются вторичными.

    Аккумуляторы глубокого разряда — это свинцово-кислотные аккумуляторы, специально разработанные для обеспечения постоянного тока в течение длительного периода времени. Существует множество свинцово-кислотных аккумуляторов глубокого разряда различных размеров и конструкций, все они рассчитаны на многократную разрядку до 80% своей емкости, поэтому они являются хорошим выбором для автономных систем.Несмотря на то, что они разработаны, чтобы выдерживать глубокие циклы, эти батареи будут иметь более длительный срок службы, если циклы будут меньше.

    Подключение аккумуляторов глубокого разряда

    Батареи обычно соединяются проводом или соединяются вместе для получения определенного напряжения и емкости хранения в ампер-часах. Батареи небольших систем возобновляемой энергии, например, те, которые используются для питания кают, жилых автофургонов, лодок и т. Д., Обычно имеют проводку для выработки электроэнергии напряжением 12 В. Автономные системы, используемые для электроснабжения домов, предприятий и т. Д., Обычно имеют проводку для производства электроэнергии 24 или 48 вольт постоянного тока.Это низковольтное электричество постоянного тока также может быть преобразовано в электричество переменного тока сети с помощью инвертора, который повышает напряжение до 120 или 240 вольт, обычно используемых для питания более крупных электрических устройств.

    Когда несколько аккумуляторов глубокого разряда подключены вместе, результирующий аккумуляторный блок будет иметь другое напряжение или другую емкость в ампер-часах (или обе) по сравнению с одной батареей. Батареи могут быть соединены проводом или соединены друг с другом в последовательной или параллельной комбинации, либо в обоих случаях для увеличения напряжения или текущей емкости батарейного блока.Затем соединение батарей вместе позволяет увеличить емкость батареи.

    Батареи, соединенные вместе в серии

    Банк батарей создается путем соединения двух или более батарей глубокого разряда вместе. Батарейные блоки, состоящие из батарей, соединенных последовательно, имеют ту же текущую емкость, что и отдельные батареи, но напряжение умножается на количество батарей в последовательном ряду.

    В последовательно соединенных батареях положительная клемма одной батареи соединена с отрицательной клеммой следующей и т. Д.Соединение батарей вместе в последовательной комбинации означает более высокое напряжение при том же токе.

    Батареи соединены параллельно

    Батарейные блоки, состоящие из батарей глубокого разряда, соединенных параллельно, имеют то же напряжение, что и отдельные батареи, но текущая емкость умножается на количество батарей. В параллельно соединенном блоке батарей положительный полюс одной батареи соединен с положительным полюсом следующего, а отрицательный полюс соединен с отрицательной клеммой.Параллельное соединение батарей означает более высокий ток при том же напряжении на клеммах.

    Последовательные и параллельные комбинации батарей в блоке батарей увеличивают как напряжение в зависимости от количества батарей в последовательной цепочке, так и текущую емкость в зависимости от количества последовательно соединенных цепочек. Соединение батарей вместе как в последовательной, так и в параллельной комбинациях позволяет увеличить емкость батареи при более высоком напряжении.

    Давайте посмотрим, как мы можем соединить батареи вместе для получения более высоких напряжений и текущих конфигураций.

    Соединение батарей вместе для проводки 12 В

    Все комбинации последовательного и параллельного подключения батарей дают массив 12 вольт.

    Соединение батарей вместе для проводки 24 В

    Все комбинации последовательного и параллельного подключения батарей дают массив 24 вольт.

    Соединение батарей вместе для 48-вольтовой проводки

    Наконец, эти комбинации последовательного и параллельного подключения батарей образуют массив из 48 вольт.

    В автономных автономных системах альтернативной энергетики электрическая энергия, производимая генерирующим устройством, не всегда может быть использована при ее производстве. Поскольку спрос на энергию не всегда совпадает с ее производством, электрические аккумуляторные батареи обычно используются во многих автономных и связанных с сетью системах.

    Выбор напряжения аккумуляторной батареи, 12, 24 или 48 В, часто зависит от требований к напряжению нагрузки системы, требуемой емкости и типа имеющихся аккумуляторов.Для больших нагрузок иногда лучше соединить батареи глубокого цикла вместе, чтобы получить более высокие напряжения и снизить токи в системе.

    Например, 240-ваттная нагрузка постоянного тока, работающая от 12-вольтовой батареи, потребляет около 20 ампер, тогда как 240-ваттная нагрузка постоянного тока, работающая от 48-вольтовой батареи, потребляет только 5 ампер, четверть тока. Этот более низкий ток в системе имеет много преимуществ за счет уменьшения размера используемых кабелей, изолирующих переключателей и предохранителей, что позволяет сэкономить ваши деньги.

    Последний пункт безопасности при соединении вместе свинцово-кислотных аккумуляторов.Свинцово-кислотные батареи глубокого цикла — самая опасная часть любой солнечной или ветряной системы. При обращении со свинцово-кислотными батареями и электролитом необходимо надевать перчатки, средства защиты глаз, такие как очки и маски, а также старую одежду, поскольку «аккумуляторная кислота» вызывает ожоги и раздражение кожи и глаз.

