Выбор сварочного защитного газа
Влияние сварочного газа на процесс сварки
Сварщики и специалисты в этой сфере часто упускают из виду применяемый ими защитный газ и его вклад в процесс сварки.
Защитные газы влияют на режим переноса металла, свойства и геометрию сварочного шва, задымленность и многие другие характеристики сварочного шва.
Правильный выбор защитного газа для процессов дуговой сварки металла, таких как аргонодуговая TIG сварка и полуавтоматическая сварка MIG MAG могут резко повысить скорость, качество сварки и глубину проплавления.
Чистые сварочные газы
Чистые газы, используемые для сварки, это аргон, гелий, и углекислый газ. Эти газы могут иметь как положительное, так и негативное воздействие на дуговой процесс сварки и появление дефектов в сварочном шве.
- Аргон
100% аргон обычно используются для аргонодуговой TIG сварки для всех материалов и MIG сварки цветных металлов. Аргон химически инертен, что делает его пригодным для сварки химически активных и тугоплавких металлов.Этот газ имеет низкую теплопроводность и потенциал ионизации, что приводит к низкой передаче тепла на внешнюю область сварочной дуги. В результате формируется узкий столб дуги, который в свою очередь, создает традиционный для сварки в чистом аргоне профиль сварочного шва: глубокий и относительно узкий.
- Гелий
Гелий также является одноатомным инертным газом, и чаще всего используется для аргонодуговой TIG сварки цветных металлов. В отличие от аргона, гелий имеет высокую проводимость тепла и потенциал ионизации, которые дают противоположный, чем при сварке в аргоне, эффект. Гелий обеспечивает широкий профиль сварочного шва, хорошее смачивание по краю и более высокое тепловложение, чем чистый аргон. - Углекислый газ
Углекислый газ CO2 – активный газ — обычно используется для полуавтоматической MAG сварки короткой дугой и MAG сварки порошковой проволокой. CO2 является наиболее распространенным из химически активных газов, используемых в MAG сварке. И единственным газом , который можно использовать в чистом виде без добавления инертного газа.Углекислый газ является одним из самых дешевых защитных газов, что делает его привлекательным выбором, когда материальные затраты являются основным приоритетом при сварочном процессе. CO2 обеспечивает очень глубокое проплавление, что полезно для сварки толстого металла, однако, при сварке в этом газе менее стабильна сварочная дуга, что приводит к большому образованию брызг. Также его применение ограничивается сваркой на короткой дуге и делает не возможной сварку со струйным переносом.
Сварочные газы, используемые как компоненты сварочной смеси газов
- Кислород
Кислород — двухатомный, активный защитный газ обычно используется для MIG MAG сварки как один из компонентов сварочной смеси, в концентрации менее 10%.Кислород обеспечивает очень широкий профиль сварочного шва с неглубоким проплавлением и высокое тепловложение на поверхности металла. Кислородо-аргонные смеси обладают характерным профилем проплавления сварочного шва в виде «шляпки гвоздя». Кислород также используется в тройных смесях с СО2 и аргоном, где он обеспечивает хорошую смачиваемость и преимущества струйного переноса.
- Водород
Водород — двухатомный, активный компонент защитного газа обычно используется в сварочной смеси в концентрации менее 10%. Водород используется главным образом при сварке аустенитной нержавеющей стали для удаления оксида и повышения тепловложения. Как и для всех газов из двухатомных молекул, результат — широкий на поверхности сварочный шов. Проплавление увеличенное.Водород не подходит для ферритных или мартенситных сталей из-за возникновения трещин.
Водород может быть использован в более высокой концентрации (от 30 до 40%) для плазменной резке нержавеющей стали — для увеличения мощности и сокращения шлака. - Азот
Азот используется реже всего для защитных целей. Он в основном используется для того, чтобы повысить коррозионную стойкость в дуплексных сталях.
Сварочные смеси газов
В зависимости от сварочного процесса и материалов для сварки используется множество различных сварочных газов и их смесей:
Сварка TIG | Сварка MIG MAG | |||||
Сварочный газ или смесь | Сталь | Нерж. сталь | Алюминий | Сталь | Нерж. сталь | Алюминий |
Аргон (Ar) | х | х | х | х | ||
Гелий (He) | х | |||||
Углекислый газ (СО2) | х | |||||
Смесь Ar/ СО2 | х | х | ||||
Смесь Ar/ О2 | х | х | ||||
Смесь Ar/ He | х | х | х | х | ||
Смесь Ar/ СО2/ О2 | х | |||||
Смесь Ar/ H2 | х | |||||
Смесь Ar/ He/ СО2 | х | х | ||||
Смесь He/ Ar/ СО2 | х |
Стоимость сварочного газа на фоне общей стоимости сварочных работ
Если посмотреть на диаграмму распределения стоимости сварочных работ, то можно увидеть, что затраты на сварочный газ составляют всего 2-5% от всех затрат на сварку. Однако недооценивать эти затраты не следует.
Выбор правильного газа и его качество значительно влияют на расход сварочных материалов, геометрию сварочного шва и на весь процесс сварки в целом. Также выбор газа влияет и на затрачиваемый труд на исправление дефектов и обработку сварочного шва после сварки.
Надеемся данная статья было полезна для вас. На этом сайте вы найдете много других интересных и полезных статей. Спасибо.
© Смарт Техникс
Данная статья является авторским продуктом, любое её использование и копирование в Интернете разрешена с обязательным указанием гиперссылки на сайт www.smart2tech.ru
Какой газ нужен для сварки полуавтоматом
Сварочный полуавтомат дает возможность увеличить продуктивность и качество работы. Оборудование не предполагает использования традиционных электродов. Вместо них применяется специальная присадочная проволока, которая намотана на катушку. Преимущество такого подхода заключается в том, что специалисту не приходится разрывать шов, чтобы сменить стержень. Операция выполняется непрерывно, сохраняется целостность шва и экономится время.
Помимо этого, оборудование позволяет сваривать заготовки разной толщины: от 0,2 мм до нескольких сантиметров. При этом сварщик может работать с заготовками из разных материалов или их сплавов. Для того, чтобы воспользоваться всеми перечисленными преимуществами требуется газ для сварки полуавтоматом. Он будет препятствовать проникновению в сварочную ванну атмосферной влаги и содержащихся в воздухе других элементов.
Какой газ нужен для сварки полуавтоматом
Технологическим регламентом при работе полуавтоматической сваркой предусматривается применения инертного или активного газа в качестве флюса. Активный вступает в химическую реакцию во время сварки и меняет физико-химические показатели сварного шва. Защитный газ не реагирует, но защищает рабочую среду от окислительных процессов. Такой способ особенно актуален в случаях сваривания заготовок из алюминиевого сплава, которые быстро поддаются окислению.
Наиболее распространенными газами из числа инертных являются гелий и аргон. Активная группа состоит из распространенных элементов: углекислый газ (СО2), кислород, азот. Самые популярные соединения:
- смесь аргона с углекислотой. Инертно-активная среда минимизирует количество брызг;
- состав из гелия и аргона. Инертная среда, позволяющая повысить температуру дуги;
- аргоно-кислородная газовая среда. Инертно активное соединение, которое используется при работе с легированной и низколегированной сталью;
- углекислый газ в сочетании с кислородом. Активная среда, применяемая для повышения производительности полуавтоматического оборудования.
Читайте также: Как правильно варить полуавтоматом
Сварочная смесь для полуавтомата
Выбирая смесь для полуавтомата, специалист учитывает такие критерии: тип материала заготовок, диаметр используемой проволоки, оптимальная толщина сварного шва. На практике для выбора смеси достаточно сопоставить приведенные в специальных таблицах данные. Здесь уже подобраны оптимальные варианты составов для работы с конкретными материалами с учетом технологических особенностей процесса.
Опытный сварщик учитывает и сопутствующие эффекты от использования той или другой газовой смеси. К примеру, применение углекислого газа дает возможность снизить разбрызгиваемость. Поэтому их часто выбирают для формирования потолочных швов.
Технология выполнения работ
Принципиального отличия от дуговой сварки нет, поскольку в основу положены те же физико-химические процессы. Между электродом и рабочей поверхностью создается разница потенциалов, что дает возможность сформировать электрическую дугу. Она накаляется до температуры, которой достаточно для плавления металлов. Расплавленная присадочная проволока связывается с телом заготовки на атомарном уровне. После остывания образуется цельный конструкционный элемент. Прочность соединения присадки и тела заготовки составляет примерно 90% от показателя основного конструкционного материала.
Нужно учитывать и особенности, которые характерны для полуавтоматической сварки:
- Присадочная проволока подается в рабочую зону непрерывно через специальный проводящий электричество мундштук. При этом расход материала можно отрегулировать вручную, придерживая или отпуская кнопку подачи.
- Вместо привычного флюса в твердой форме, от плавления которого образуется газовое облако, тут подается уже готовая газовая смесь или же чистая среда. Газ поступает все время: как при активной, так и потухшей электрической дуге.
Благодаря такому решению уменьшается количество брызг, показатели работы дуги более стабильны, повышается производительность труда сварщика и, соответственно, снижается трудоемкость сварочных процессов.
Особенности сваривания под газом
Техника сваривания полуавтоматическими устройствами практически ничем не отличается от приемов, которые применяются в традиционной электродуговой сварке. При помощи полуавтоматов можно формировать горизонтальные или вертикальные швы, делать «прихватку», делать стыки герметичными, делать сопряжения встык или внахлест.
Способы формирования остаются точно такими же, как и при использовании классических аппаратов ММА-серии. Более того, по общей схеме определяются оптимальная сила тока и режима сварки — на основе данных о толщине стыка и диаметре электрода.
Единственная особенность, которую отмечают практически все пользователи — простота соединения тонких листов металла. Поэтому чаще всего полуавтоматы используются в кузовном ремонте и при сваривании металлических конструкций из тонких листов.
Основные преимущества сварки полуавтоматом с газом
- Высокая температура воздействует на ограниченный участок заготовки. Поэтому металлы не меняют свих физических свойств.
- Нет дыма в рабочей зоне. Это существенно облегчает визуальный контроль над сварочным процессом.
- Универсальность. Технология отлично подходит для соединения разных металлов: от алюминия и титана до высоколегированной конструкционной стали.
- Нет ограничений относительно пространственного расположения заготовки. Достаточно отрегулировать мощность горелки для того, чтобы положить наклонный или потолочный шов.
- Отсутствуют ограничения по минимальной толщине. Технология дает возможность работать с листами толщиной от 0,2 мм. Максимальная толщина заготовки зависит от навыков специалиста.
- Не требуется постоянно зачищать швы даже при многослойной сварке. Газовый флюс улетучивается сразу после прекращения подачи смеси.
- Высокая производительность установки.