    Чтобы узнать больше о «соединении батарей вместе» и о том, как вы можете использовать их как часть домашней солнечной системы, или чтобы изучить преимущества и недостатки соединения батарей вместе для увеличения емкости батареи и как вы можете использовать батареи глубокого цикла в качестве альтернатива автомобильным батареям, тогда почему бы не нажать здесь и получить копию руководства одного из лучших производителей аккумуляторов от Amazon сегодня и узнать, как создавать, восстанавливать и ремонтировать свинцово-кислотные аккумуляторы глубокого цикла

    Контроллер заряда аккумулятора | Учебники по альтернативной энергии

    Контроллер заряда аккумулятора
    Статья
    Учебники по альтернативной энергии
    25.02.2013
    05.02.2021

    Учебники по альтернативной энергии

    Контроллеры заряда для увеличения срока службы батареи

    Для многих людей создание собственной системы солнечных панелей и жизнь в автономном режиме становится реальностью, а не мечтой.Подключение солнечных панелей напрямую к одной батарее или банку батарей для зарядки может работать, но это не лучшая идея. Стандартная солнечная панель на 12 вольт, которую можно использовать для подзарядки батареи, на самом деле может выдавать почти 20 вольт на полном солнце, что намного больше напряжения, чем нужно батарее. Эта разница в напряжении между необходимыми 12 вольтами, необходимыми для батареи, и фактическими 20 вольт, генерируемыми солнечной панелью, приводит к большему току, протекающему в батарее.

    В результате слишком большой нерегулируемый солнечный ток перезарядит батарею, что приведет к перегреву раствора электролита в батареях, что приведет к сокращению срока службы батареи и, в конечном итоге, к полному выходу батареи из строя.Тогда качество заряда будет напрямую влиять на срок службы любой подключенной батареи, поэтому чрезвычайно важно защитить батареи солнечной системы зарядки от перезарядки или даже недозарядки, и мы можем сделать это с помощью устройства регулирования заряда батареи, называемого Контроллер заряда аккумулятора .

    Контроллер заряда аккумулятора

    Контроллер заряда аккумулятора, также известный как регулятор напряжения аккумулятора, представляет собой электронное устройство, используемое в автономных системах и системах привязки к сети с резервным аккумулятором.Контроллер заряда регулирует постоянно изменяющиеся выходное напряжение и ток от солнечной панели из-за угла наклона солнца, а также согласовывает его с потребностями заряжаемых батарей.

    Контроллер заряда делает это, управляя потоком электроэнергии от источника заряда к батарее на относительно постоянном и контролируемом значении. Таким образом поддерживается максимально возможный уровень заряда батареи, защищая ее от перезарядки источником и от чрезмерной разрядки подключенной нагрузкой.Поскольку батареи любят стабильный заряд в относительно узком диапазоне, колебания выходного напряжения и тока необходимо строго контролировать.

    Тогда наиболее важными функциями контроллеров заряда аккумуляторных батарей, используемых в системе альтернативной энергетики, являются:

    • Предотвращает чрезмерную зарядку аккумулятора: это слишком ограничивает энергию, подаваемую в аккумулятор зарядным устройством, когда аккумулятор полностью заряжен.
    • Предотвращает чрезмерную разрядку аккумулятора: автоматическое отключение аккумулятора от электрических нагрузок, когда аккумулятор достигает низкого уровня заряда.
    • Обеспечивает функции управления нагрузкой: автоматическое подключение и отключение электрической нагрузки в заданное время, например, управление осветительной нагрузкой от заката до восхода солнца.

    Солнечные панели производят постоянный или постоянный ток, то есть солнечное электричество, вырабатываемое фотоэлектрическими панелями, течет только в одном направлении. Таким образом, чтобы заряжать аккумулятор, солнечная панель должна иметь более высокое напряжение, чем заряжаемая батарея. Другими словами, напряжение панели должно быть больше, чем противоположное напряжение заряжаемой батареи, чтобы в батарею протекал положительный ток.

    При использовании альтернативных источников энергии, таких как солнечные батареи, ветряные турбины и даже гидрогенераторы, вы получите колебания выходной мощности. Контроллер заряда обычно помещается между зарядным устройством и аккумуляторным блоком и контролирует поступающее напряжение от этих зарядных устройств, регулируя количество электричества постоянного тока, протекающего от источника питания к батареям, двигателю постоянного тока или насосу постоянного тока.

    Контроллер заряда отключает ток в цепи, когда батареи полностью заряжены и напряжение на их клеммах выше определенного значения, обычно около 14.2 Вольта для аккумулятора на 12 В. Это защищает аккумуляторы от повреждений, поскольку не позволяет им чрезмерно заряжаться, что сокращает срок службы дорогих аккумуляторов. Чтобы обеспечить надлежащую зарядку аккумулятора, регулятор поддерживает информацию о состоянии заряда (SoC) аккумулятора. Это состояние заряда оценивается на основе фактического напряжения аккумулятора.

    В периоды инсоляции ниже среднего и / или в периоды чрезмерного использования электрической нагрузки энергии, вырабатываемой фотоэлектрической панелью, может быть недостаточно, чтобы поддерживать полностью заряженный аккумулятор.Когда напряжение на клеммах батарей начинает падать ниже определенного значения, обычно около 11,5 В, контроллер замыкает цепь, чтобы ток от зарядного устройства снова заряжал батарею.

    В большинстве случаев контроллер заряда является важным требованием в автономной фотоэлектрической системе, и его размер должен соответствовать напряжениям и токам, ожидаемым при нормальной работе. Любой контроллер заряда аккумулятора должен быть совместим как с напряжением аккумуляторной батареи, так и с номинальной силой тока системы зарядного устройства.Но он также должен быть рассчитан на работу с ожидаемыми пиковыми или импульсными условиями от генерирующего источника или необходимыми электрическими нагрузками, которые могут быть подключены к контроллеру.

    Сегодня доступны несколько очень сложных контроллеров заряда . Усовершенствованные контроллеры заряда используют широтно-импульсную модуляцию или ШИМ. Широтно-импульсная модуляция — это процесс, обеспечивающий эффективную зарядку и длительный срок службы батареи. Однако более продвинутые и дорогие контроллеры используют отслеживание точки максимальной мощности или MPPT.

    Отслеживание точки максимальной мощности максимизирует зарядные токи аккумулятора за счет снижения выходного напряжения, что позволяет им легко адаптироваться к различным комбинациям аккумуляторов и солнечных панелей, таким как 24 В, 36 В, 48 В и т. Д. В этих контроллерах используются преобразователи постоянного тока в постоянный для соответствия напряжению. и использовать цифровую схему для измерения фактических параметров много раз в секунду для соответствующей регулировки выходного тока. Большинство контроллеров солнечных панелей MPPT поставляются с цифровыми дисплеями и встроенными компьютерными интерфейсами для лучшего мониторинга и управления.

    Выбор подходящего контроллера заряда от солнечных батарей

    Мы видели, что основная функция контроллера заряда батареи — регулировать мощность, передаваемую от генерирующего устройства, будь то солнечная панель или ветряная турбина к батареям. Они помогают в надлежащем обслуживании аккумуляторов системы солнечной энергии, предотвращая их перезарядку или недозаряд, тем самым обеспечивая длительный срок службы аккумуляторов.

    Солнечный ток, регулируемый контроллером заряда аккумуляторов, не только заряжает аккумуляторы, но также может быть передан на инверторы для преобразования постоянного постоянного тока в переменный переменный ток для питания электросети.

    Для многих людей, которые хотят жить «вне сети», контроллер заряда является ценным элементом оборудования в составе солнечной панели или ветряной турбины. В Интернете вы найдете множество производителей контроллеров заряда, но выбор подходящего иногда может быть довольно запутанным, и, кроме того, они недешевы, поэтому действительно важно найти качественный регулятор заряда солнечной батареи.

    Лучше не покупать более дешевые модели низкого качества, так как они могут фактически повредить срок службы батареи и в долгосрочной перспективе увеличить ваши общие расходы.Для некоторого душевного спокойствия почему бы не нажать здесь и не проверить некоторые из лучших контроллеров заряда батареи, доступные на Amazon, и узнать больше о различных типах контроллеров заряда солнечной энергии, доступных как часть вашей солнечной энергетической системы, помогая вам сэкономить деньги и среда.

    Последовательные и параллельные конфигурации батарей и информация

    BU-302: Configuraciones de Baterías en Serie y Paralelo (Español)

    Узнайте, как расположить батареи для увеличения напряжения или увеличения емкости.

    Батареи достигают желаемого рабочего напряжения путем последовательного соединения нескольких ячеек; каждая ячейка складывает свой потенциал напряжения, чтобы получить общее напряжение на клеммах. Параллельное соединение обеспечивает более высокую мощность за счет суммирования общего ампер-часа (Ач).

    Некоторые блоки могут состоять из комбинации последовательного и параллельного подключения. Аккумуляторы для ноутбуков обычно имеют четыре литий-ионных элемента 3,6 В последовательно для достижения номинального напряжения 14,4 В и два параллельно для увеличения емкости с 2400 мАч до 4800 мАч.Такая конфигурация называется 4s2p, что означает четыре последовательно соединенных ячейки и две параллельно. Изоляционная фольга между ячейками предотвращает электрическое короткое замыкание проводящей металлической оболочкой.

    Аккумуляторы большинства типов подходят для последовательного и параллельного подключения. Важно использовать батареи одного типа с одинаковым напряжением и емкостью (Ач) и никогда не смешивать батареи разных производителей и размеров. Более слабая ячейка вызовет дисбаланс. Это особенно важно в последовательной конфигурации, потому что мощность батареи определяется самым слабым звеном в цепи.Аналогия — это цепочка, звенья которой представляют последовательно соединенные элементы батареи (рис. 1).

    Рисунок 1: Сравнение батареи с цепью.
    Звенья цепи представляют собой элементы, включенные последовательно для увеличения напряжения, удвоение звена означает параллельное соединение для повышения токовой нагрузки.

    Слабый элемент может не выйти из строя сразу, но при нагрузке он истощится быстрее, чем сильный.При зарядке аккумулятор с низким уровнем заряда заполняется раньше, чем с высоким уровнем, потому что его нужно заполнить меньше, и он остается заряженным дольше, чем другие. При разряде слабая ячейка опорожняется первой, и ее забивают более сильные братья. Ячейки в групповых упаковках должны быть согласованы, особенно при использовании под большими нагрузками. (См. BU-803a: Несоответствие ячеек, балансировка).

    Приложения с одной ячейкой

    Одноэлементная конфигурация представляет собой простейший аккумуляторный блок; элемент не требует согласования, и схема защиты на небольшом литий-ионном элементе может быть простой.Типичными примерами являются мобильные телефоны и планшеты с одним литий-ионным аккумулятором 3,60 В. Одноэлементный элемент также используется в настенных часах, в которых обычно используется щелочной элемент на 1,5 В, наручные часы и резервное копирование памяти, большинство из которых являются приложениями с очень низким энергопотреблением.