Какой газ нужен для сварки полуавтоматом
Сварочный полуавтомат дает возможность увеличить продуктивность и качество работы. Оборудование не предполагает использования традиционных электродов. Вместо них применяется специальная присадочная проволока, которая намотана на катушку. Преимущество такого подхода заключается в том, что специалисту не приходится разрывать шов, чтобы сменить стержень. Операция выполняется непрерывно, сохраняется целостность шва и экономится время.
Помимо этого, оборудование позволяет сваривать заготовки разной толщины: от 0,2 мм до нескольких сантиметров. При этом сварщик может работать с заготовками из разных материалов или их сплавов. Для того, чтобы воспользоваться всеми перечисленными преимуществами требуется газ для сварки полуавтоматом. Он будет препятствовать проникновению в сварочную ванну атмосферной влаги и содержащихся в воздухе других элементов.
Какой газ нужен для сварки полуавтоматом
Технологическим регламентом при работе полуавтоматической сваркой предусматривается применения инертного или активного газа в качестве флюса. Активный вступает в химическую реакцию во время сварки и меняет физико-химические показатели сварного шва. Защитный газ не реагирует, но защищает рабочую среду от окислительных процессов. Такой способ особенно актуален в случаях сваривания заготовок из алюминиевого сплава, которые быстро поддаются окислению.
Наиболее распространенными газами из числа инертных являются гелий и аргон. Активная группа состоит из распространенных элементов: углекислый газ (СО2), кислород, азот. Самые популярные соединения:
- смесь аргона с углекислотой. Инертно-активная среда минимизирует количество брызг;
- состав из гелия и аргона. Инертная среда, позволяющая повысить температуру дуги;
- аргоно-кислородная газовая среда. Инертно активное соединение, которое используется при работе с легированной и низколегированной сталью;
- углекислый газ в сочетании с кислородом. Активная среда, применяемая для повышения производительности полуавтоматического оборудования.
Читайте также: Как правильно варить полуавтоматом
Сварочная смесь для полуавтомата
Выбирая смесь для полуавтомата, специалист учитывает такие критерии: тип материала заготовок, диаметр используемой проволоки, оптимальная толщина сварного шва. На практике для выбора смеси достаточно сопоставить приведенные в специальных таблицах данные. Здесь уже подобраны оптимальные варианты составов для работы с конкретными материалами с учетом технологических особенностей процесса.
Опытный сварщик учитывает и сопутствующие эффекты от использования той или другой газовой смеси. К примеру, применение углекислого газа дает возможность снизить разбрызгиваемость. Поэтому их часто выбирают для формирования потолочных швов.
Технология выполнения работ
Принципиального отличия от дуговой сварки нет, поскольку в основу положены те же физико-химические процессы. Между электродом и рабочей поверхностью создается разница потенциалов, что дает возможность сформировать электрическую дугу. Она накаляется до температуры, которой достаточно для плавления металлов. Расплавленная присадочная проволока связывается с телом заготовки на атомарном уровне. После остывания образуется цельный конструкционный элемент. Прочность соединения присадки и тела заготовки составляет примерно 90% от показателя основного конструкционного материала.
Нужно учитывать и особенности, которые характерны для полуавтоматической сварки:
- Присадочная проволока подается в рабочую зону непрерывно через специальный проводящий электричество мундштук. При этом расход материала можно отрегулировать вручную, придерживая или отпуская кнопку подачи.
- Вместо привычного флюса в твердой форме, от плавления которого образуется газовое облако, тут подается уже готовая газовая смесь или же чистая среда. Газ поступает все время: как при активной, так и потухшей электрической дуге.
Благодаря такому решению уменьшается количество брызг, показатели работы дуги более стабильны, повышается производительность труда сварщика и, соответственно, снижается трудоемкость сварочных процессов.
Особенности сваривания под газом
Техника сваривания полуавтоматическими устройствами практически ничем не отличается от приемов, которые применяются в традиционной электродуговой сварке. При помощи полуавтоматов можно формировать горизонтальные или вертикальные швы, делать «прихватку», делать стыки герметичными, делать сопряжения встык или внахлест.
Способы формирования остаются точно такими же, как и при использовании классических аппаратов ММА-серии. Более того, по общей схеме определяются оптимальная сила тока и режима сварки — на основе данных о толщине стыка и диаметре электрода.
Единственная особенность, которую отмечают практически все пользователи — простота соединения тонких листов металла. Поэтому чаще всего полуавтоматы используются в кузовном ремонте и при сваривании металлических конструкций из тонких листов.
Основные преимущества сварки полуавтоматом с газом
- Высокая температура воздействует на ограниченный участок заготовки. Поэтому металлы не меняют свих физических свойств.
- Нет дыма в рабочей зоне. Это существенно облегчает визуальный контроль над сварочным процессом.
- Универсальность. Технология отлично подходит для соединения разных металлов: от алюминия и титана до высоколегированной конструкционной стали.
- Нет ограничений относительно пространственного расположения заготовки. Достаточно отрегулировать мощность горелки для того, чтобы положить наклонный или потолочный шов.
- Отсутствуют ограничения по минимальной толщине. Технология дает возможность работать с листами толщиной от 0,2 мм. Максимальная толщина заготовки зависит от навыков специалиста.
- Не требуется постоянно зачищать швы даже при многослойной сварке. Газовый флюс улетучивается сразу после прекращения подачи смеси.
- Высокая производительность установки.
Какой газ нужен для сварки полуавтоматом
Сварочный полуавтомат дает возможность увеличить продуктивность и качество работы. Оборудование не предполагает использования традиционных электродов. Вместо них применяется специальная присадочная проволока, которая намотана на катушку. Преимущество такого подхода заключается в том, что специалисту не приходится разрывать шов, чтобы сменить стержень. Операция выполняется непрерывно, сохраняется целостность шва и экономится время.
Помимо этого, оборудование позволяет сваривать заготовки разной толщины: от 0,2 мм до нескольких сантиметров. При этом сварщик может работать с заготовками из разных материалов или их сплавов. Для того, чтобы воспользоваться всеми перечисленными преимуществами требуется газ для сварки полуавтоматом. Он будет препятствовать проникновению в сварочную ванну атмосферной влаги и содержащихся в воздухе других элементов.
Какой газ нужен для сварки полуавтоматом
Технологическим регламентом при работе полуавтоматической сваркой предусматривается применения инертного или активного газа в качестве флюса. Активный вступает в химическую реакцию во время сварки и меняет физико-химические показатели сварного шва. Защитный газ не реагирует, но защищает рабочую среду от окислительных процессов. Такой способ особенно актуален в случаях сваривания заготовок из алюминиевого сплава, которые быстро поддаются окислению.
Наиболее распространенными газами из числа инертных являются гелий и аргон. Активная группа состоит из распространенных элементов: углекислый газ (СО2), кислород, азот. Самые популярные соединения:
- смесь аргона с углекислотой. Инертно-активная среда минимизирует количество брызг;
- состав из гелия и аргона. Инертная среда, позволяющая повысить температуру дуги;
- аргоно-кислородная газовая среда. Инертно активное соединение, которое используется при работе с легированной и низколегированной сталью;
- углекислый газ в сочетании с кислородом. Активная среда, применяемая для повышения производительности полуавтоматического оборудования.
Читайте также: Как правильно варить полуавтоматом
Сварочная смесь для полуавтомата
Выбирая смесь для полуавтомата, специалист учитывает такие критерии: тип материала заготовок, диаметр используемой проволоки, оптимальная толщина сварного шва. На практике для выбора смеси достаточно сопоставить приведенные в специальных таблицах данные. Здесь уже подобраны оптимальные варианты составов для работы с конкретными материалами с учетом технологических особенностей процесса.
Опытный сварщик учитывает и сопутствующие эффекты от использования той или другой газовой смеси. К примеру, применение углекислого газа дает возможность снизить разбрызгиваемость. Поэтому их часто выбирают для формирования потолочных швов.
Технология выполнения работ
Принципиального отличия от дуговой сварки нет, поскольку в основу положены те же физико-химические процессы. Между электродом и рабочей поверхностью создается разница потенциалов, что дает возможность сформировать электрическую дугу. Она накаляется до температуры, которой достаточно для плавления металлов. Расплавленная присадочная проволока связывается с телом заготовки на атомарном уровне. После остывания образуется цельный конструкционный элемент. Прочность соединения присадки и тела заготовки составляет примерно 90% от показателя основного конструкционного материала.
Нужно учитывать и особенности, которые характерны для полуавтоматической сварки:
- Присадочная проволока подается в рабочую зону непрерывно через специальный проводящий электричество мундштук. При этом расход материала можно отрегулировать вручную, придерживая или отпуская кнопку подачи.
- Вместо привычного флюса в твердой форме, от плавления которого образуется газовое облако, тут подается уже готовая газовая смесь или же чистая среда. Газ поступает все время: как при активной, так и потухшей электрической дуге.
Благодаря такому решению уменьшается количество брызг, показатели работы дуги более стабильны, повышается производительность труда сварщика и, соответственно, снижается трудоемкость сварочных процессов.
Особенности сваривания под газом
Техника сваривания полуавтоматическими устройствами практически ничем не отличается от приемов, которые применяются в традиционной электродуговой сварке. При помощи полуавтоматов можно формировать горизонтальные или вертикальные швы, делать «прихватку», делать стыки герметичными, делать сопряжения встык или внахлест.
Способы формирования остаются точно такими же, как и при использовании классических аппаратов ММА-серии. Более того, по общей схеме определяются оптимальная сила тока и режима сварки — на основе данных о толщине стыка и диаметре электрода.
Единственная особенность, которую отмечают практически все пользователи — простота соединения тонких листов металла. Поэтому чаще всего полуавтоматы используются в кузовном ремонте и при сваривании металлических конструкций из тонких листов.
Основные преимущества сварки полуавтоматом с газом
- Высокая температура воздействует на ограниченный участок заготовки. Поэтому металлы не меняют свих физических свойств.
- Нет дыма в рабочей зоне. Это существенно облегчает визуальный контроль над сварочным процессом.
- Универсальность. Технология отлично подходит для соединения разных металлов: от алюминия и титана до высоколегированной конструкционной стали.
- Нет ограничений относительно пространственного расположения заготовки. Достаточно отрегулировать мощность горелки для того, чтобы положить наклонный или потолочный шов.
- Отсутствуют ограничения по минимальной толщине. Технология дает возможность работать с листами толщиной от 0,2 мм. Максимальная толщина заготовки зависит от навыков специалиста.
- Не требуется постоянно зачищать швы даже при многослойной сварке. Газовый флюс улетучивается сразу после прекращения подачи смеси.
- Высокая производительность установки.