    Номинальное напряжение аккумуляторной батареи на никелевой основе составляет 1,2 В, щелочной — 1,5 В; оксид серебра составляет 1,6 В, а свинцово-кислотный — 2,0 В. Первичные литиевые батареи находятся в диапазоне от 3,0 до 3,9 В. Литий-ионный — 3,6 В; Li-фосфат — 3,2 В, а литий-титанат — 2,4 В.

    Литий-марганцевые и другие системы на основе лития часто используют ячейки с напряжением 3.7В и выше. Это связано не столько с химией, сколько с увеличением ватт-часов (Втч), что становится возможным при более высоком напряжении. Аргумент гласит, что низкое внутреннее сопротивление элемента поддерживает высокое напряжение под нагрузкой. Для рабочих целей эти ячейки подходят как кандидаты на 3,6 В. (См. BU-303 «Путаница с напряжениями»)

    Соединение серии

    В портативном оборудовании, требующем более высоких напряжений, используются аккумуляторные батареи с двумя или более элементами, соединенными последовательно. На рисунке 2 показан аккумулятор с четырьмя 3.Последовательные литий-ионные элементы 6 В, также известные как 4S, для получения номинального напряжения 14,4 В. Для сравнения: свинцово-кислотная цепочка с шестью ячейками с 2 В на элемент будет генерировать 12 В, а четыре щелочных с 1,5 В на элемент — 6 В.

    Рисунок 2: S eries соединение четырех ячеек (4s).
    Добавление ячеек в цепочку увеличивает напряжение; емкость остается прежней.
    Предоставлено Cadex


    Если вам нужно нечетное напряжение, скажем, 9.50 вольт, соедините пять свинцово-кислотных, восемь никель-металлгидридных или никель-кадмиевых или три литий-ионных последовательно. Конечное напряжение батареи не обязательно должно быть точным, если оно выше, чем указано в устройстве. Источник питания 12 В может работать вместо 9,50 В. Большинство устройств с батарейным питанием могут выдерживать некоторое перенапряжение; однако необходимо соблюдать напряжение в конце разряда.

    Высоковольтные батареи сохраняют малый размер проводника. Аккумуляторные электроинструменты работают от батарей 12 В и 18 В; в моделях высокого класса используются 24 В и 36 В. Большинство электровелосипедов поставляются с литий-ионным аккумулятором 36 В, некоторые — 48 В.Автомобильная промышленность хотела увеличить стартерную батарею с 12 В (14 В) до 36 В, более известную как 42 В, путем последовательного размещения 18 свинцово-кислотных элементов. Логистика замены электрических компонентов и проблемы с дугой на механических переключателях сорвали ход.

    Некоторые легкие гибридные автомобили работают от литий-ионных аккумуляторов 48 В и используют преобразование постоянного тока в 12 В для электрической системы. Запуск двигателя часто осуществляется отдельной свинцово-кислотной батареей на 12 В. Ранние гибридные автомобили работали от батареи 148 В; электромобили обычно 450–500 В.Такой аккумулятор требует более 100 последовательно соединенных литий-ионных элементов.

    Высоковольтные батареи требуют тщательного согласования ячеек, особенно при работе с большими нагрузками или при работе при низких температурах. Если несколько ячеек соединены в цепочку, вероятность отказа одной ячейки реальна, и это приведет к сбою. Чтобы этого не произошло, твердотельный переключатель в некоторых больших батареях обходит неисправную ячейку, чтобы обеспечить непрерывный ток, хотя и при более низком напряжении в цепи.

    Сопоставление ячеек является проблемой при замене неисправного элемента в устаревшем блоке.Новая ячейка имеет большую емкость, чем другие, что вызывает дисбаланс. Сварная конструкция усложняет ремонт, поэтому аккумуляторные блоки обычно заменяются целиком.

    Высоковольтные батареи в электромобилях, полная замена которых невозможна, делят батарею на модули, каждый из которых состоит из определенного количества ячеек. Если одна ячейка выходит из строя, заменяется только затронутый модуль. Небольшой дисбаланс может возникнуть, если новый модуль будет оснащен новыми ячейками.(См. BU-910: Как отремонтировать аккумуляторный блок.)

    На рисунке 3 показан аккумуляторный блок, в котором «ячейка 3» выдает только 2,8 В вместо полностью номинальных 3,6 В. При пониженном рабочем напряжении эта батарея достигает точки окончания разряда раньше, чем обычная батарея. Напряжение падает, и устройство выключается с сообщением «Батарея разряжена».

    Рисунок 3: S eries соединение с неисправной ячейкой.
    Неисправный элемент 3 снижает напряжение и преждевременно отключает оборудование.
    Предоставлено Cadex


    Батареи в дронах и пультах дистанционного управления для любителей, которым требуется высокий ток нагрузки, часто демонстрируют неожиданное падение напряжения, если одна ячейка в цепочке слаба. Максимальный ток нагружает хрупкие ячейки, что может привести к поломке. Считывание напряжения после заряда не позволяет выявить эту аномалию; проверка баланса ячеек или проверка емкости с помощью анализатора аккумуляторов.

    Постукивание по последовательной строке

    Обычной практикой является подключение к последовательной цепочке свинцово-кислотного массива для получения более низкого напряжения.Для тяжелонагруженного оборудования, работающего от батарейного блока 24 В, может потребоваться источник питания 12 В для вспомогательной работы, и это напряжение удобно доступно в промежуточной точке.

    Постукивание не рекомендуется, поскольку оно создает дисбаланс ячеек, так как одна сторона блока батарей загружена больше, чем другая. Если несоответствие не может быть исправлено с помощью специального зарядного устройства, побочным эффектом является сокращение срока службы батареи. Вот почему:

    При зарядке несбалансированного банка свинцово-кислотных аккумуляторов с помощью обычного зарядного устройства в недозаряженной части возникает тенденция к сульфатированию, поскольку элементы никогда не получают полного заряда.Секция высокого напряжения батареи, которая не принимает дополнительную нагрузку, имеет тенденцию к перезарядке, что приводит к коррозии и потере воды из-за выделения газов. Обратите внимание, что зарядное устройство, заряжающее всю цепочку, проверяет среднее напряжение и соответственно прекращает заряд.

    Нарезание резьбы также характерно для литий-ионных и никелевых аккумуляторов, и результаты аналогичны свинцово-кислотным: сокращение срока службы. (См. BU-803a: Согласование и балансировка ячеек.) В новых устройствах используется преобразователь постоянного тока в постоянный для обеспечения правильного напряжения.В электрических и гибридных транспортных средствах в качестве альтернативы используется отдельная низковольтная батарея для вспомогательной системы.

    Параллельное соединение

    Если требуются более высокие токи, а ячейки большего размера недоступны или не соответствуют конструктивным ограничениям, одна или несколько ячеек могут быть подключены параллельно. Большинство химикатов батарей допускают параллельную конфигурацию с небольшими побочными эффектами. На рисунке 4 показаны четыре ячейки, соединенные параллельно в схеме P4. Номинальное напряжение показанного блока остается равным 3.60 В, но емкость (Ач) и время работы увеличиваются в четыре раза.

    Рисунок 4: Параллельное соединение четырех ячеек (4p).
    При использовании параллельных ячеек емкость в Ач и время работы увеличиваются, а напряжение остается неизменным.

    Предоставлено Cadex


    Ячейка, которая развивает высокое сопротивление или размыкается, менее критична в параллельной цепи, чем в последовательной конфигурации, но неисправная ячейка снизит общую нагрузочную способность.Это как двигатель, работающий только на трех цилиндрах, а не на всех четырех. С другой стороны, электрическое короткое замыкание является более серьезным, поскольку неисправный элемент забирает энергию из других элементов, вызывая опасность пожара. Большинство так называемых электрических коротких замыканий мягкие и проявляются как повышенный саморазряд.

    Полное короткое замыкание может произойти из-за обратной поляризации или роста дендритов. Большие блоки часто включают в себя предохранитель, который отключает неисправный элемент от параллельной цепи в случае короткого замыкания.На рисунке 5 показана параллельная конфигурация с одной неисправной ячейкой.

    Рис. 5: Параллельное соединение / соединение с одной неисправной ячейкой.
    Слабый элемент не повлияет на напряжение, но обеспечит малое время работы из-за пониженной емкости. Закороченный элемент может вызвать чрезмерный нагрев и стать причиной возгорания. На больших батареях предохранитель предотвращает высокий ток, изолируя элемент.

    Предоставлено Cadex

    Последовательное / параллельное соединение

    Последовательная / параллельная конфигурация, показанная на рисунке 6, обеспечивает гибкость конструкции и позволяет достичь требуемых номинальных значений напряжения и тока со стандартным размером ячейки.Полная мощность — это сумма напряжения, умноженного на ток; батарея 3,6 В (номинальная), умноженная на 3400 мАч, дает 12,24 Втч. Четыре элемента питания 18650 емкостью 3400 мАч каждый можно подключить последовательно и параллельно, как показано, чтобы получить номинальное напряжение 7,2 В и общую мощность 48,96 Вт-ч. Комбинация с 8 ячейками даст 97,92 Втч, допустимый предел для перевозки на воздушном судне или перевозки без опасных материалов класса 9. (См. BU-704a: Доставка литиевых батарей по воздуху) Тонкий элемент позволяет гибкую конструкцию блока, но необходима схема защиты.

    Рисунок 6: S eries / параллельное соединение четырех ячеек (2s2p).
    Эта конфигурация обеспечивает максимальную гибкость проектирования. Распараллеливание ячеек помогает в управлении напряжением.

    Предоставлено Cadex

    Литий-ионный аккумулятор
    хорошо подходит для последовательной / параллельной конфигурации, но элементы нуждаются в мониторинге, чтобы оставаться в пределах напряжения и тока.Интегральные схемы (ИС) для различных комбинаций ячеек доступны для контроля до 13 литий-ионных ячеек. Для более крупных пакетов требуются специальные схемы, и это относится к аккумуляторным батареям для электронных велосипедов, гибридным автомобилям и Tesla Model 85, которая потребляет более 7000 ячеек 18650, чтобы составить батарею мощностью 90 кВт · ч.

    Терминология для описания последовательного и параллельного соединения

    В производстве аккумуляторов сначала указывается количество ячеек, соединенных последовательно, а затем ячеек, размещаемых параллельно. Пример — 2с2п.В Li-ion сначала всегда изготавливаются параллельные струны; завершенные параллельные блоки затем помещаются последовательно. Литий-ионная система — это система, основанная на напряжении, которая хорошо подходит для параллельного формирования. Объединение нескольких ячеек в параллель с последующим последовательным добавлением блоков снижает сложность управления напряжением для защиты блока.