Газ для сварки полуавтоматом – выбор газа для сварочных работ
Сварочный полуавтомат повышает качество шва и скорость работы сварщика. Механизированная сварка не предполагает замену электродов — вместо прутков в таком аппарате используется проволока, подаваемая с катушки. Поэтому сварщику не приходиться разрывать шов, теряя время и нарушая герметичность соединения. Кроме того, работа в полуавтоматическом режиме позволяет соединять заготовки толщиной от десятых долей миллиметра до нескольких сантиметров, причем конструкционным материалом соединяемых элементов может быть практически любой металл или сплав. Однако эти преимущества невозможны без использования специального газа для сварки полуавтоматом, защищающего сварочную ванну.
Какой газ нужен для механизированной сварки
Технология полуавтоматической сварки предполагает использование в качестве флюса активного или защитного газа. Первый меняет физико-химические характеристики шва, второй — защищает металл от окисления, что особенно актуально при соединении заготовок из алюминия или быстро окисляемых сплавов.
Типичными представителями инертной группы являются аргон (Аг) и гелий (Не). В активную группу входит азот (N), кислород (O), углекислый газ (CO2). Самыми популярными смесями являются:
- аргоно-углекислый состав (Аг + СО2) — инертно-активная среда, снижающая разбрызгивание электрода;
- аргоно-гелиевый состав (Аг + Не) — защитная среда, повышающая тепловую мощность дуги;
- аргоно-кислородная газовая смесь (Аг + О2) — инертно-активная среда для низколегированных и легированных сталей;
- углекисло-кислородная смесь (СО2 + О2) — активная среда, повышающая производительность полуавтомата.
Критерии выбора газа или смеси для полуавтомата
При выборе смеси или технически однородной среды принято обращать внимание на следующие критерии: тип конструкционного материала свариваемых заготовок, толщину формируемого шва, диаметр проволоки.
В итоге выбор смеси для сварочных работ сводится к изучению таблицы, в которой указаны составы, рекомендуемые для каждого металла или сплава, с учетом глубины ванны и других характеристик.
Кроме того, опытный сварщик учитывает «бонусный» эффект, который дает та или иная среда. Например, углекислые газы обеспечивают минимальное разбрызгивание присадочного металла (электрода), поэтому с их помощью удобно варить потолочные швы. В этом случае СО2 убережет сварщика от контакта с каплями расплавленного металла.
Технология сварки в полуавтоматическом режиме
Принцип работы сварочного полуавтомата основан на хорошо изученном электродуговом процессе. Разница потенциалов между электродом и заготовкой позволяет сформировать электрическую дугу, температуры которой хватит на расплавление присадочного и свариваемого металла. Застывшая присадка контактирует с металлом заготовки на атомарном уровне, образуя шов с прочностью до 90% от показателя основного конструкционного материала.
Однако в работе полуавтомата есть свои особенности. Во-первых, проволока-электрод подается в зону сварочной ванны непрерывным потоком, проходя сквозь токопроводящий мундштук. Причем расход присадочного металла можно регулировать вручную, нажимая на кнопку подачи. Во-вторых, вместо классического «твердого» флюса, образующего газовое облако при горении дуги, полуавтомат использует газовые смеси или технически чистые среды. Причем подача газа осуществляется непрерывно, как до появления дуги, так и после ее разрыва.
Благодаря этому уменьшается количество брызг, стабилизируются параметры дуги, повышается производительность труда сварщика, снижается общая трудоемкость любого сварочного процесса.
Особенности выполнения сварки под газом
Техника работы на полуавтомате практически не отличаются от принципов применения классических аппаратов. С помощью полуавтомата можно варить горизонтальные и вертикальные швы, выполнять прихватывание заготовок, проваривать герметичные соединения, формировать сопряжение встык и внахлест.
Способ формирования соединений полуавтоматическим сварочным аппаратом не отличается от классических методик, реализуемых с помощью ММА-оборудования. Температурные режимы и сила сварочного тока определяется по общепринятой схеме — исходя из толщины стыков и диаметра электрода.
Единственной индивидуальной особенностью, которой обладает полуавтоматический газосварочный процесс, является простота соединения тонких заготовок. Поэтому полуавтомат используется преимущественно в кузовном ремонте и во время сборки тонколистовых металлоконструкций.
Основные преимущества сварки с газовой защитой
- Узкая зона высокотемпературного воздействия, поэтому MIG-MAG процессы не меняют свойства свариваемых металлов.
- Отсутствие задымления в зоне сварочной ванны, что облегчает визуальный контроль качества шва.
- Универсальность применения — MIG-MAG процессы совместимы с любыми металлами: от титана или алюминия до высоколегированной или конструкционной стали.
- Отсутствие ограничений по пространственному положению детали — отрегулировав напор горелки, можно варить потолочные или наклонные швы, не испытывая никаких затруднений.
- Нет ограничений по толщине — эта технология допускает сваривание листовых заготовок с толщиной от 0,2-0,5 миллиметра. Верхняя граница толщины соединения определяется только мастерством сварщика.
- Отсутствие необходимости зачищать швы даже при многослойной наплавке — флюс улетучивается после прекращения подачи смеси из горелки.
- Максимально возможная производительность труда даже при средней квалификации сварщика.
Все эти преимущества станут доступны только в случае поставки качественной смеси, подготовленной по ГОСТ и ТУ. Некачественные составы приведут к потере прочностных характеристик.
ООО «ИТЦ Промэксервис» готово предоставить заказчику высококачественный газ для сварочных работ, в любых объемах, с доставкой по Москве или Подмосковью. Мы работаем с крупными компаниями и физическими лицами, предлагая высокое качество и низкие цены. ИТЦ Промэксервис — лидер рынка с 1999 года.
Какой газ нужен для сварки полуавтоматом?
Полуавтоматическая сварка обычно осуществляется в газовой среде с применением проволоки. Процесс представляет собой электродуговую сварку с использованием тепловой энергии, исходящей от электрической дуги, которая соединяет металлическую поверхность изделия и окончание электрода. Какой газ нужен для сварки полуавтоматом?
Применяемые газы для сварки
Подбирать газ для сварочных работ полуавтоматом необходимо, основываясь на его свойствах.
Ацетилен
Характеристики:
- бесцветный;
- легче воздуха;
- обладает специфичным запахом.
Это один из самых распространенных газов, который используется в данной сфере деятельности. Он обладает среди остальных видов газа наиболее высокой температурой горения, имеет высокую полярность. Часто применяется из-за высокой температуры горения при резке металлических конструкций.
Для производства ацетилена применяются специализированные генераторы. Получить ацетилен можно при помощи соединения воды с карбидом кальция, который способен даже поглощать влагу из атмосферной среды. Поэтому согласно требованиям безопасности к данному химическому соединению предусматриваются особые условия хранения.
Водород
Характеристики:
- бесцветный;
- не имеет запаха;
- относится к взрывоопасным средствам.
При соединении с кислородом, воздушной средой образует гремучий газ. По требованиям безопасности водородные баллоны не должны находиться под давлением более 15 МПа.
Для производства водорода используются специализированные генераторы. Водород также выделяется благодаря синтезу воды.
Коксовый газ
Характеристики:
- бесцветный;
- имеет специфичный запах.
Это побочный продукт, извлекаемый в процессе добычи кокса, который, в свою очередь, выводится из каменного угля. Этот газ можно транспортировать при помощи трубопроводных магистралей.
Природный газ: метан, бутан, пропан
Достаточно распространенные виды газов, применяемые для множества сварочных работ. К ним нет особых требований при транспортировании, хранении. Добыча этих разновидностей газов для сварки полуавтоматом производится на их месторождениях.
Газ пиролизный
Извлекается в процессе распада нефтяных продуктов. Этот газ способствует образованию коррозии мундштуков горелки, в результате чего они быстро выходят из строя. Пиролизный газ перед его непосредственным использованием подвергается очистке. Применяется данная субстанция, как для сваривания металлических конструкций, так и для их резки.
Какой газ подходит для сварочных работ?
Для любительской сварки в бытовых условиях лучше выбирать полуавтоматы, которые можно подсоединить к стандартной сети 220 В, но это условие не единственное для правильного подбора оборудования. Часто пользователей смущает маркировка на инструментах: MAG, MIG. Что же обозначает данная аббревиатура?
- MAG – полуавтомат для работы с углеродом.
- MIG – полуавтомат для работы с аргоном.
Также возможна комбинация данных газов или применение смесей, в которых они являются основой. От состава используемых смесей зависит конечный результат, качество сварного соединения. MAG или MIG предусматривает применение определенного типа присадочной проволоки. Универсальные варианты полуавтоматов способны функционировать с любой газовой смесью.
Опытные сварщики советуют использовать для полуавтоматической сварки смесь, включающую углекислый газ/аргон, 20/80 соответственно. Состав газа в такой пропорции значительно облегчает проведение сварочных работ, позволяет получать абсолютно ровное высококачественное сварное соединение, при этом полученный шов не нуждается в дополнительной обработке.
Для полуавтомата газ подбирается зависимо от мощности самого оборудования, типа свариваемого материала. Например, аргон применяется при обработке образцов из цветных металлов, чистый азот – для сваривания медных деталей.
Газосварка полуавтоматом
Газовая полуавтоматическая сварка стальных медных, титановых образцов, их сплавов представляет собой процедуру соединения отдельных металлических изделий посредством подачи на участок соединения присадочной проволоки, газа, который ограждает расплавленные материалы от неблагоприятных воздействий воздуха.
Преимущества газовой сварки
- Для осуществления сварных соединений металлических конструкций с применением газа нет необходимости приобретать довольно дорогостоящее оборудование.
- При использовании углекислого газа сварные работы можно осуществлять на любых участках зданий, сооружений. При этом дополнительное потребление энергии исключается.
- В период выполнения сварочных работ присутствует возможность изменения мощности пламени. Это предоставляет возможность сваривать разнотипные образцы, к примеру, титановые с медными, свинцовые с латунными, другие металлы с разной температурой плавления.
- Данным способом сваривания можно не только соединять металлические конструкции, но и производить их закалку, резку.
- Сварные швы полуавтоматом в газе получаются намного прочнее, чем при электродуговой сварке.
Соединение именно полуавтоматической сваркой чугунных, медных, латунных, свинцовых заготовок выполняется намного быстрее, качественнее.
Особенности выполнения работ
- Если на полуавтомате правильно установить мощность, подобрать оптимальную проволоку, скорость подачи проволоки, расход углекислого газа, тогда сварные соединения будут наилучшего качества.
- Поверхности, подвергаемые сварке, нагреваются и охлаждаются довольно медленно. При соединении медных, стальных, титановых деталей температура пламени регулируется. Максимальная температура пламени при его вертикальном положении, соответственно изменении угла наклона она будет снижаться.
- При выполнении газовой полуавтоматической сварки в углекислом газе предусмотрено применение двух вариантов оборудования. В первом случае сварочные агрегаты работают с аргоном, прочими инертными газами. Во втором случае полуавтоматы работают с углекислым газом.