    Сначала сборка гирлянд, а затем их параллельное размещение может быть более обычным для никель-кадмиевых аккумуляторов, чтобы удовлетворить химический механизм челнока, который уравновешивает заряд в верхней части заряда.«2с2п» — обычное дело; Были выпущены официальные документы, которые относятся к 2p2s при параллельном соединении последовательной строки.

    Устройства безопасности при последовательном и параллельном подключении

    Переключатели с положительным температурным коэффициентом (PTC) и устройства прерывания заряда (CID) защищают аккумулятор от перегрузки по току и избыточного давления. Хотя эти защитные устройства рекомендуются для обеспечения безопасности в небольших батареях из 2 или 3 элементов с последовательной и параллельной конфигурацией, они часто не используются в более крупных многоэлементных батареях, например, для электроинструментов.PTC и CID работают, как ожидалось, переключая ячейку на чрезмерный ток и внутреннее давление в ячейке; однако завершение работы происходит в каскадном формате. Хотя некоторые ячейки могут рано отключиться, ток нагрузки вызывает избыточный ток на оставшихся ячейках. Такое состояние перегрузки может привести к тепловому разгоне до срабатывания остальных предохранительных устройств.

    Некоторые ячейки имеют встроенные PCT и CID; эти защитные устройства также могут быть добавлены задним числом. Инженер-проектировщик должен знать, что любое предохранительное устройство может выйти из строя.Кроме того, PTC вызывает небольшое внутреннее сопротивление, которое снижает ток нагрузки. (См. Также BU-304b: Обеспечение безопасности литий-ионных аккумуляторов)

    Простые инструкции по использованию бытовых первичных батарей

    • Следите за чистотой контактов аккумулятора. Конфигурация с четырьмя ячейками имеет восемь контактов, и каждый контакт добавляет сопротивление (ячейка к держателю и держатель к следующей ячейке).
    • Никогда не смешивайте батареи; замените все ячейки, когда они слабые. Общая производительность зависит от самого слабого звена в цепи.
    • Соблюдайте полярность. Перевернутая ячейка вычитает, а не добавляет к напряжению ячейки.
    • Выньте батареи из оборудования, когда оно больше не используется, чтобы предотвратить утечку и коррозию. Это особенно важно для первичных цинк-углеродных элементов.
    • Не храните незакрепленные элементы в металлическом ящике. Поместите отдельные ячейки в небольшие полиэтиленовые пакеты, чтобы предотвратить короткое замыкание. Не носите в карманах незакрепленные ячейки.
    • Храните батарейки в недоступном для маленьких детей месте.Ток от батареи может не только вызвать удушье, но и вызвать изъязвление стенки желудка при проглатывании. Батарея также может разорваться и вызвать отравление. (См. BU-703: Проблемы со здоровьем при использовании батарей.)
    • Не заряжайте неперезаряжаемые батареи; скопление водорода может привести к взрыву. Выполняйте экспериментальную зарядку только под наблюдением.

    Простые инструкции по использованию вторичных батарей

    • Соблюдайте полярность при зарядке вторичного элемента.Обратная полярность может вызвать короткое замыкание и создать опасную ситуацию.
    • Выньте полностью заряженные батареи из зарядного устройства. Потребительское зарядное устройство может не подавать правильный непрерывный заряд при полной зарядке, что может привести к перегреву элемента.
    • Заряжайте только при комнатной температуре.

    Последнее обновление: 19 июн 2020

    *** Пожалуйста, прочтите комментарии ***

    Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта.Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык и избегать спама и дискриминации.

    Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: [email protected]. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

    Предыдущий урок

    Следующий урок

    Или перейти к другой артикуле

    Батареи как источник питания

    Какие типы аккумуляторов используются в автомобилях?

    Вы когда-нибудь изучали батареи? Если да, то вы, несомненно, встречали жаргон, который едва ли могли расшифровать. И, несомненно, многое из этого было бы противоречивым.Если у вас есть автомобиль, вы, должно быть, сталкивались с различными проблемами, связанными с автомобильным аккумулятором. После того, как автомобиль не использовался какое-то время, могли возникнуть сульфатирование, коррозия, повреждение аккумуляторного отсека или даже короткое замыкание.

    Но задумывались ли вы, что этот автомобильный аккумулятор, который используется в коммерческих целях около 50 лет, не претерпел особых изменений? Этот новый способ хранения энергии не изменился и фактически используется со времен наших бабушек и дедушек.Представьте себе требования к аккумуляторам современных транспортных средств и сотни поддерживаемых ими электрических устройств. Естественно, для всех этих устройств потребуется надежный источник питания, потому что вы не хотите, чтобы из-за этого выходил из строя компонент. И эти комплектующие действительно дорогие.

    В наши дни аккумуляторы бывают всех форм и размеров, но наиболее часто используются 12-вольтовые аккумуляторы и свинцово-кислотные аккумуляторы . Вы могли подумать, конечно, автомобили изменились, и, конечно же, есть некоторые транспортные средства для отдыха, которые могут питать инверторы до 4000 Вт.Но вы обнаружите, что большинство автомобилей и по сей день используют 12-вольтовую батарею. Давайте выясним, почему.

    Большая причина

    Самая большая причина всего в том, что 12-вольтовые батареи использовались традиционно так долго, что ни у кого не было причины переключиться на другую причину. Аккумулятор на 12 В стал стандартом для автомобильных аккумуляторов на протяжении десятилетий. В то же время большая часть инфраструктуры была построена для аккумуляторов 12 В, например, аксессуары и зарядные устройства — это процветающая отрасль, и вряд ли что-то изменится в спешке.Эти аксессуары будут включать зарядные устройства для телефонов, компрессоры для шин, проигрыватели и даже холодильные камеры.

    Более высокие напряжения желательны, потому что они более эффективны, и вы можете спросить, почему в автомобилях не используются 24-вольтовые или даже 48-вольтовые батареи? Или пойти еще выше? Конечно, это не должно иметь большого значения? Простым ответом на это будет то, что из-за наличия двигателей с высокими эксплуатационными характеристиками, новой и эффективной проводки и цифрового управления, а также новой и освежающей тенденции гибридных автомобилей просто нет необходимости изменять автомобильное напряжение.Например, более раннее представление о том, что гидроусилитель руля требует более высокого напряжения, было разрушено использованием 12-вольтовых батарей.

    Другая причина этого заключается в том, что при более высоких напряжениях эрозия контактов постоянного тока является довольно серьезной проблемой, влияющей на срок службы автоматического выключателя. Чтобы понять это ясно, эрозия контактов происходит, когда переключатель переходит в разомкнутое положение из замкнутого. Когда это происходит, ток становится все более и более сфокусированным, и с течением времени он каждый раз газифицирует или испаряет немного металла.

    При гораздо более высоких напряжениях этот эффект становится значительным, и, следовательно, это в конечном итоге потребует реструктуризации многих других компонентов. Когда вы думаете об этих двух причинах вместе, становится очевидным, что такое изменение окажет огромное влияние на отрасль, и вы можете сравнить это с изменением в видеоиндустрии, когда люди перешли с VHS на компакт-диски, только в гораздо большем масштабе. шкала.

    Аккумуляторы на 12 В являются отраслевым стандартом

    Сравните современные автомобили с первыми машинами, которые заводились вручную и работали на керосине.По понятным причинам не было и электрической системы. Медленно и неуклонно, по мере совершенствования технологий, добавлялись вещи, которые еще не так давно считались «роскошью», такие как электрические стартеры и индикаторные системы. Для этого потребовалось электричество, и поэтому появились свинцово-кислотные батареи.

    В то время стандартом были 6-вольтовые батареи, потому что их было достаточно для работы, а дополнительных принадлежностей было не так много. Со временем двигатели стали больше, а вместе с ними и их требования, помимо других вещей, таких как вентиляторы или освещение, и даже обогрев окон.Это были 1950-е годы, и инфраструктура для 6-вольтовых батарей уже была создана.

    Но теперь требовалось больше мощности, а производителей 12-вольтовых батарей не было. Итак, кому-то пришла в голову оригинальная идея использовать две 6-вольтовые батареи. Эта тенденция продолжалась до 1970-х годов, и все еще можно было найти автомобиль с двумя 6-вольтовыми батареями. Но времена все равно менялись, и 12-вольтовые батареи быстро стали использоваться всеми и стали новым отраслевым стандартом, который существует до сих пор.

    И если подумать, времена не так уж сильно изменились. Многие грузовики и грузовики работают от 24-вольтовых батарей, но они также могут работать от двух 12-вольтовых батарей, соединенных вместе.

    Почему в автомобиле используется постоянный ток?

    Когда батареи разряжаются, они излучают постоянный постоянный ток в одном направлении, обеспечивая питание через положительный полюс на отрицательный. И этот заряд постоянного тока требуется для большинства автомобильных компонентов. Другой, более простой способ объяснить это, заключается в том, что батареи постоянного тока передают больше энергии и обладают высокой эффективностью.Кроме того, схема проще в сборке. При кратковременной вспышке автомобильные аккумуляторы могут генерировать большое количество постоянного тока.

    Аккумуляторы постоянного тока

    используются во всех автомобилях, включая электромобили, из-за низкого уровня выбросов углерода. Кроме того, они очень рентабельны, поскольку могут передавать больше мощности с меньшими электрическими потерями.

    Теперь, когда вы поняли, почему 12-вольтовые аккумуляторы используются в качестве источника питания, мы рассмотрим распространенные проблемы и мифы, связанные с автомобильным аккумулятором, чтобы лучше понять этот важный компонент.

    Независимо от того, на какой машине вы водите, будь то внедорожник-монстр или городской автомобиль, электричество остается важным, если вы хотите управлять этим транспортным средством. И, как я объяснял ранее, вам придется поблагодарить своих счастливчиков за то, что были изобретены батареи, иначе представьте, что вы запускаете свой внедорожник вручную! Все, что вам нужно сделать сейчас, это просто нажать кнопку, и двигатель заработает.

    А батарея — хоть и не видна — но находится под капотом, и выполняет самую важную работу по запуску электрических компонентов.

    Знай свой аккумулятор

    Позвольте нам копнуть глубже и узнать больше об аккумуляторе вашего автомобиля.

    Имеет ли значение погода?

    Факторы окружающей среды играют важную роль в работе аккумулятора. Погода, будь то жаркая или холодная, влияет на раствор жидкого электролита, который присутствует в большинстве батарей. Это решение имеет заряд. Причина, по которой становится трудно завести автомобиль зимой, заключается в том, что холодная погода снижает способность раствора передавать полную мощность.При этом, чтобы заморозить аккумулятор, потребуются экстремальные погодные условия.