- Применение газового баллона под высоким давлением значительно затрудняет выполнение кузовных работ, сваривание трубопроводных коммуникаций на открытой местности. Но, для стационарных работ данная методика считается наиболее эффективной.
- При газосварке применяется проволока, имеющая в своем составе кремний, марганец. Ее расход строго контролируется, а подача в сварную зону осуществляется вместе с газом, который обеспечивает защиту проволоке, соединяемым металлам от негативных влияний воздуха. В стандартах определены марки проволоки, которые рекомендуется использовать для конкретного сварочного оборудования.
Преимущества полуавтоматической сварки с углекислым газом для автомобильного ремонта
- Технология выполнения сварки в углекислом газе легко усваивается, при необходимости ее можно быстро изучить.
- Ограниченная зона термических влияний предоставляет возможность соединять тонкие металлические изделия.
- Углекислый газ наиболее доступный из всех типов газов, применяемых для сварки.
- довольно высокая скорость расплавления присадочной проволоки, соответственно высокая производительность работ.
- Краска на изделии выгорает узкой полоской. Это позволяет подготовительные, финишные работы свести к минимуму.
- Сварные швы получаются высокого качества для деталей разной толщины.
- Отсутствует необходимость предварительно подгонять свариваемые образцы.
Итог
Сварка полуавтоматом с газом позволяет значительно экономить время на выполнении работ, так как отсутствует необходимость замены электродов, зачистки шлакообразований на сварных соединениях.
Газ для сварки полуавтоматом: критерии выбора, преимущества
При работе на полуавтоматических сварочных аппаратах применяют присадочную проволоку, в которой отсутствуют защитные вещества. Шов в результате подвергается окислению от атмосферного кислорода. Такое явление в дальнейшем приведет к появлению микротрещин, а также разрушению соединения. Чтобы предотвратить негативное действие посторонних веществ применяют газ для сварки полуавтоматом. Защитная среда позволяет соединять при помощи сварки любые виды металлов.
Полуавтоматический аппарат с газовым баллоном
Виды сварочных газов
Для обеспечения защитной среды при соединении металлов и их сплавов с помощью сварки добавляются различные вещества.
Ацетилен
С его помощью выполняют сварочные работы полуавтоматом. В отличие от аналогов имеет высокую температуру горения. Получают при взаимодействии карбида кальция и обыкновенной воды. Карбид способен реагировать на влагу из атмосферы, поэтому при хранении необходимо соблюдать меры безопасности. Ацетилен легче воздуха, обладает резким запахом. Применяется ля нарезки металлических заготовок.
Водород
Является бесцветным газом, не имеет запаха. При использовании соблюдают безопасность, в результате смешивания с воздухом получается взрывоопасная смесь. Хранится в баллонах под давлением не выше 15 Мпа. Получают при помощи разделения воды на составляющие кислород и водород в специальных генераторах.
Коксовый газ
От аналогов отличается резким запахом сероводорода, не имеет цвета. Получают в результате добычи кокса, относится к побочным продуктам. Считается безопасным веществом, может перемещаться по трубам с высоким давлением.
Природный газ метан, бутан и пропан
Недорогая и распространенная субстанция для выполнения сварки. Хранят в баллонах с высоким давлением. Добывают из газовых месторождений.
Баллоны с пропаном
Газ пиролизный
Получают при разложении на составляющие продуктов, содержащих нефть. В процессе отмечается коррозия на конце горелки, из-за чего подвергается нескольким стадиям очистки. Может использоваться для сварки и резки металлических деталей.
Какой газ нужен для сварки полуавтоматом
При выборе газа для полуавтоматической сварки необходимо ознакомиться со свойствами каждого вида. Для полуавтомата применяются следующие субстанции:
- Аргон. Используют при соединении активных металлов и их сплавов, так как он является инертным. Обеспечивает защиту шва от появления микротрещин и дефектов.
- Гелий. С его помощью получают соединения большого размера. Является инертным, защищает соединение от окисления.
- Углекислотная смесь. Применяется для сварки полуавтоматом с короткой дугой.
Критерии выбора
Применение газа для полуавтомата зависит от факторов:
- значение критических температур которая может быть обеспечена при горении смеси защитного вещества;
- количество тепла, образуемое в месте соединения при сварке металлических заготовок;
- способность обеспечивать защиту сварочного шва при соединении определенных металлов и их сплавов.
Рекомендуют применять готовые смеси без получения их при помощи генераторов.
Преимущества
Любые виды защитных веществ сохраняют ряд преимуществ:
- варить полуавтоматом без применения дорогого оборудования;
- соединения производят в труднодоступных местах там, где нельзя применить электродуговую сварку;
- в процессе можно регулировать номинальную мощность пламени из горелки, производят стыковку металлов с различными техническими характеристиками, например, титана с медью;
- помимо сварки можно выполнять закалку металлических конструкций, а также их резку;
- повышается качество шва в результате защиты от окисления;
- снижаются затраты на производство соединения, ускоряется процесс;
- увеличивается эффективность технологии;
- плавление металлических деталей в зоне действия дуги происходит быстрее, снижается время на сварку;
- исключается разбрызгивание расплавленного металла в месте стыковки;
- увеличивается свойства пластичности соединения, а также его плотность, исключается разрушение шва при эксплуатации;
- обеспечивается стабильность электрической дуги;
- снижается уровень задымления, тем самым понижается вред от сварки.
Расход газа при сварке полуавтоматом
Расход защитной среды зависит от следующего:
- тип металла или сплава;
- собственный диаметр присадочной проволоки;
- номинальная величина сварочного тока.
Скорость подачи смеси регулируется при помощи редуктора. Приспособление устанавливают на баллоне с высоким давлением. Существует таблица, согласно, которой происходит настройка оборудования.
При выполнении сварочных работ мастер может снизить потери газовой смеси, для этого необходимо следующее:
- производить соединение в закрытом цеху;
- применять вентиляцию, предотвратить сквозняки;
- привлечение мастеров с высокой квалификацией;
- использование смеси защитных веществ.
При снижении количества газа может ухудшиться качество сварочного шва, защитной среды будет недостаточно для защиты от окисления.
Мастер варит полуавтоматом
Технология сварки с использованием газов
Перед началом работ при сварке полуавтоматом учитывают следующее:
- номинальная мощность;
- тип присадочной проволоки;
- тип защитного смеси, а также регулировка скорости подачи при помощи редуктора на баллоне.
Нагрев и охлаждение металлических деталей происходит медленно. В результате следует регулировать температуру горения, этого добиваются путем наклона горелки и положением основного пламени. Если есть необходимость перемещения, то применяют баллоны с малым давлением, при стационарных работах используют емкости с большим внутренним давлением. Защитный газ для сварки полуавтоматом подается вместе с проволокой ее подача регулируется непосредственно при выполнении соединения. Таким способом обеспечивают защиту шва от окисления кислородом.
сварка MAG | Дуговая сварка | Основы автоматизированной сварки
На этой странице представлена информация о сварке MAG, в которой рассматриваются области, в которых используется сварка MAG, типы используемых защитных газов и сварочной проволоки, а также характеристики сварочных аппаратов MAG. Также объясняются различные подкатегории сварки MAG в защитном газе.
Обязательно к прочтению всем, кто занимается сваркой!
Это руководство включает в себя базовые знания о сварке, такие как типы и механизмы сварки, а также подробные знания, касающиеся автоматизации сварки и устранения неисправностей.Скачать
Сварка
MAG (Metal Active Gas) — это тип дуговой сварки, в которой используется активный газ (углекислый газ [CO 2 ] или газовая смесь аргона и CO 2 ). Этот процесс также называется дуговой сваркой CO 2 или сваркой CO 2 . Этот процесс обычно используется для автоматической или полуавтоматической сварки черных металлов. Он не подходит для цветных металлов, таких как алюминий, из-за химической реакции CO 2 .
При автоматической или полуавтоматической сварке MAG в качестве электрода используется сварочная проволока, свернутая в бухты, вместо сварочного стержня, используемого при дуговой сварке защищенным металлом (ручная дуговая сварка).
Свернутая проволока прикрепляется к устройству подачи проволоки и автоматически направляется к наконечнику горелки подающим роликом, который приводится в действие электродвигателем. На провод подается напряжение, когда он проходит через контактный наконечник, удерживающий провод.
Между проволокой и основным материалом зажигается дуга, которая одновременно плавит проволоку и основной материал для их сварки.Во время процесса защитный газ подается через сопло в зону сварного шва и в окрестности, чтобы защитить дугу и сварочную ванну от атмосферы. В качестве защитного газа используется газ CO 2 , газовая смесь аргона и CO 2 или газовая смесь аргона с несколькими процентами кислорода.
По сравнению с дуговой сваркой в среде защитного металла скорость наплавки, при которой электрод становится металлом шва, выше, что дает преимущество высокой эффективности работы за счет глубокого проплавления основного материала.Есть и другие важные преимущества, например, высокое качество металла шва и то, что установка сварочной горелки на роботе позволяет выполнять автоматическую сварку.
- Ar + CO 2 газовая смесь
или CO 2 газ - Электрод сплошной проволоки
Полуавтоматический сварочный аппарат MAG в основном состоит из следующих компонентов:
- Источник сварочного тока
- Устройство подачи проволоки
- Горелка сварочная
- Баллон газовый
Проволока должна подаваться от устройства подачи с постоянной скоростью.Следовательно, для источника питания сварки обычно используется источник питания с характеристикой постоянного напряжения. Устройство подачи проволоки представляет собой механизм подачи с постоянной скоростью.
- Баллон газовый
- Регулятор расхода газа
- Источник сварочного тока
- Устройство подачи проволоки
- Блок дистанционного управления
- Горелка сварочная
Сварку
MAG можно классифицировать по защитному газу или типу сварочной проволоки.
Что касается сварочной проволоки, то сплошная проволока имеет поперечное сечение, полностью состоящее из того же материала.Поверхности проволоки для углеродистой стали покрыты медью для повышения устойчивости к ржавчине и повышения электропроводности. Сплошная проволока без покрытия без медного покрытия дает такие преимущества, как стабильная дуга и простота обслуживания внутренней части сварочной горелки.
Порошковая проволока содержит сердечник из флюса внутри проволоки. Они обеспечивают такие преимущества, как стабильная дуга, меньшее разбрызгивание и хороший внешний вид сварного шва.
Кроме вышеперечисленного, существуют порошковые и металлопорошковые проволоки.Первый отличается высокой скоростью осаждения, а второй — меньшим образованием шлака.
Дом
Основные сведения о сварке защитным газом MIG
Защитный газ может играть значительную роль в улучшении или ухудшении характеристик сварки.
Сварка
MIG (GMAW) с использованием защитного газа и сплошного проволочного электрода обеспечивает чистый шов без шлака. Это происходит без необходимости останавливать сварку для замены электрода, как при сварке палкой. Повышенная производительность и меньшая очистка — это лишь два преимущества этого процесса.
Чтобы достичь этих результатов в вашем конкретном приложении, он помогает понять роль защитного газа, различные доступные защитные газы и их уникальные свойства.
Основной целью защитного газа является предотвращение воздействия на расплавленную сварочную ванну кислорода, азота и водорода, содержащихся в воздушной атмосфере. Реакция этих элементов на сварочную ванну может создать множество проблем, включая пористость (отверстия в сварном шве) и чрезмерное разбрызгивание.
Различные защитные газы также играют важную роль в определении профиля проплавления сварного шва, стабильности дуги, механических свойств готового сварного шва, используемого вами процесса переноса и т. Д.
Выбор расходных материалов для горелок MIG, обеспечивающих стабильную и плавную подачу защитного газа, также важен для успешного выполнения сварных швов MIG.
Выбор подходящего защитного газа
Многие сварочные аппараты MIG позволяют выбирать различные варианты защитного газа.Вам необходимо оценить свои цели в области сварки и области применения, чтобы выбрать наиболее подходящий вариант для конкретной области применения. При выборе учитывайте следующее:
- Стоимость газа
- Свойства готового сварного шва
- Подготовка и очистка после сварки
- Основной материал
- Процесс переноса сварного шва
- Ваши производственные цели.
Четыре наиболее распространенных защитных газа, используемых при сварке MIG, — это аргон, гелий, углекислый газ и кислород.Каждый из них имеет уникальные преимущества и недостатки в любом конкретном приложении.
Пористость, которую можно увидеть на лицевой и внутренней поверхности
сварного шва, может быть вызвана недостаточным защитным газом и может значительно ослабить
сварной шов.
Двуокись углерода (CO2)
Наиболее распространенным из химически активных газов, используемых при сварке MIG, является двуокись углерода (CO2). Это единственный, который можно использовать в чистом виде без добавления инертного газа. CO2 также является наименее дорогим из обычных защитных газов, что делает его привлекательным выбором, когда материальные затраты являются основным приоритетом.Чистый CO2 обеспечивает очень глубокое проплавление шва, что полезно при сварке толстых материалов. Однако он также дает менее стабильную дугу и большее количество брызг, чем при смешивании с другими газами. Это также ограничивается только процессом короткого замыкания.
Аргон
Для компаний, которые уделяют особое внимание качеству сварных швов, их внешнему виду и снижению степени очистки шва после сварки, лучшим вариантом может быть смесь 75–95 процентов аргона и 5–25 процентов CO2. Он обеспечит более желательное сочетание стабильности дуги, контроля образования луж и меньшего разбрызгивания, чем чистый CO2.Эта смесь также позволяет использовать процесс переноса распылением, который может обеспечить более высокую производительность и более привлекательные сварные швы. Аргон также обеспечивает более узкий профиль проплавления, что полезно для угловых и стыковых швов. Если вы свариваете цветной металл — алюминий, магний или титан — вам потребуется 100-процентный аргон.
Кислород
Кислород, также являющийся химически активным газом, обычно используется в соотношении девять процентов или меньше для улучшения текучести сварочной ванны, проплавления и стабильности дуги в мягкоуглеродистой, низколегированной и нержавеющей стали.Однако он вызывает окисление металла шва, поэтому его не рекомендуется использовать с алюминием, магнием, медью или другими экзотическими металлами.
Гелий
Гелий, как и чистый аргон, обычно используется с цветными металлами, но также и с нержавеющими сталями. Поскольку он обеспечивает широкий и глубокий профиль проникновения, гелий хорошо работает с толстыми материалами и обычно используется в соотношении от 25 до 75 процентов гелия к 75-25 процентам аргона. Регулировка этих соотношений изменит глубину проникновения, профиль валика и скорость движения.Гелий создает более «горячую» дугу, что позволяет увеличить скорость движения и повысить производительность. Однако он более дорогой и требует более высокой скорости потока, чем аргон. Вам нужно будет рассчитать ценность увеличения производительности по сравнению с увеличением стоимости газа. В случае нержавеющих сталей гелий обычно используется в трехкомпонентной смеси аргона и CO2.
На этом графике показано различие, которое расходные детали могут составлять
в покрытии защитным газом. На фото слева показано хорошее покрытие, тогда как покрытие на фото справа позволяет
воздушной среде загрязнять защитный газ.
Подача защитного газа в сварочную ванну
Все ваши усилия по выбору подходящего защитного газа будут потрачены впустую, если ваше оборудование не подает газ на сварной шов. Расходные детали горелки MIG (диффузор, контактный наконечник и сопло) играют решающую роль в обеспечении надлежащей защиты сварочной ванны.
На этом разрезе показана система расходных материалов, в которой контактный наконечник
установлен в диффузоре и удерживается на месте
защитой от брызг внутри сопла.
Если вы выберете слишком узкое сопло или если диффузор забивается, например, брызгами, в сварочную ванну может попасть слишком мало защитного газа.Точно так же плохо спроектированный диффузор может не направлять защитный газ должным образом, что приведет к турбулентному несбалансированному потоку газа. Оба сценария могут допускать попадание воздушных карманов в защитный газ и приводить к чрезмерному разбрызгиванию, пористости и загрязнению сварных швов.
При выборе расходных материалов для пистолета MIG выбирайте те, которые устойчивы к образованию брызг и обеспечивают достаточно широкое отверстие сопла для адекватного покрытия защитным газом. Некоторые компании предлагают форсунки со встроенной защитой от брызг, которая также добавляет вторую фазу диффузии защитного газа.Это приводит к еще более плавному и стабильному потоку защитного газа.
Выбор подходящего защитного газа для вашего конкретного применения потребует тщательного анализа типа выполняемой вами сварки, а также ваших производственных приоритетов. Использование приведенных выше рекомендаций должно стать хорошим началом учебного процесса. Обязательно проконсультируйтесь со своим местным дистрибьютором сварочных материалов, прежде чем принимать окончательное решение.
Рекомендации по использованию защитного газа для сварки MIG и TIG — Sandvik Materials Technology
Защита защитным газом
Защитный газ для сварки MIG / GMAW
Основным газом для сварки MIG / MAG является аргон (Ar).Гелий (He) может быть добавлен для увеличения проплавления и текучести сварочной ванны. Для сварки всех марок можно использовать аргон или смеси аргона и гелия. Однако для стабилизации дуги, улучшения текучести и улучшения качества наплавленного металла обычно требуются небольшие добавки кислорода (O2) или углекислого газа (CO2). Для нержавеющих сталей также доступны газы, содержащие небольшое количество водорода (h3).
В таблице указан соответствующий выбор защитного газа для сварки MIG / MAG с учетом различных типов нержавеющей стали и типов дуги.
Основной металл (вид материала) | ||||||
---|---|---|---|---|---|---|
Аустенитная нержавеющая сталь | Duplex нержавеющая сталь | Супер-дуплекс нержавеющая сталь | Ферритная нержавеющая сталь | Высоколегированная аустенитная нержавеющая сталь | Никель Сплавы | |
Ар | – | – | ● a | – | ● a | ● a |
Ar + He | – | – | ● a | – | ● a | ● a |
Ar + (1-2)% O 2 | ● b | ● b | (●) | ● b | ● | – |
Ar + (1-2)% CO 2 c | ● д | ● д | (●) | ● д | ● | – |
Ar + 30% He + (1-2)% O 2 | ● e | ● e | ● e | ● e | ● | – |
Ar + 30% He + (1-2)% CO 2 c | ● e | ● e | ● e | ● e | ● | – |
Ar + 30% He + (1-2)% N 2 | – | – | ● | – | ● f | – |
a) Предпочтительно при импульсной сварке MIG.
b) Более высокая текучесть ванны расплава, чем при добавлении CO 2 .
c) Не использовать при дуговой сварке с распылением, где требуется очень низкое содержание углерода.
d) Лучшие характеристики сварки короткой дугой и позиционной сварки, чем с Ar + (1-2)% O 2 .
e) Более высокая текучесть ванны расплава по сравнению с Ar. Лучшие характеристики сварки короткой дугой, чем с Ar + (1-2)% CO 2 .
f) Для марок, легированных азотом.
Защитный газ для сварки TIG / GTAW
Обычным газом для сварки TIG является аргон (Ar).Гелий (He) может быть добавлен для увеличения проплавления и текучести сварочной ванны. Для сварки всех марок можно использовать аргон или смеси аргона и гелия. В некоторых случаях для достижения особых свойств могут быть добавлены азот (N 2 ) и / или водород (H 2 ). Например, добавление водорода дает такой же, но гораздо более сильный эффект, как добавление гелия. Однако добавки водорода не следует использовать для сварки мартенситных, ферритных или дуплексных марок.
В качестве альтернативы, если добавлен азот, свойства наплавленного металла сплавов, легированных азотом, могут быть улучшены.Окисляющие добавки не используются, поскольку они разрушают вольфрамовый электрод.
Рекомендации по использованию защитных газов при сварке TIG различных нержавеющих сталей приведены в таблице. Для плазменно-дуговой сварки типы газов с добавками водорода, указанные в таблице, в основном используются в качестве плазменного газа, а чистый аргон — в качестве защитного газа.
Основной металл (вид материала) | ||||||
---|---|---|---|---|---|---|
Аустенитная нержавеющая сталь Сталь | Duplex нержавеющая сталь | Супер-дуплекс нержавеющая сталь | Ферритная нержавеющая сталь | Высоколегированная аустенитная нержавеющая сталь | Никелевые сплавы | |
Ар | ● | ● | ● | ● | ● | |
Ar + He a | ● | ● | ● | ● | ● | ● a |
Ar + (2-5)% H 2 а, б | ● b | – | – | – | ● b | ● b |
Ar + (1-2)% N 2 | – | ● | ● | – | – | – |
Ar + 30% He + (1-2)% N 2 | – | ● | ● | – | – | – |
a) Улучшает текучесть по сравнению с чистым аргоном.
б) Предпочтительно для автоматической сварки. Высокая скорость сварки. Риск пористости в многопроходных сварных швах.
Защита корней
Безупречный результат сварки без ухудшения коррозионной стойкости и механических свойств может быть получен только при использовании защитного газа с очень низким содержанием кислорода. Для достижения наилучших результатов допускается максимальная концентрация O 2 на уровне корня в 20 ppm.
Это может быть достигнуто с помощью продувочной установки и может контролироваться с помощью современного измерителя кислорода.Чистый аргон на сегодняшний день является наиболее распространенным газом для защиты корней нержавеющих сталей. Формир-газ (N 2 + 5 — 12% H 2 ) является отличной альтернативой для обычных аустенитных сталей. Газ содержит активный компонент H 2 , который снижает уровень кислорода в области сварного шва.
Азот можно использовать для дуплексных сталей, чтобы избежать потерь азота в металле сварного шва. Чистота газа, используемого для защиты корней, должна быть не менее 99,995%. Когда продувка газом нецелесообразна, альтернативой может быть корневой флюс.
Защита от расплавленного шлака
При дуговой сварке под флюсом (SAW) и электрошлаковой сварке (ESW) защита достигается за счет сварочного флюса, полностью покрывающего расходные материалы, дугу и ванну расплава. Флюс также стабилизирует электрическую дугу. Флюс плавится за счет тепла процесса, создавая покрытие из расплавленного шлака, которое эффективно защищает сварочную ванну от окружающей атмосферы.
Какой тип работает лучше »MidSouthSupply
Сегодня мы рассмотрим различные типы газа, используемые для сварки, как они работают и какой тип газа работает лучше всего.
Мы рассмотрим, какой газ является наиболее безопасным, какие опасности связаны со сварочными газами, а также какие типы газов НЕ ДОЛЖНЫ использоваться для сварки.
Наконец, исследование сварки не может быть полным без советов по безопасности. Продолжайте читать, чтобы узнать всю необходимую информацию о сварочных газах.
Какой газ лучше всего подходит для сварки?
Чтобы ответить на этот вопрос, мы должны ознакомиться с различными сварочными газами.
Их много, и они применимы к различным процессам сварки, ситуациям и металлам.
Некоторые из них чистые, а другие — смешанные.
Большинство смесей представляют собой смеси двух газов, а некоторые — смеси трех газов.
Чистые сварочные газы
Чистые сварочные газы:
- Ацетилен
- Воздух
- Аргон
- Углерод
Диоксид - Гелий
- Водород
- Азот
- Кислород
- Пропан
- Пропилен
Ацетилен используется для кислородно-топливной сварки и отлично подходит для сварки, пайки и резки стальных сплавов менее 1 Толщина.Обычно используется при воздушной строжке угольной дугой или плазменной резке (PAC).
Аргон считается предпочтительным газом для алюминия. Он используется при литье, производстве металлов и часто смешивается, поскольку улучшает «характеристики дуги» или облегчает перенос металла при газовой дуговой сварке (GMAW или MIG).
Загрязнение атмосферы расплавом
сварочный металл при электродуговой сварке в защитных газах предотвращается при использовании угля
диоксид с аргоном в качестве защитного газа при сварке или в чистом паре
государственный.
Гелий используется для создания защиты от инертного газа и предотвращает окисление во время сварки таких материалов, как алюминий, нержавеющая сталь, медь и сплавы магния. «Текучесть и скорость движения» сварочной ванны увеличивается с добавлением гелия.
Водород используется в производстве металлов; он обеспечивает усиливающий или экранирующий эффект при работе при высоких температурах при производстве нержавеющей стали. (h3) смешивается с аргоном для сварки аустенитной нержавеющей стали.Это увеличивает эффективность плазменной сварки и резки.
Азот может улучшить плазменную резку и термическую обработку. Этот газ можно использовать в качестве «продувочного газа» при сварке труб из нержавеющей стали. При использовании защитных газов на основе аргона можно использовать небольшие добавки азота для сварки нержавеющей стали методами GMAW или MIG.
Oxygen поддерживает кислородную резку. Его можно добавлять в защитные газы (в небольших количествах), и он используется в качестве газа для плазменной резки углеродистой стали (с гафниевыми электродами).Он также вызывает окисление (ржавчину), поэтому следует соблюдать осторожность, поскольку его нельзя использовать с медью, алюминием или магнием.
Склады металлолома используют пропан в кислородно-топливных процессах для резки углеродистой стали, поскольку качество резки обычно не критично.
Пропилен горит горячим, поэтому скорость резки необходимо рассчитывать в каждом конкретном случае, прежде чем вы выберете этот (как самый) экономичный вариант для топливного газа.
Аргон, гелий, углекислый газ и кислород являются наиболее
популярные защитные газы.Их цель — предотвратить обнажение «расплавленного»
сварочная ванна
к кислороду, азоту и водороду, которые содержатся в атмосфере.
Смеси сварочных газов
Невозможно рассматривать сварочные газы без учета смесей.
Смеси сварочных газов включают:
- аргон-кислород
Смеси - Аргон-Гелий-Углерод
Смеси диоксидные - Лазер
газы
Смеси аргона и кислорода содержат 1, 2 или 5% кислорода и используются для сварки углеродистой стали тяжелого профиля для тяжелого оборудования, такого как тяжелая ферма, военный транспорт, автомобильные сборки и корабли.
Обычно эти смеси используются для обработки углеродистой и нержавеющей стали. При сварке в нерабочем положении более высокий уровень кислорода увеличивает текучесть лужи.
Имеются две смеси аргон-гелий-углекислый газ . Один состоит из 90% гелия, 7,5% аргона и 2,5% углекислого газа. Они хороши для короткого замыкания нержавеющей стали.
Смесь сводит к минимуму поглощение углерода и обеспечивает «хорошую коррозионную стойкость, особенно в многопроходных сварных швах.’Он обеспечивает хорошую стабильность дуги и большую глубину плавления.
Более высокое содержание гелия дает дополнительное тепловложение, которое может преодолеть естественную вялость сварочной ванны нержавеющей стали.
Комбинация 66% аргона, 24,5% гелия и 7,5% диоксида углерода лучше всего подходит для «дуговой сварки распылением и импульсным распылением углеродистых и низколегированных сталей». Она подходит для любой толщины в любом положении.
Он хорошо сваривает ржавчину и масло, обладает хорошими механическими свойствами и предотвращает образование сварочной ванны.
Лазерные газы представляют собой чистые или предварительно смешанные смеси: газы включают гелий, азот, двуокись углерода и иногда окись углерода.
Лазерные газы использовались с 1960-х годов для резки и сварки, поскольку они обеспечивают лучшую точность и контроль, лучшую точность, более высокие скорости резки и сварки, более чистую работу, а стоимость использования лазеров позволяет сэкономить деньги. Но их применение ограничено.
При выборе сварочного газа, вероятно, лучше всего проверить в Интернете, а затем еще раз проконсультироваться с, надеюсь, хорошо осведомленными сотрудниками магазина сварочных материалов.
Выбор газа во многом зависит от типа сварочного аппарата, свойств металла (ов), процесса, такого как GMAW или MIG, и ситуации, в которой будет происходить сварка.
Основы сварки
Кому
лучше всего разбираться в сварочных операциях и использовании сварочных газов, это
Важно иметь базовые представления о самой сварке.
Сварка — это процесс, при котором при использовании определенных газов образуется электрическая дуга. Эта дуга возникает между плавящимся проволочным электродом и компонентом (металлами).Электрод нагревает компонент (ы) и заставляет их плавиться, таким образом, они соединяются.
Помимо проволочного электрода, через сварочную горелку подается защитный газ. Это защищает процесс от загрязнения, такого как кислород, который может разъедать металлы и другие загрязнители, которые, вероятно, находятся в воздухе.
Этот процесс может быть автоматическим или полуавтоматическим, в зависимости от требуемой работы. Постоянное напряжение, источник постоянного тока обычно используется с GMAW. Также можно использовать систему постоянного тока и переменного тока.
Металл
передача в GMAW состоит из четырех основных методов: шарового, короткозамкнутого,
спрей и импульсный спрей. Каждый тип перевода отличается и имеет свой
преимущества и ограничения.
Но какой тип газа мне больше подходит?
Это всегда сложный вопрос. Нужно учесть довольно много факторов.
- Это ремонт сварного шва или новый сварной шов, какая технология используется (MIG / TIG / ARC)?
- В какой среде я работаю, какие загрязнители присутствуют?
- Сколько стоит сварочный газ?
- Как быстро нужно выполнять работу, каковы мои цели по производительности?
- Каковы характеристики обрабатываемых металлов (материалов)?
- Что мне нужно делать во время процедур до и после очистки?
- И самое главное, какими свойствами должен обладать готовый сварной шов?
В большинстве стандартных сварных швов обоих методов будет использоваться некоторое количество аргона, поскольку он инертен, стабилен и относительно дешев по сравнению с другими благородными газами.Но в зависимости от свойств металлов и желаемых результатов иногда может потребоваться смесь газов вместо чистого аргона.
Выше мы предоставили удобную таблицу, в которой подробно описано, какие газы можно использовать для каких металлов и для каких методов.
КАК УЗНАТЬ, ЧТО ТАКОЕ ЛУЧШИЙ ГАЗ?
Сначала поговорим о сварке MIG.
В дополнение к аргону можно добавить гелий (He) для увеличения проплавления и текучести сварочной ванны.
Чистый аргон или аргон / гелий можно использовать для всех марок сварки.
Иногда требуется небольшое количество кислорода (O2) или углекислого газа (CO2) для увеличения электропроводности и улучшения стабильности дуги.
Это в конечном итоге приводит к увеличению текучести и улучшению наплавки. Специально для кислорода (O2) или диоксида углерода из нержавеющей стали (CO2 можно заменить небольшим количеством водорода (h3).
Типичными смесями являются чистый аргон, аргон с 30% добавленного гелия и смесь из трех газов аргона с 30% гелия и смесь 1-2% O2 / CO2 / h3 / N2 в зависимости от свойств свариваемых материалов.
Чистый аргон предпочтительнее при импульсной сварке MIG, в то время как для сварки короткой дугой предпочтительнее гелий со смесями других газов.
Теперь поговорим о сварке TIG.
Как и при сварке MIG, аргон является предпочтительным инертным инертным газом, используемым для сварки. При необходимости или желании снова можно использовать гелий для увеличения проплавления и текучести сварного шва.
Теперь при сварке TIG добавление азота (N2) или водорода (h3) может иметь некоторые особые улучшающие эффекты.
Часто используется водород (h3), который имеет весь эффект гелия, но усиливается, но имеет риск пористости при выполнении нескольких сварных швов на одном и том же материале.
Азот (N2) обладает аналогичными свойствами, но может использоваться только в сварных швах, легированных азотом.
Любые окисляющие газы не используются при сварке TIG, так как это может разрушить вольфрамовый электрод.
Насколько опасны сварочные газы?
Сварочные газы могут быть опасны для вашего здоровья.Газы могут вступать в реакцию с металлами с образованием дыма, который может вызвать у вас заболевание или даже хуже. Все сварщики должны принять меры предосторожности при работе со сварочными газами.
Углекислый газ, используемый для защиты, подвергается воздействию очень высоких температур, при определенных условиях молекула кислорода может быть удалена, и образуется окись углерода (CO), этот газ не имеет запаха и вкуса, если вы находитесь в закрытой среде. вверх и оказаться фатальным. Окись углерода также может образовываться при кислородно-ацетиленовой сварке.
Сварка MIG и TIG выделяет больше всего озона, и это количество увеличивается при сварке алюминия. Озон может повредить глаза, нос, горло, уши и легкие.
Вдыхание некоторых оксидов азота (NO2 и подобных) также может нанести вред легким, поскольку они вызывают скопление жидкости в легких.
Трудно отфильтровать газы в процессе сварки, потому что во время сварки образуются токсичные химические вещества и металлы.
Сварочный дым содержит следовые количества сварочных стержней, основных материалов и свариваемого материала.По этой причине крайне важно, чтобы все сварщики — и даже люди, работающие на сварочных площадках или поблизости — держались подальше от источников тепла.
Сами по себе сварочные газы — не самая вредная вещь для трудолюбивого сварщика. Вместо этого нужно позаботиться о дымах, образовавшихся после сварки.
Эти опасные пары представляют собой не инертные газы, которые вы использовали, а смесь всех процессов после сварки, которые могут быть невероятно токсичными.
При работе со сплавами марганца нужно быть осторожным, так как они выделяют наиболее токсичные пары.Вдыхание марганца может вызвать серьезные повреждения мозга и нервной системы. Воздействие марганца может даже привести к болезни Паркинсона. В 2001 году неврологическое исследование показало, что у 20% сварщиков были ранние признаки болезни Паркинсона.
Заболеваемость паркинсонизмом настолько высока, что юристы продолжают возбуждать дела в отношении сварщиков, страдающих болезнью Паркинсона и связанными с ней заболеваниями. Паркинсонизм или паркинсонический синдром теперь являются медицинскими терминами, возникающими в результате отравления марганцем.
Типы газов, которые НЕ следует использовать для сварки
Очевидным непригодным для сварки газом являются пары бензина.Иногда для сварки используют этин, но нельзя использовать этан.
Этина,
который представляет собой ацетилен, используется с кислородом для сварки. Тройка
конфигурация химической связи позволяет хранить большое количество энергии
который может выделяться в виде тепла.
Подробнее об ацетилене
тройная связь, которая делает кислородно-ацетиленовое пламя самым горячим из всех газовых пламен, — это
также отвечает за два или три других свойства газообразного ацетилена. Такой
свойства, кажется, противоречат закону определенных пропорций.
во-первых, когда свободный газообразный ацетилен подвергается удару или возгоранию,
некоторые из тройных связей разрываются. Это высвобождает достаточно энергии, чтобы вызвать все остальные
молекулы в замкнутом объеме разлагаются на углерод и водород. Этот
может привести к взрыву.
Другими словами, ацетилен легко воспламеняется.
Второй,
диапазон воспламеняемости смесей воздуха и ацетилена больше любого
другое топливо или газо-воздушная смесь. Смесь ацетилен / воздух может воспламениться при
они держатся где угодно от 2.От 5% ацетилена до 80% ацетилена.
Как правило, любой топливный газ, сжигаемый с кислородом, должен иметь следующее:
- Высокая температура пламени
- Высокая скорость распространения пламени
- Достаточное теплосодержание
- Минимальная химическая реакция пламени
с основным и присадочным металлом
Если
меры безопасности всегда игнорируются, сварщики сталкиваются со многими опасностями, которые
потенциально опасно. Опасности могут включать поражение электрическим током, вдыхание паров.
и газы, и даже огонь и взрывы.
В
Другими словами, если вы сомневаетесь в требованиях безопасности, проконсультируйтесь с OSHA.
(Управление по охране труда) или у местного специалиста.
Для основных сварочных работ на теле следует носить следующие предметы:
(примечание
требования к дуговой сварке строже, чем к базовой сварке):
- Колпачок — для защиты черепа,
голова и волосы - Фартук
— покрывать
одежда (фартук должен быть кожаным) - Рукавица
перчатки —
они чрезвычайно важны для защиты рук. - Шлем — специально разработан для
сварка - Гильза
Уголки —
для защиты рук над перчатками
Сварка
безопасность на рабочем месте включает знак «ОПАСНО», предупреждающий всех, кто может
пройти мимо сварочного участка.Занавеска на штанге поможет уберечь окружающих от
случайно «заглянув» в блики от сварки.
Другие важные рекомендации включают:
- Горячий
Разрешение на работу
(требуется для многих работ) - Пожар
огнетушитель
— убедиться, что он в рабочем состоянии - Очистить
рабочая зона
— нет мусора, который мог бы помешать работе или воспламениться - Нет
курение
— назначенное место находится вдали от рабочего места - Нет
легковоспламеняющиеся вещества
— очистить рабочую зону - Использовать
индикатор или датчик
— индикация горючего газа обнаружит газы в воздухе - Очистить
этаж —
это включает смачивание или покрытие деревянного пола - Покрытие
легковоспламеняющиеся
— обязательно наличие несгораемого брезента - Плата
пристальное внимание
— в безопасности
Сварка
требует большого количества оборудования и подготовки.Оборудование предназначено для
обеспечьте безопасность сварщика и других людей на рабочем месте.
Если в
каждый раз, когда часть сварного шва ломалась на высоком здании или сооружении, это
может быть спускающийся пожарный или, возможно, спускающийся сварщик, который ремонтирует
Это.
Как выбрать типы защитного газа для GMAW
- Гелий имеет более низкую плотность, чем аргон, который требует более высоких скоростей потока. Гелий также представляет собой одноатомный газ, который обычно используется для более толстых материалов.Это также хороший выбор для сварки алюминия. Потому что, несмотря на ограниченную высокую цену, гелий уже редко встречается в отрасли.
- Двуокись углерода (CO 2 ) редко используется сама по себе, потому что она дает широкий сварной шов и часто приводит к образованию большого количества брызг. CO 2 чаще всего сочетают с аргоном для получения наилучшего конечного результата. CO 2 также является химически активным газом, что означает, что он имеет высокий потенциал ионизации.
Газы, используемые в смесях
- Кислород — это двухатомная молекула, обычно добавляемая в газовые смеси GTAW в количестве 10% или меньше. Его можно рассматривать как дополнение к аргону для GMAW, поскольку он может помочь создать глубокий и узкий проплавленный сварной шов в специализированных приложениях.
- Водород — это активный защитный газ, который также обычно используется в смесях GMAW в количестве 10% или меньше.Эта двухатомная молекула имеет тенденцию давать горячие бусинки с широкой поверхностью. Водород в основном используется в материалах из нержавеющей стали для улучшения текучести и увеличения скорости движения.
Как выбрать защитный газ
При выборе защитного газа для GMAW необходимо учитывать три основных компонента: тип материала, тип наполнителя и режим переноса.
- Тип материала : Наиболее важным фактором является соответствие вашего газа типу материала.Например, сталь намного плотнее алюминия, поэтому для достижения желаемого результата сварки требуется другой защитный газ. Также важно учитывать толщину материала, поскольку более толстые материалы потребуют более высоких тепловложений.
- Присадочный металл Тип : дважды проверьте соответствие присадочного металла основному материалу. Это даст вам уверенность, когда дело доходит до выбора наилучшего защитного газа.
- Режим переноса сварки : определите, используете ли вы короткое замыкание, дугу с распылением, импульсную дугу или глобальный перенос.Каждый режим передачи будет лучше работать с определенными защитными газами, чем с другими.
Когда дело доходит до защитного газа для GMAW, нужно учесть гораздо больше. Следите за новостями в следующих статьях, в которых мы рассмотрим правильный поток защитного газа и подробно расскажем о процессе GMAW с каждым типом материала!
GMAW Welding Equipment Builders
Выбор подходящего защитного газа — важный шаг на пути к успеху сварки.При правильной оптимизации это не только улучшит качество сварных швов, но и сэкономит деньги и время. Команда Bancroft Engineering может помочь вам выбрать подходящий защитный газ и убедиться, что ваша автоматизированная или полуавтоматическая сварочная система дает наилучшие результаты. Свяжитесь с нашими инженерами-сварщиками сегодня!
Основы сварочных газов MIG
Сварка MIG в защитных газах обеспечивает более чистые и быстрые сварные швы и устраняет необходимость частой остановки для замены электродов, как при сварке штучной сваркой.Уменьшение степени очистки и повышение эффективности также достигается за счет использования защитных газов, но это помогает понять роль, которую эти газы играют в процессе сварки, а также различные доступные газы и их особые свойства.
Основная цель использования защитного газа — избежать воздействия на расплавленную сварочную ванну кислорода, водорода и азота в воздухе вокруг вас. Различные проблемы могут возникнуть из-за реакции этих элементов в сварочной ванне, включая чрезмерное разбрызгивание и отверстия в сварном шве, известные как пористость, что приводит к более слабым сварным швам.
Технически, когда используется углекислый газ или кислород, это больше не сварка MIG или металлическим инертным газом. Тогда это сварка MAG или Metal Active Gas. Это потому, что ни диоксид углерода, ни кислород не являются инертным газом. Сварка MIG использует инертные защитные газы, такие как гелий или аргон, тогда как MAG вместо них использует активные газы.
Выбор подходящего газа
Различные газы играют разные роли в процессе сварки: от проплавления до стабильности дуги и самого готового сварного шва.Выбор расходных материалов, обеспечивающих непрерывную и равномерную подачу газа, также является очень важным аспектом, который следует учитывать при сварке MIG.
Обязательно оцените цели вашего проекта, чтобы выбрать подходящий газ для сварного шва. При выборе следует учитывать стоимость, то, что влечет за собой подготовка, основной материал, который вы будете сваривать, свойства готового сварного шва и то, что необходимо сделать во время очистки после сварки.
Четыре наиболее распространенных защитных газа, используемых при сварке MIG, — это углекислый газ, аргон, кислород и гелий.У каждого из них есть свои уникальные преимущества и недостатки в любой конкретной реализации.
Конечно, всегда полезно проконсультироваться со своим поставщиком по поводу рекомендаций по газам, которые подходят для сварочной проволоки, которую вы будете использовать. Вы даже можете проконсультироваться с производителем провода для получения предложений. Скорее всего, они предложат несколько вариантов, начиная от лучшего газового варианта до газового, обеспечивающего минимально допустимые сварные швы, а также их цены. Однако у вашего сварочного аппарата MIG может быть руководство по электродам и газам на внутренней панели, которое предоставит вам список из нескольких вариантов.
Двуокись углерода (CO2)
CO2, безусловно, является наиболее распространенным и одним из немногих газов, который можно использовать в чистом виде без добавления инертного газа, такого как аргон или гелий. Из-за этого CO2 является наиболее экономичным вариантом и хорошим выбором, если стоимость проекта является приоритетом.
Pure CO2, также известный как 100% CO2, обеспечивает глубокое проплавление шва, что делает его удобным при сварке толстых материалов. При этом чистый CO2 ограничен только процессом сварки коротким замыканием и дает менее стабильную дугу, а также больше брызг, чем когда он сочетается с другими газами (также известными как «смешанные газы»).Чистый CO2 хорош для проектов, где эстетика сварного шва не важна или сварной шов не виден, например, на днище автомобиля. Очистка после сварки также требует немного больших усилий.
Аргон
Аргон обеспечивает более узкий провар, что удобно для стыковых и угловых швов. Он также может похвастаться плавной и относительно плавной дугой. Если вы собираетесь сваривать цветные металлы, такие как титан, алюминий или магний, вам понадобится чистый аргон. Аргон также часто смешивают с водородом, гелием или кислородом.Это помогает усилить характеристики дуги и способствует переносу металла.
Если важны качество и эстетика сварного шва, можно использовать смешанные газы. У вас есть несколько вариантов, которые варьируются от 75-95% аргона до 5-25% CO2. Они обеспечивают лучшую стабильность дуги и уменьшают разбрызгивание по сравнению со 100% CO2. Смешанные газы также можно использовать в процессе переноса распылением, что, в свою очередь, обеспечивает более визуально привлекательные сварные швы, а также повышает производительность. Смеси аргона и CO2 подходят для сварки низколегированных, некоторых нержавеющих сталей и углеродистых металлов.Однако имейте в виду, что более высокие уровни CO2 могут вызвать повышенное разбрызгивание.
Кислород
Химически активный газ, кислород обычно используется в небольших количествах при добавлении к защитным газам, обычно между 1-9%. Это улучшает текучесть сварочной ванны, а также стабильность дуги и проплавление нержавеющей стали, низкоуглеродистой и низколегированной стали. Не рекомендуется использовать кислород с алюминием, медью, магнием или другими экзотическими металлами, поскольку он может вызвать окисление.
Смеси кислород / аргон обычно используются для обработки нержавеющей стали и простых углеродных металлов.Он дает стабильную дугу с ограниченным разбрызгиванием. Однако более высокий уровень кислорода может затруднить сварку в нерабочем положении из-за того, что это увеличит текучесть лужи.
Гелий
Обычно используется для обработки цветных металлов, гелий также может применяться для обработки нержавеющей стали. Он хорошо работает с толстыми металлами благодаря своей широкой и глубокой проникающей способности. Обычно он используется в соотношении 25-75% гелия к 75-25% аргона. Регулируя эти соотношения, вы можете изменить глубину проникновения и профиль валика.При использовании на нержавеющих сталях гелий обычно используется в смеси трех газов с CO2 и аргоном. Гелий также используется для предотвращения окисления при сварке таких металлов, как нержавеющая сталь, алюминий, магний и медные сплавы.
Гелий действительно создает более горячую дугу, что обеспечивает более высокую скорость движения и, следовательно, увеличивает производительность. При этом гелий дороже и требует более высокой скорости потока, чем аргон. При рассмотрении вопроса об использовании гелия важно учитывать соотношение стоимости газа и производительности.
Другие газы
Водород служит защитным газом при высоких температурах, например, для нержавеющих сталей. Его часто смешивают с аргоном для обработки аустенитной нержавеющей стали.
Азот используется в качестве продувочного газа при сварке труб из нержавеющей стали. Добавленный в небольших количествах к аргону, он также может использоваться в качестве защитного газа для нержавеющих сталей.
Пропан обычно используется на складах металлолома для резки углеродистой стали, где качество резки не имеет значения. Если ваше приложение не требует высокого качества резки, пропан — довольно экономичный вариант.
Расходные материалы
Какие расходные материалы вы прикрепляете к пистолету MIG, так же важно, как и выбор правильного газа для использования. Диффузор, контактный наконечник и сопло играют важную роль в обеспечении надлежащей защиты сварочной ванны от окружающего вас воздуха. Если ваш диффузор забит брызгами или если ваше сопло слишком узкое, вы рискуете, что слишком мало защитного газа будет выходить для защиты сварочной ванны. Это допускает попадание в газ воздушных карманов, что может привести к разбрызгиванию, пористости и даже загрязнению сварных швов.
Убедитесь, что вы выбираете расходные материалы для пистолета MIG, которые могут противостоять скоплению брызг, а также имеют достаточно широкое отверстие сопла, чтобы быть уверенным в защите защитного газа. Некоторые производители делают форсунки со встроенной защитой от брызг, которая может удвоить диффузию газа, что даст вам гораздо более постоянный поток газа. Выбор расходных материалов требует тщательной оценки деталей, а также текущего проекта и ваших производственных приоритетов.
Что такое газовая дуговая сварка металла? (Сварка MIG / Сварка MAG)
Сварка в среде инертного газа (MIG) и сварка в среде активного газа (MAG) — это процессы газовой дуговой сварки (GMAW), в которых используется тепло, создаваемое электрической дугой постоянного тока между плавящимся металлическим электродом и заготовкой, которые плавятся вместе, чтобы создать сварочную ванну, которая предохранители, чтобы сформировать соединение.
Сварка MIG и MAG известна в США как газовая дуговая сварка (GMAW).
Это часть серии часто задаваемых вопросов TWI.
MIG / MAG аналогичен MMA в том, что тепло для сварки создается за счет образования дуги между плавящимся металлическим электродом и заготовкой; электрод плавится, образуя сварной валик. Основное отличие состоит в том, что металлический электрод представляет собой проволоку небольшого диаметра, подаваемую через контактный наконечник от катушки подачи проволоки, а защитный газ подается через сварочную горелку.Поскольку проволока подается непрерывно, ручной процесс иногда называют полуавтоматической сваркой. В сварке MIG и MAG используются газовые баллоны для подачи защитного газа и совместимые присадочные материалы. Например, для сварки алюминия следует использовать алюминиевую проволоку, тогда как для сварки стали методом MIG потребуется подходящая стальная присадочная проволока.
В чем разница между MIG и MAG?
Сварка MIG (металл в инертном газе) — это процесс сварки, при котором между плавящимся проволочным электродом и заготовкой образуется электрическая дуга.В этом процессе в качестве защитного газа используются инертные газы или газовые смеси. Аргон и гелий обычно используются для сварки MIG цветных металлов, таких как алюминий.
Сварка MAG (Metal Active Gas) — это процесс дуговой сварки, при котором между плавящимся проволочным электродом и соединяемым материалом создается электрическая дуга. При сварке MAG используются активные защитные газы, в первую очередь для сварки сталей. Эти защитные газы представляют собой смеси двуокиси углерода, аргона и кислорода.
Примеры этих активных газов включают CO 2 , Ar + от 2 до 5% O 2 , Ar + от 5 до 25% CO 2 и Ar + 10% CO 2 + 5% O 2 .
Единственное различие между MIG и MAG — это тип используемого защитного газа.
Состав защитного газа важен, поскольку он оказывает значительное влияние на стабильность дуги, перенос металла и степень разбрызгивания. Защитный газ также влияет на поведение сварочной ванны, особенно на проплавление и механические свойства сварного соединения.
Режим переноса металла
Способ или режим, в котором металл переходит от присадочной проволоки в сварочную ванну, в значительной степени определяет рабочие характеристики процесса.Существует три основных режима переноса металла:
- Короткое замыкание (перенос погружением)
- Распылительная передача
- Импульсная передача
Короткое замыкание и импульсный перенос металла используются для работы с малым током, тогда как перенос распылением используется только при высоких сварочных токах. При коротком замыкании или переносе «погружением» расплавленный металл, образующийся на кончике проволоки, переносится путем погружения проволоки в сварочную ванну. Это достигается установкой низкого напряжения.Чтобы минимизировать разбрызгивание, необходимо соблюдать осторожность при настройке напряжения и индуктивности в зависимости от скорости подачи проволоки. Индуктивность используется для управления скачком тока, возникающим при погружении проволоки в сварочную ванну.
Для переноса распылением необходимо гораздо более высокое напряжение, чтобы проволока не соприкасалась, т.е. не замыкалась, со сварочной ванной. Расплавленный металл на кончике проволоки переходит в сварочную ванну в виде брызг мелких капель (меньше диаметра проволоки).Однако существует минимальный уровень или порог тока, ниже которого капли не будут принудительно выбрасываться через дугу. Если попытаться использовать метод открытой дуги, намного ниже порогового уровня тока, слабые силы дуги будут недостаточными для предотвращения образования больших капель на кончике проволоки. Эти капли беспорядочно перемещаются по дуге под действием нормальной силы тяжести. Импульсный режим был разработан как средство стабилизации разомкнутой дуги при низких уровнях тока, то есть ниже порогового уровня, во избежание короткого замыкания и разбрызгивания.Перенос металла методом распыления достигается за счет подачи импульсов тока, каждый из которых имеет силу, достаточную для отделения капли.
Обычная сварка MIG / MAG выполняется с использованием источника постоянного напряжения, который обеспечивает стабильную «саморегулирующуюся» дугу. Для импульсной сварки используется источник постоянного напряжения или постоянного тока с обратной связью по напряжению.
Каковы преимущества и недостатки сварки MIG?
Сварка
MIG позволяет быстро выполнять высококачественные сварные швы, а из-за отсутствия флюса нет шансов, что шлак попадет в металл шва.Защитный газ защищает дугу, что означает небольшую потерю легирующих элементов и незначительное разбрызгивание сварочного шва. Сварку MIG можно выполнять несколькими способами, включая полуавтоматический и полностью автоматический, и это универсальный процесс, который можно использовать для соединения различных металлов и сплавов.
Недостатки сварки MIG заключаются в том, что ее нельзя выполнять в вертикальном или верхнем положении из-за высокой температуры и текучести сварочной ванны. Кроме того, оборудование, используемое сварщиком MIG, может быть сложным.
Каковы преимущества и недостатки сварки MAG?
Поскольку зона сварки защищена защитным газом, сварка MAG не вызывает окисления. Это быстрый процесс сварки, что означает меньшее тепловое воздействие на окружающий материал. Сварку MAG можно выполнять во всех положениях, что делает ее одним из наиболее широко используемых сварочных процессов.
К недостаткам можно отнести опыт, необходимый для правильного выполнения этого процесса. Сварку MAG нельзя выполнять на открытом воздухе, поскольку сварочный газ необходимо защищать от ветра, а всю ржавчину необходимо удалить с детали до начала сварки.Дуговая сварка порошковой проволокой больше подходит для наружных работ или подводных сварных швов, которые также можно лучше выполнять с помощью дуговой сварки в защитном металлическом корпусе или дуговой сварки вольфрамовым электродом. Как и во всех электродуговых процессах, необходимо использовать надлежащие PPI и, в частности, средства защиты глаз.
Опыт в области сварки MIG и MAG
TWI имеет значительный опыт в разработке и аттестации процедур сварки MIG / MAG для различных областей применения в промышленности.