    Одним из решений проблемы медленного запуска может быть использование аккумуляторного обогревателя, который поддерживает его в отличном состоянии в течение всей зимы.

    С другой стороны, сильный нагрев может привести к испарению раствора из батареи, поэтому нет необходимости удерживать заряд. Большинство людей совершают ошибку, заполняя это пустое пространство водопроводной водой, но это фактически повреждает батарею, потому что водопроводная вода содержит минералы, которые могут быть вредными.Если вам приходится прибегать к использованию деминерализованной воды, это верный признак того, что вам может потребоваться замена. В таких погодных условиях желательно держать машину в затененном месте или, по возможности, в гараже.

    Вы уверены, что это аккумулятор?

    Когда вы поворачиваете ключ и пытаетесь завести машину, ничего не происходит. В большинстве случаев на ум приходит мысль о том, что батарея разряжена. Но во многих случаях это не могло быть правдой. Может быть несколько факторов, которые могут препятствовать запуску вашего автомобиля.Это могут быть изношенные свечи зажигания или забитые топливные форсунки. В других случаях может произойти сбой генератора, из-за которого аккумулятор не будет заряжаться. Или это может быть просто неисправный стартер, который издает звук, похожий на разряженный аккумулятор.

    Как долго должен работать аккумулятор?

    В идеале батарея должна прослужить до 5 или 6 лет, но, как обычно, все зависит от того, как вы ее используете или относитесь к ней. Если в вашем автомобиле слишком много электроники или он прошел много циклов зарядки, это обязательно сократит срок его службы.Даже несмотря на то, что аккумулятор может поддерживать заряд, как только двигатель заработает, существующая электроника будет отказываться от него, когда он выключится, потому что они потребляют энергию непосредственно от аккумулятора.

    Одним из основных источников дренажа является оставление мобильных телефонов или устройств GPS на зарядке при выключенном двигателе. Кроме того, для обеспечения долговечности важно выключать фары и другие фонари, когда автомобиль останавливается.

    Но батареи хватит не вечно, как бы вы ни были осторожны.Яркими признаками этого являются дистанционная разблокировка и некорректная или периодическая работа внутреннего освещения. Еще один знак — индикатор заряда батареи, который четко сообщит вам о состоянии батареи. Еще один симптом, который подскажет вам о его состоянии, — это медленный запуск автомобиля из-за того, что в аккумуляторе просто не хватает заряда.

    Могу ли я запустить разряженную батарею от внешнего источника?

    Время от времени вы можете столкнуться с разряженной батареей, а иногда именно тогда, когда вы остро нуждаетесь.Простое решение этой проблемы — запустить ее отскока, и это довольно просто. Вот как вы это делаете.

    Вещи, которые вам понадобятся

    • Очки защитные
    • Резиновые перчатки
    • Кабельные перемычки
    • Вам понадобится другой автомобиль с аккумулятором, который имеет такое же напряжение, как и ваша батарея.

    Когда у вас будет необходимое оборудование, вам нужно будет один раз обратиться к руководству. Хотя сделать это для большинства автомобилей почти одинаково, для автомобиля, которым вы владеете, это может быть разным, поэтому это всегда безопаснее.

    1. Убедитесь, что соединительные кабели достаточно длинные и между ними нет препятствий. Лучший способ сделать это — припарковать обе машины рядом, чтобы соединительные кабели были в пределах досягаемости от обеих батарей.
    2. Выключите автомобиль с исправным аккумулятором и отключите всю электронику, которая еще может быть подключена (или, лучше, отключите ее) от обоих автомобилей. Это могут быть зарядные устройства для телефонов, аварийные фонари или радиоприемники / проигрыватели компакт-дисков.
    3. Наденьте защитные очки и резиновые перчатки и откройте капоты обоих автомобилей.
    4. Подсоедините положительный конец соединительного кабеля к положительному полюсу разряженного аккумулятора (оба красные).
    5. Подсоедините другой положительный конец соединительного кабеля к положительному выводу исправной батареи (также красный).
    6. Аналогичным образом подсоедините отрицательный конец (черный) к отрицательной клемме работающей батареи .
    7. Теперь подключите другой отрицательный конец соединительного кабеля к неокрашенной части автомобиля (той, которую необходимо запустить) и как можно дальше от аккумулятора.Это делается для заземления цепи и предотвращения искрения.
    8. Теперь включите автомобиль с исправным аккумулятором и дайте ему поработать в течение 10 минут, чтобы быть в безопасности. Увеличивать обороты двигателя не придется, потому что это бессмысленно. Запуск от внешнего источника не зависит от мощности двигателя.
    9. Как только это будет сделано, выключите двигатель движущегося автомобиля. Теперь снимите присоединенные кабели в обратном порядке и будьте осторожны, чтобы зажимы кабеля не касались металлических поверхностей.
    10. Теперь запустите автомобиль с разряженной аккумуляторной батареей и запустите двигатель. Если он все-таки запустился, дайте ему поработать 15-20 минут. Как вариант, вы можете прокатиться на машине несколько миль, чтобы зарядить аккумулятор.
    11. В случае, если машина не завелась, придется повторить весь процесс.

    Итак, вот оно. Запуск с прыжка звучит сложно, но если вы разбиваете его на такие шаги, как эти, это довольно простой процесс, как я упоминал ранее.Здесь следует помнить, что, когда батарея разряжена, ее срок службы сокращается.

    Related Posts

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *