Регулятор мощности нагрузки: Схемы регуляторов мощности (диммеров) на симисторах

Содержание

Схемы регуляторов мощности (диммеров) на симисторах



Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.



Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно
рассмотрели на странице &nbspСсылка на страницу.

Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей
переменного тока.

Вспомним пройденный материал.

Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее
состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.

Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с
полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения
отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств,
и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так
и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным
управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.


Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?

В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается
через последовательно соединённые резисторы R1 и R2.
Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного
сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.

Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В).
Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным
сопротивлением открытого симистора и нагрузки.

При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому
уровню.

Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности,
подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и
обмотках трансформаторов),
симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми
электродами триака,
которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).

В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность
для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.


Рис.2

Дополнительная цепочка R3 C2 (Рис. 2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и
напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности,
подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки
при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном
повышении регулируемой мощности от нуля до 3…5% от максимальной.

Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и,
тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая
формирует импульсы с регулируемой длительностью для управления симистором.

Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является
повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства,
выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.


Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки
и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от
фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через
нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.

При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением
нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.

Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных
приборов — самое то.

Рис.4

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию
регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет
автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного
тока 220 В.

Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого
напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке,
вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.

Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА
(действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов.
Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов.
Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель
R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления
симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7,
стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное,
стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1
на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около
9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её
защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более).
Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не
включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим
током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора.
Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3,
сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание
симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.

Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и
симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от
фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),


Рис.5

так и управлять более мощными симисторами (Рис.6).


Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление
мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.


Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.

Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только
в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод.
Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В.
Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового
регулирования.

Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему
резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона
DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов
с изменяемой скважностью.

 

Регулятор мощности на симисторе для индуктивной нагрузки

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

НазваниеМощностьНапряжение стабилизацииЦенаВесСтоимость одного ватта
Module ME4000 Вт0-220 В6. 68$167 г0.167$
SCR Регулятор10 000 Вт0-220 В12.42$254 г0.124$
SCR Регулятор II5 000 Вт0-220 В9.76$187 г0.195$
WayGat 44 000 Вт0-220 В4.68$122 г0.097$
Cnikesin6 000 Вт0-220 В11.07$155 г0.185$
Great Wall2 000 Вт0-220 В1.59$87 г0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой – в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь – как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора – тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис. 1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3. 5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов – самое то.

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как – оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество – простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),

Рис.5

так и управлять более мощными симисторами (Рис.6).

Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение – это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

Доброго времени суток Всем!

Один мой знакомый озадачил таким вопросом. Ему потребовалось зачем то управлять током в первичной обмотке трансформатора, трансформатор заводской(марку не скажу, но не маленький, по железу 350-400 Вт где-то) первичка на 220 вольт, на вторичке около
12 вольт. Трансформатор рабочий, проверяли. В цепь первичной обмотки подключается симисторный регулятор, собранный по самой простой схеме, которых в инете полно (симистор, динистор , потенциометр и немного обвязки), регулятор рабочий, проверяли на электоплите мощностью 2200 Вт. При включении собранной схемы (регулятор + трансформатор) к сети, сетевой провод начал ощутимо и быстро нагреваться (поплыла изоляция). Если подключить этим же проводом первичную обмотку напрямую к сети провод остается холодным. После нескольких таких проб рисковать больше не стали, регулятор при этом не сгорел остался вполне работоспособным.
Может кто подскажет в чем причина нагрева сетевого провода, а то чтение умной литературы типа учебника по пром. электронике и беглого просмотра инета на умные мысли меня не навели. Заранее спасибо.

08.03.2016, 20:28

Есть ли какое-то ПО, которое определит нагрузку на ОЗУ, нагрузку на процессор, температуру процессора?
Здравствуйте. Суть такова: я провожу удалённо нагрузку (пакетами проще говоря) на свой второй.

Опишите используя запись школьную нагрузку( фамилия препода, класс, часы). Определить нагрузку каждого препода.
Опишите используя запись школьную нагрузку( фамилия препода, класс, часы). Определить нагрузку.

2 регулятора в БП
есть бп asus a-36f в нем есть 2 регулятора первый (который ближе к нам) регулирует напряжения.

Уточнить схему регулятора
В третьей ветке есть пост от wozzup123 с регулятором для паяльника, было обсуждение и советы.

Переходная функция регулятора
Есть исходная ЛАЧХ, желаемая. Есть график регулятора. Необходимо написать его переходную функцию.

Регуляторы мощности – это просто!

Максим Лебедев
г. Москва

 

Лет 10 назад, основная проблема, с которой сталкивались радиолюбители (и не только они) при проектировании и построении регуляторов мощности – это изрядное тепловыделение управляющих элементов — соответственно, большие теплоотводы и в конечном итоге большие габариты и низкий КПД. Но ничто не стоит на месте и с развитием и расширением электронной элементной базы, мы получили возможность создавать гораздо более совершенные устройства для самых разнообразных областей применения. В частности, компания МАСТЕР КИТ, выпустила несколько наборов для самостоятельной сборки и модуль, с самыми разнообразными параметрами. О них и пойдёт речь.

 

Регулятор мощности 2600 Вт/ 220 В — MK071 

 

Рис.1. Внешний вид модуля МК071.

 

Устройство MK071 (аналог — MK071M) представляет собой совершенно готовый и настроенный модуль с четырьмя проводами для подключения питания и нагрузки, мощность которой и предлагается регулировать.

Основные технические характеристики МК071:

  • Напряжение питания 220 В
  • Максимальная мощность нагрузки 2600 Вт

В общем, проще не придумаешь – берете модуль, подключаете питание и нагрузку согласно схеме – и можно регулировать.

Подключить можно практически что угодно – лампы накаливания, обогреватели, асинхронные двигатели (рис. 2).

 

Рис.2. Схема подключения.

 

Если мощность подключенной вами нагрузки превышает 800 Вт, модуль обязательно нужно установить на радиатор, площадью не менее 1000 кв. мм, для чего в задней части модуля присутствует фланец с крепежными отверстиями.

 

Регулятор яркости ламп накаливания 12 В/50 A — NM4511

Следующий набор NM4511 (рис. 3) ориентирован на регулировку нагрузки, работающей от относительно небольшого (до 24 В) постоянного напряжения, но потребляющей большой ток. Он найдет применение, например, у автовладельцев и фото- видео операторов.

 

 

Рис.3. Внешний вид NM4511.

 

Основные технические характеристики NM4511:

  • Напряжение питания 6 — 24 В
  • Максимальный ток нагрузки 50 А
  • КПД, не менее 99 %
  • Диапазон регулировки 0 — 100 %
  • Рабочая частота 500 Гц
  • Ток потребления, не более 1,5 мА
  • Размер печатной платы 40х35 мм

 

Схема (рис.4) состоит из ШИМ генератора на сдвоенном операционном усилителе DA1 (LM358) и мощного полевого транзистора VT1.

 

Рис. 4. Электрическая принципиальная схема NM4511.

 

За счет того, что сопротивление открытого канала транзистора составляет всего 0,008 Ом, при мощности нагрузки 100…150 Вт (10…12 А) он рассеивает очень мало тепла и можно обойтись без радиатора, что существенно повлияет на габариты устройства. При больших мощностях, радиатор все-таки понадобится.

В набор входит полный комплект элементов, приведенных в таблице 1.

 

Таблица 1. Перечень компонентов.

  Позиция  Номинал
  C1, C2, C5  0,1 мкФ/50 В
  C3, C6  22 мкФ/16 В
  C4  1 мкФ/50…100 В 
  R1, R3 — R6  20 кОм
  R2  50 кОм
  R7, R8  10 кОм
  R9  100 Ом
  R10  1 МОм
  DA1  LM358
  VT1  IRF3205
  Печатная плата   A451, 40×35 мм

 

Ну и конечно же, печатная плата (рис.5 и 6), достаточно хорошо продуманная, что необходимо при изготовлении импульсных устройств.

 

Рис.5. Вид печатной платы со стороны компонентов.

 

Рис.6. Вид печатной платы со стороны проводников.

 

В качестве нагрузки можно применять любые устройства, работающие от постоянного напряжения – особенно это пригодится в автомобиле. Регулировка яркости ламп или температуры подогрева сидений, плавная регулировка оборотов вентилятора печки – в общем, применений масса.

 

Регулятор мощности 800 Вт/220 В NK008

Устройство NK008 предназначено для регулирования мощности электронагревательных, осветительных приборов, мощности электропаяльника, асинхронных электродвигателей переменного тока (вентилятора, электронаждака, электродрели и т.д.). Благодаря большому диапазону регулировки и мощности регулятор найдет широкое применение в быту.

 

Рис.7. Внешний вид NK008.

 

Основные технические характеристики NK008:

  • Напряжение питания 220 В
  • Максимальная мощность нагрузки 800 Вт
  • Размеры печатной платы 62х43 мм

Регулировка напряжения нагрузки осуществляется симистором VS2, на управляющий вход которого подается регулирующее напряжения с потенциометра R3 через динистор VS1 (рис.8).

 

Рис.8. Электрическая принципиальная схема NK008.

 

Симисторный регулятор мощности использует принцип фазового управления. Принцип работы такого регулятора основан на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В набор входят следующие компоненты (табл.2).

 

Таблица 2. Перечень компонентов.

  Позиция  Номинал
  R1  Не устанавливается
  R2  22 кОм
  R3  1 МОм, СП3-23И
  R4  4,7 кОм
  R5  120 Ом/5 Вт
  C1, C2  0,047 мкФ
  C3  0,068 мкФ/630 В
  VS1  DB3 (30…45 V), динистор  
  VS2  BT136-600D, симистор
  ED500V-2*5,
  2-х контактный клеммный зажим  
  IRF3205
  Печатная плата  A008, 62×43 мм

 

Рис.9. Вид печатной платы со стороны компонентов.

 

Рис.10. Вид печатной платы со стороны проводников.

 

Регулятор, благодаря своей большой нагрузочной способности позволяет подключать к себе как осветительные приборы, так и более ресурсоемкую нагрузку, типа электрической дрели, лобзика или электронаждака.

Только надо помнить, что при мощности нагрузки более 100 Вт симистор необходимо установить на радиатор.

В заключении, хочу вам напомнить о такой вещи, как техника безопасности. Из трех регуляторов, описанных здесь, два работают при напряжении 220 В.

Выполняйте все работы только при отключенном от сети устройстве.
 

 

Материал опубликован в журнале Радиодело 2005`06.

РЕГУЛИРОВКА МОЩНОСТИ

РЕГУЛИРОВКА МОЩНОСТИ

     Чаще всего регуляторы мощности устройств делают на тринисторах, используя его в качестве выходного мощного ключа. Но тринистор в цепи переменного тока неудобен тем, что требует питания через выпрямительный мост, который при большой мощности нагрузки должен быть установлен на радиатор. В этом плане для ключевого элемента более удобен симистор. Основное отличие симистора — это возможность коммутации не только постоянного, но и переменного тока, который может протекать в любом направлении — как от анода к катоду, так и в противоположную сторону.

     Для справки: симисторы при положительном напряжении на аноде могут включаться импульсами любой полярности, подаваемыми на управляющий электрод относительно катода, а при отрицательном напряжении на аноде — импульсами только отрицательной полярности. Управление симистором постоянным током требует большой мощности, а при импульсном управлении необходим формирователь, обеспечивающий короткие импульсы в момент прохождения сетевого напряжения через ноль, что снижает уровень помех по сравнению с регуляторами, в которых использован фазоимпульсный метод регулирования.

     Устройство регулировки мощности содержит симистор, узел временной (фазовой) задержки, компенсирующую цепь и источник питания. Компенсирующая цепочка R8 C2 к напряжению стабилитрона VD3 добавляет величину напряжения, пропорциональную питающему напряжению. Эта сумма является межбазовым напряжением однопереходного транзистора КТ117. Уменьшение питающего напряжения снижает напряжение питания транзистора и вызывает уменьшение временной задержки. От известной схемы симисторного регулятора мощности на BT136-600 и динисторе DB-3, эта отличается стабилизацией управляющих импульсов и соответственно большей точностью и неизменностью выходного напряжения.

     При наладке устройства регулировки мощности, надо включить его в сеть с нагрузкой через автотрансформатор, а параллельно нагрузке установить вольтметр. Меняя напряжение переменным резистором R8 на входе регулятора, добиваемся минимального напряжения на нагрузке. Трансформатор выполнен на сердечнике Ш5х6, первичная обмотка 40 витков, вторичная 50 витков ПЭЛ-0,2 – 0.3. В своём варианте устройства регулировки мощности поставил трансформатор на ферритовом кольце К20х10х6 с двумя одинаковыми обмотками по 40 витков – всё отлично заработало. Для визуального контроля напряжения (мощности) на нагрузке, поставил небольшой вольтметр переменного тока собранный из индикатора уровня записи бобинного советского магнитофона. Подключаем его естественно параллельно нагрузке. Светодиоды красного свечения показывают, что устройство регулировки мощности включено в сеть и выполняют подсветку шкалы.

     К данному регулятору можно подключать активную нагрузку мощностью до двух киловат — электроплиты, электрочайники, электрокамины, утюги и т. д., а при замене симистора на более мощный, например ТС132-50, до 10 кВт. Реальный пример использования: у соседа постоянно выбивают пробки автоматы на 16 А при эксплуатации электрочайника Тефаль 2 кВт. Замена их невозможна, так как проживает он не в своей квартире. Проблему решило данное устройство для регулировки, установленное на 80% мощности.

     Полезные доработки: при работе с индуктивной нагрузкой, параллельно симистору регулятора мощности надо включить RC цепочку для ограничения скорости нарастания анодного напряжения. Любой симисторный регулятор является источником радиопомех, поэтому регулятор мощности желательно снабдить фильтром радиопомех. Фильтр радиопомех LC представляет собой обычный Г-фильтр с катушкой и конденсатором. В качестве дросселя L используется катушка из 100 витков провода, намотанного на ферритовый стержень диаметром 8 мм и длиной 50 мм. Диаметр провода 1 мм соответствует максимальной мощности нагрузки примерно 700 Вт. Предохранитель на номинальный ток нагрузки защищает симистор от короткого замыкания в нагрузке. При настройке соблюдайте меры безопасности, так как все элементы устройства для регулировки мощности гальванически связаны с сетью 220 В.

     Вопросы и коментарии по схеме — на ФОРУМ

Схема симисторного регулятора мощности для трансформатора

Симисторы и тиристоры используются во многих электросхемах, в быту и на производстве. Ниже описано, что из себя представляет регулятор мощности, каковы его разновидности и где они применяются. Также будет дана инструкция, как собрать стабилизатор напряжения своими руками.

Что такое регулятор мощности

Самые первые прототипы устройств, позволяющих уменьшать проводимую к нагрузке мощность, были разработаны с учетом закона Ома. На этом принципе и основано функционирование реостата. Его можно подключать последовательно и параллельно нагрузке. При изменении сопротивления реостата можно регулировать его мощность.

Что собой представляет регулятор мощности

При подключении реостата к нагрузке ток распределяется между ними. В зависимости от способа подключения можно контролировать разные параметры: при параллельном — разницу потенциалов, а при последовательном — напряжение и силу тока. Реостаты различаются в зависимости от использованного в их конструкции материала: металла, керамики, угля или жидкости.

При использовании реостата поглощенная им энергия никуда не исчезает, а преобразуется в тепло. При большом количестве энергии целесообразно использовать системы охлаждения, чтобы температура устройства не была слишком высокой. Отводят тепло обычно с помощью обдува или погружая резистор в масло.

Такие простейшие реостаты широко применяются, но есть один значимый недостаток — невозможность использовать его в мощных электрических цепях. Поэтому резисторы применяются только в бытовых целях (к примеру, такие есть в конструкции радио).

Обратите внимание! Обычный реостат можно сделать и самому, для этого понадобится только проволока из нихрома или константана. Ее необходимо намотать на оправку, при этом изменение проходящей мощности происходит за счет регулировки длины проволоки.

Все полупроводниковые устройства сделаны на переходах или слоях (n-p, p-n). Простой диод — 1 переход и 2 слоя. Биполярный транзистор — 2 перехода и 3 слоя (трехфазный). А при добавлении четвертого слоя как раз и образуется стабилизатор мощности — тиристор. При соединении 2 тиристоров встречно-параллельно получается симистор.

Как работает регулятор мощности в трансформаторе

В трансформаторе обычно используется симисторный регулятор мощности для индуктивной нагрузки. Он работает как электронный ключ, раскрываясь и запираясь, причем частота задается схемой управления. Ток по симистору проводится в 2 направлениях, поэтому его часто используют для сетей переменного тока.

Схема регулятора напряжения на симисторе для трансформатора

При подключении к трансформатору на один из электродов стабилизатора подается переменный ток, на управляющий электрод — отрицательное управляющее напряжение (с диодного моста). Когда порог включения повысится, симистор раскроется и пустится ток. В момент смены полярности на входе симистор закроется.

Важно! Вся последовательность действий повторяется неоднократно.

Разновидности регуляторов мощности

Для разных целей используются различные регуляторы мощности.

Тиристорный прибор управления

Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.

Тиристорный транзисторный регулятор

Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.

Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку.

Симисторный преобразователь мощности

Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.

К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).

Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)

На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.

Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.

Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы.

Фазовый способ трансформации

Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.

Светодиодный диммер

Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.

Как сделать регулятор мощности своими руками

Для сборки стабилизатора напряжения на симисторе для трансформатора понадобятся следующие компоненты:

  • сам симистор и электронные компоненты: динистор, потенциометр, диоды, конденсатор и сопротивления;
  • радиатор;
  • изолирующая теплопередающая прокладка;
  • пластиковый корпус;
  • печатная плата;
  • мультиметр;
  • паяльник.

Стабилизатор-самоделка

Пошаговая инструкция, как собрать самодельный регулятор мощности:

  1. Сперва необходимо определить некоторые характеристики устройства, для которого нужен регулятор: входное напряжение, силу тока, сколько фаз (3 или 1), а также, есть ли необходимость в точной настройке мощности на выходе.
  2. Нужно определиться с типом прибора — цифровое или аналоговое. Можно смоделировать электрическую цепь посредством скачиваемых утилит, таких как CircuitMaker или Workbench, чтобы проверить, насколько выбранный тип будет подходить конкретной электросети. Также это можно сделать и онлайн.
  3. После можно приступить к расчетам тепловыделения с использованием формулы: спад напряжения в регуляторе помножить на силу тока. Оба параметра должны быть указаны в спецификациях симистора. Ориентируясь на полученную с помощью формулы мощность, нужно выбрать радиатор.
  4. Купить радиатор, электронные компоненты и печатную плату.
  5. Осуществить разводку дорожек контактов и приготовить места, куда нужно устанавливать электронные компоненты, симистор и радиатор.
  6. Закрепить при помощи паяльника все компоненты на печатной плате. В качестве альтернативы плате можно воспользоваться навесным монтажом с короткими проводами. Нужно внимательно следить за полярностью подключаемых компонентов: симистора и диодов.
  7. Взять мультиметр и проверить сопротивление получившейся схемы. Полученное значение не должно отличаться от теоретического.
  8. Скрепить симистор и радиатор, проложив между ними прокладку и заизолировав винт, которым они соединяются.
  9. Полученную микросхему нужно поместить в корпус из пластика.
  10. Поставить потенциометр на минимальное значение и попробовать включить. С помощью мультиметра замерить напряжение на выходе. Медленно поворачивать регулируемую ручку потенциометра, наблюдая за переменой напряжения.
  11. Если схема будет работать так, как было задумано, то можно подсоединять нагрузку. В ином случае нужно отрегулировать мощность по-другому.

Схемы регуляторов мощности напряжения

Схема работы симистора

В некоторых бытовых приборах, к примеру, используются тиристорные стабилизаторы напряжения — в паяльниках, электронагревателях и т. д.

Схема тиристорного регулятора напряжения в паяльнике

Для регулирования напряжения применяют и индукционные приборы.

Схема индукционного стабилизатора

Регуляторы мощности используются практически во всех бытовых электроприборах, а также на производстве. При желании такое устройство можно собрать и самому. Главное — найти подходящую схему из множества существующих и строго следовать инструкции.

BM246, Регулятор мощности 1000Вт (4,5А)/ 220В

Описание

Регуляторы мощности

Предлагаемый готовый блок представляет собой регулятор мощности, предназначенный для регулировки мощности нагрузки до 1000 Вт в цепях переменного тока с напряжением 220 В.
Устройство предназначено для регулирования мощности электронагревательных, осветительных приборов, мощности электропаяльника, асинхронных электродвигателей переменного тока (вентилятора, электронаждака, электродрели и т.д.). Благодаря широкому диапазону регулировки и большой мощности регулятор найдет широкое применение в быту.

Технические характеристики
Рабочее напряжение: 220 В.
Макс. регулируемая мощность: 1000 Вт.
Размеры печатной платы: 28х24 мм.

Описание работы
Симисторный регулятор мощности использует принцип фазового управления. Принцип работы такого регулятора основан на изменении момента включения симистора относительно перехода сетевого напряжения через ноль.
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения, конденсатор С1 заряжается через делитель R1, VR1. Увеличение напряжения на конденсаторе С1 отстает (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления делителя R1+VR1 и емкости С1. Заряд конденсатора продолжается до тех пор, пока напряжение на нем не достигнет порога «пробоя» динистора (около 32 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечет ток, определяемый суммарным сопротивлением открытого симистора и нагрузки. Симистор остается открытым до конца полупериода. Резистором VR1 устанавливается напряжение открывания динистора и симистора. Т.е. этим резистором производится регулировка мощности. При действии отрицательной полуволны принцип работы аналогичен. Светодиод LED индицирует рабочий режим регулятора мощности.

Конструкция
Конструктивно набор выполнен на печатной плате из фольгированного стеклотекстолита с размерами 28×24 мм.
Конструкция предусматривает установку платы в корпус, для этого на плате имеются монтажные отверстия под винт диаметром 3 мм.

При использовании нагрузки мощностью более 300 Вт (!), симистор TRIAC необходимо установить на радиатор (в комплект набора не входит). В качестве радиатора можно использовать пластину из алюминия толщиной 0,5…1мм и с размерами 25х40 мм.

Технические параметры











Высота (мм)25
Длина (мм)28
Количество выходов (шт)1
Максимальное входное напряжение (В)240
Мощность подключаемой нагрузки, максимальная (Вт)1000
Напряжение питания (В)220
Рекомендованная температура эксплуатации (°С)-30. .. 60
Тип питанияпеременный
Ширина (мм)24
Вес, г28

Техническая документация

Радиоконструктор 009, симисторный регулятор мощности 1 КВт,

Описание Радиоконструктор 009, симисторный регулятор мощности 1 КВт,

Радиоконструктор 009 Симисторный регулятор мощности 1 КВт.  Симисторный регулятор мощности (до 1 киловатт).  В состав входит печатная плата, симистор, радиатор охлаждения симистора, регулятор (переменный резистор) необходимый набор радиодеталей, монтажный провод, схема и описание. Позволяет изменять потребляемую мощность нагревательными приборами (паяльник, обогреватель, эл. плита), регулировать обороты дрели, перфоратора, регулировать напряжение на выходе !!!трансформатора.
 

  Начинающим                                                 Регулятор мощности на симисторе.                                                       (009)

              

           В радиолюбительской практике часто случается, что паяльник на 40 Ватт сильно нагревается, а на 25 Ватт не хватает мощности или необходимо уменьшить мощность нагревательного прибора, изменить яркость свечения лампы накаливания, снизить обороты коллекторного двигателя, электрической дрели, подключить к сети напряжением 220 вольт нагрузку, рассчитанную на напряжение 110 вольт, уменьшить напряжение на вторичной обмотке трансформатора. Тогда на помощь придёт симисторный регулятор мощности. Принцип его работы основан на изменении времени открытого состояния (фазово-импульсном управлении) симистора (симистор — это двунаправленный тиристор или «триак»). Это можно увидеть и понять, сравнив графики рис.1 полного периода сетевого напряжения на входе (верхний график) симистора и на выходе (нижний график). В определённый момент происходит отсечка симистором каждой полуволны сетевого напряжения и в результате в нагрузку поступает только часть мощности. Принципиальная схема регулятора мощности с фазово-импульсным управлением показана на рис. 2. Он собран по классической схеме на симметричном динисторе DB3 на 32V (VD3) и симисторе ТС106-10-4 (отечественного производства 10 ампер 400 вольт) или импортных аналогах ВТ136-600, ВТ134-600 (4А, 600В), ВТ137-600 (8А, 600В), ВТ138-600 (12А, 600В), ВТ139-600, ВТА16-600 (16А, 600В) (VD4). При каждой полуволне сетевого напряжения конденсатор С1 заряжается током, протекающим через резисторы R2, R3. Когда напряжение на нем достигает 32 В, динистор открывается и конденсатор С1 быстро разряжается через резистор R4, динистор VD3 и управляющий электрод симистора. Таким образом, происходит управление симистором: когда напряжение на условном аноде симистора (верхний по схеме вывод) положительное, управляющий импульс тоже положительный, а при отрицательном напряжении — отрицательной полярности. Значение мощности в нагрузке, зависит от того, как долго симистор будет включен в течение каждого полупериода сетевого напряжения. Момент включения симистора определяется пороговым напряжением динистора и постоянной времени (R2 + R3), C1. Чем больше сопротивление переменного резистора R2, тем длительнее промежуток времени, в течение которого симистор находится в закрытом состоянии, тем меньше мощность в нагрузке. Схема обеспечивает практически полный диапазон регулирования выходной мощности — от 0 до 99 %. При подключении переменного резистора R2, необходимо учесть то, что увеличение выходной мощности происходит с уменьшением сопротивления переменного резистора.     Цепь, образованная диодами VD1, VD2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без нее характеристика управления регулятором имеет гистерезис. Например, яркость лампы накаливания, используемой в качестве нагрузки, при увеличении выходной мощности изменяется скачком от нуля до 3…5% от максимальной яркости.          Суть этого явления заключается в следующем: при большом сопротивлении резистора R2, когда напряжение на конденсаторе С1 не превышает 30 В, динистор не открывается в течение всего полупериода сетевого напряжения и выходная мощность равна нулю. При этом к моменту перехода сетевого напряжения через «ноль» напряжение на конденсаторе имеет нулевое значение и в следующем полупериоде значительную часть времени конденсатор разряжается. Если сопротивление резистора R2 уменьшать, то после того, как напряжение на конденсаторе начнет превышать порог срабатывания динистора, конденсатор будет разряжен в конце полупериода и в следующем полупериоде сразу же начнет заряжаться, поэтому в новом полупериоде динистор откроется раньше. Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и тем самым устраняет эффект скачкообразного начального увеличения мощности в нагрузке. Резистор R4 ограничивает максимальный ток через динистор примерно до 0,1 А и замедляет процесс разрядки конденсатора С1. Тем самым обеспечивается относительно большая длительность импульса, достаточная для надежного запуска симистора VD4 даже при значительной индуктивной составляющей нагрузки. При указанных на схеме номиналах резистора R4 и конденсатора С1 длительность импульса управления равна 130 мкс. Значительную часть этого времени через управляющий электрод симистора протекает ток, достаточный для открывания симистора.

                Симметричный динистор 32V (VD3) обеспечивает одинаковость угла открывания симистора в обеих полуволнах сетевого напряжения. Следовательно, описываемый регулятор не будет выпрямлять сетевое напряжение, поэтому во многих случаях может быть применен даже для управления нагрузкой, подключенной к нему через трансформатор.  Падение напряжения на симисторе VS1 равно примерно 2 В, поэтому при нагрузке мощностью более 100 Вт симистор необходимо установить на соответствующий теплоотвод (радиатор). Максимальная мощность нагрузки не должна превышать возможности симистора (4 А = 800 Вт, 8 А = 1600 Вт, 10 А = 2 КВт, 12 А = 2,4 КВт, 16 А = 3,2 КВт, 40 А = 8 КВт).

          При включении схемы в сеть 220 вольт необходимо строго соблюдать правила техники безопасности! Все элементы схемы находятся под смертельно опасным напряжением! Категорически запрещается касаться любыми частями тела элементов схемы. При установке радиатора симистора, необходимо между симистором и радиатором установить изолирующую теплопроводящую прокладку, а на крепящий винт (саморез) одеть фторопластовую изолирующую втулку и плотно прижать симистор к радиатору. Не смотря на то, что вал переменного резистора гальванически не связан с его выводами, обязательно на вал необходимо установить пластиковую изолирующую ручку, так как при поломке подвижного контакта резистора не исключается возможность электрического контакта вала с выводами резистора.

         Настоящая схема имеет недостаток – при работе симистора в режиме отсечки, на его выходах появляются помехи. Если эти помехи оказывают влияние на другую аппаратуру, необходимо установить в схему помехоподавляющую цепочку R2, C6 (в комплект набора входят, но изначально в схему не устанавливаются). Если этой цепочки будет недостаточно, необходимо включать схему в сеть через сетевой фильтр (рис. 5). Этот фильтр можно взять из неисправного блока питания компьютера, использовав дроссель, состоящий из двух одновременно (бифилярно) намотанных обмоток на ферритовом кольце и параллельно подключенного конденсатора с рабочим напряжением не менее 400 вольт. На рис. 3 показаны три возможных вида маркировки выводов симистора (все они аналогичны). На отечественном ТС106-10 выбито наверху справа и слева от крепёжного отверстия, «старая маркировка»: К – катод, А – анод, У.Э.- управляющий электрод, новая: А1 – первый анод, А2 – второй анод, У – управляющий электрод.

 

Комплектация выбирается перед тем как положить набор в корзину.


ПАКЕТ: Содержание набора 009


1. Симистор ВТ137 (8А),
2. Печатная плата,    
3. Диоды 1N4007 (2 шт.),
4. Динистор DB3,
5. Резисторы:
   R1 – 100   кОм (Кч/Ч/Ж),
   R2 – 100 кОм (переменный),
   R3 – 1 кОм (Кч/Ч/Кр),
   R4 –  270 Ом (Кр/Ф/Кч),
   R5 –  1,5 кОм Кч/Зел/Кр),
   R6 –  100 Ом (Кч/Ч/Кч).
6. Конденсаторы:
   С1 – 0,47 мкФ (не менее 250 В),
   С2 – 0,068мкФ  (Uраб. не менее 400 В),

7. Пластиковая ручка для переменного резистора,    

8. Монтажный провод,
9. Схема и описание.

 


.    

КОРОБКА: Содержание набора 009  


1. Симистор ВТ138 (12А),


2. Печатная плата,                                                    


3. Диоды 1N4007 (2 шт.),


4. Динистор DB3,


5. Резисторы:


    R1 – 100   кОм (Кч/Ч/Ж),


    R2 – 100 кОм (переменный),


    R3 – 1 кОм (Кч/Ч/Кр),


    R4 –  270 Ом (Кр/Ф/Кч),


    R5 –  1,5 кОм Кч/Зел/Кр),


    R6 –  100 Ом (Кч/Ч/Кч).


6. Конденсаторы:


    С1 – 0,47 мкФ (не менее 250 В),


    С2 – 0,068мкФ  (Uраб. не менее 400 В),


7. Пластиковая ручка для переменного резистора,


8. Радиатор для симистора,


9. Изолирующая прокладка и втулка,


10. Винт М3 (гайка М3 отдельно или в радиаторе),             
11. Монтажный провод,


12. Схема и описание.

ВЫПУСК 009.

Регулятор мощности симисторный 220 В,  2 КВт.

1.  Симистор ВТ138-600,

2.  Печатная плата,

3.  Диод 1N4007 (2 шт.),

4.  Динистор DB3,

5.  Набор постоянных резисторов,

6.  Переменный резистор с ручкой,

7.  Конденсаторы,

8.  Радиатор для симистора,

9.  Винт, гайка М3,

10. Теплопроводящая изолирующая прокладка,

11. Фторопластовая изолирующая втулка,

12. Монтажный провод,

13. Схема и описание,

14. Контейнер с деталями схемы.

 

Настройки компенсации регулятора напряжения

% PDF-1.5
%
56 0 объект
>>>
эндобдж
94 0 объект
> поток
11.08.5102018-08-02T05: 59: 02.218-04: 003-Heights (TM) PDF Optimization Shell 4.8.25.2 (http://www.pdf-tools.com) Eaton’s Power Systems Division56a5be3be8dcbee3f39d33cc8e200c3bfc8be635138163TD2250-1311EN; R225-10 Heights (TM) PDF Optimization Shell 4.8.25.2 (http://www.pdf-tools.com) PScript5.dll Версия 5.2.22017-12-21T15: 49: 03.000-06: 002017-12-21T16: 49: 03.000 -05: 002017-12-20T14: 42: 01.000-05: 00application / pdf2018-08-02T06: 00: 40.729-04: 00

  • Eaton’s Power Systems Division
  • В этом документе обсуждаются методы определения настроек компенсатора регулятора напряжения.
  • TD225011EN
  • R225-10-1
  • Настройки компенсации регулятора напряжения
  • uuid: 9b6429ac-225f-4391-82bf-9c24fedb6d79uuid: 9c40b169-ddbf-4df7-82d2-ca9542a9b638

  • eaton: resources / Technical-resources / Technical-Data-Sheet
  • eaton: вкладки поиска / тип содержимого / ресурсы
  • eaton: страна / северная америка / сша
  • eaton: таксономия продуктов / системы управления-распределения-среднего напряжения / регулятор напряжения / cl-7-Voltage-Regator-control
  • eaton: language / en-us
  • конечный поток
    эндобдж
    54 0 объект
    >
    эндобдж
    52 0 объект
    >
    эндобдж
    50 0 объект
    >
    эндобдж
    57 0 объект
    > / ExtGState> / Font >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    1 0 объект
    > / ExtGState> / Font> / Properties >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    6 0 obj
    > / ExtGState> / Font> / Properties >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    9 0 объект
    > / ExtGState> / Font >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    11 0 объект
    > / ExtGState> / Font >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    13 0 объект
    > / ExtGState> / Font> / Properties >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    16 0 объект
    > / ExtGState> / Font> / Properties >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    22 0 объект
    > / ExtGState> / Font> / Properties >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    28 0 объект
    > / ExtGState> / Font >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    30 0 объект
    > / ExtGState> / Font >>> / Rotate 0 / TrimBox [0 0 612 792] / Type / Page >>
    эндобдж
    31 0 объект
    > поток
    x [] r} # 71_ IJWɑVqHU ~} Nw

    Регулирование нагрузки — обзор

    Введение

    Технологии накопления энергии предлагают ряд услуг для улучшения работы энергосистемы. К таким услугам относятся энергетический арбитраж, вращающийся резерв, регулирование, отслеживание нагрузки, выравнивание нагрузки и другие. Однако из-за проблем, с которыми сталкивается хранение энергии, ряд технологий все еще находится в стадии разработки. Некоторые из этих проблем включают оптимальный дизайн, размер и конструкцию системы. Кроме того, материалы, используемые при строительстве накопителей энергии, также играют важную роль в разработке этих систем. Рынок высококачественных аккумуляторов энергии вызвал необходимость в исследованиях такого типа для обеспечения разработки оптимальных систем [1].Многие исследователи проводили исследования по идентификации материалов для различных систем хранения энергии. Обзор материалов, используемых в различных типах накопителей энергии, включая тепловые, электрохимические, механические и электромагнитные накопители, предоставлен Liu et al. в исх. [2]. Уиттингем обсуждает системы хранения электроэнергии и их материальные проблемы [3]. Материалы для аккумулирования тепловой энергии обсуждаются Fernandez et al. в исх. [4]. Кроме того, анализ методом конечных элементов (FEA) был выполнен несколькими исследователями для определения материалов, подходящих для ряда технологий.Например, метод FEA вместе с методологией нечеткого принятия решений использовался авторами в [4]. [5], чтобы определить наиболее подходящие материалы, которые будут применяться для контейнера для хранения биогаза. Несмотря на то, что существует большое количество исследований по материалам для аккумулирования энергии, в литературе существует мало анализов материалов для аккумулирования энергии гравитацией (GES). Одна из основных целей этой главы — выполнить выбор материала для компонентов GES.

    Несколько исследователей изучали методики определения размера накопителя энергии для различных целей.Общий алгоритм был разработан авторами в работе. [6] для оптимального размера накопителя энергии с целью снижения эксплуатационных расходов микросети. Аналогичная цель была исследована в [5]. [7] с использованием подхода оптимизации серого волка. Атва и Эль-Саадани разработали другую модель для определения размера накопителя энергии с целью минимизировать годовые затраты на электроэнергию и сокращение потребления энергии ветра [8]. Размеры и размещение накопителя энергии были исследованы с использованием гибридного универсального алгоритма Ref.[9]. Максимизация чистой приведенной стоимости гибридного растения — еще одна цель, которая изучалась исследователями [10,11] для определения размеров различных типов технологий хранения энергии. Чжэн предложил модель максимизации доходов распределительной сети за счет определения размеров накопителей энергии [12]. Авторы в работах. [13–15] разработали стохастические алгоритмы для оптимального размера хранилища с учетом изменяемых профилей производства и потребления энергии. Оптимальный размер хранилища в распределительной сети был определен Bennett et al.с использованием подхода планирования энергопотребления, направленного на минимизацию пиковой потребности в энергии [16]. Проблема обязательств агрегата, решаемая с помощью модели оптимизации роя частиц с целью снижения стоимости микросети и увеличения доходов предприятия, была изучена в работе Ref. [17]. Размеры систем накопления энергии могут быть подобраны с использованием различных типов алгоритмов оптимизации, предложенных в работах Refs. [18–21].

    Темы, рассматриваемые в этой главе, организованы следующим образом. В разделе 2 предлагается концептуальный подход к проектированию GES.Этот дизайн улучшен моделью оптимизации, представленной в разделе 3. Затем в разделе 4 исследуются материалы, которые должны применяться к различным частям GES. Моделирование и симуляция этой технологии хранения выполняется с помощью SolidWorks (SW). В этой главе проводится FEA для проверки работоспособности и устойчивости контейнера под давлением. В разделе 5 представлена ​​методология определения размеров гравитационного хранилища, основанная на технических и экономических аспектах системы. Далее обсуждается и изучается усовершенствование конструкции ГЭС с использованием сжатого воздуха.Улучшение GES с использованием сжатого воздуха рассматривается в Разделе 6. Наконец, заключение этой главы представлено в Разделе 7.

    Управление питанием, Глава 7: ИС регуляторов напряжения

    Практически во всех источниках питания используются полупроводники для обеспечения регулируемого выходного напряжения. Если источник питания имеет вход переменного тока, он выпрямляется до постоянного напряжения. ИС преобразователя мощности принимает входной сигнал постоянного тока и выдает выходной сигнал постоянного тока или управляет полупроводниковыми переключателями на выходе внешней мощности для создания выходного сигнала постоянного тока.Это стабилизатор напряжения, когда его выходное напряжение возвращается в цепь, благодаря которой напряжение остается постоянным. Если выходное напряжение имеет тенденцию повышаться или понижаться, обратная связь заставляет выходное значение оставаться прежним.

    Преобразователь мощности может работать как по импульсной, так и по линейной схеме. В линейной конфигурации управляющий транзистор всегда рассеивает мощность, которую можно минимизировать, используя стабилизаторы с малым падением напряжения (LDO), которые регулируют правильно даже при относительно низком перепаде напряжения между их входом и выходом.ИС LDO имеют более простые схемы, чем их собратья с импульсным режимом, и производят меньше шума (без переключения), но ограничены своей способностью выдерживать ток и рассеивать мощность. Некоторые ИС LDO рассчитаны на ток около 200 мА, а другие могут выдерживать ток до 1 А.

    КПД ИС LDO может составлять 40-60%, тогда как ИС в режиме переключения могут показывать КПД до 95%. Топологии с коммутационным режимом являются основным подходом для встроенных систем, но LDO также находят применение в некоторых приложениях.

    Линейный регулятор с малым падением напряжения (LDO)

    Линейные регуляторы

    LDO обычно используются в системах, в которых требуется источник питания с низким уровнем шума, а не импульсный стабилизатор, который может нарушить работу системы. LDO также находят применение в приложениях, где регулятор должен поддерживать регулирование с небольшими различиями между входным напряжением питания и выходным напряжением нагрузки, например, в системах с батарейным питанием. Их низкое падение напряжения и низкий ток покоя делают их подходящими для портативных и беспроводных приложений. LDO со встроенным силовым полевым МОП-транзистором или биполярным транзистором обычно обеспечивают выходные сигналы в диапазоне от 50 до 500 мА.

    Стабилизатор напряжения LDO работает в линейной области с топологией, показанной на рис.7-1. В качестве основного регулятора напряжения, его основные компоненты серии проход транзистор (биполярный транзистор или MOSFET), дифференциальный усилитель ошибки и точное опорное напряжение.

    7-1. В базовом LDO один вход усилителя дифференциальной ошибки, установленный резисторами R1 и R2, контролирует процентное значение выходного напряжения. Другой вход усилителя ошибки является ссылкой стабильного напряжения (V REF ). Если выходное напряжение увеличивается относительно VREF, усилитель дифференциальной ошибки изменяет выход проходного транзистора для поддержания постоянного выходного напряжения нагрузки (V OUT ).

    Ключевыми рабочими факторами LDO являются его падение напряжения, коэффициент отклонения источника питания (PSRR) и выходной шум. Низкое падение напряжения относится к разнице между входным и выходным напряжениями, которая позволяет ИС регулировать выходное напряжение нагрузки. То есть LDO может регулировать выходное напряжение нагрузки до тех пор, пока его вход и выход не приблизятся друг к другу при падении напряжения. В идеале падение напряжения должно быть как можно меньшим, чтобы свести к минимуму рассеиваемую мощность и максимизировать эффективность.Обычно считается, что падение напряжения достигается, когда выходное напряжение упало на 100 мВ ниже номинального значения. Ток нагрузки и температура проходного транзистора влияют на падение напряжения.

    Внутреннее опорное напряжение

    An LDO является потенциальным источником шума, как правило, определяется как мкВ RMS над полосой пропускания конкретного, например, 30 мкВ RMS от 1 до 100 кГц. Этот низкий уровень шума вызывает меньше проблем, чем переходные процессы переключения и гармоники импульсного преобразователя. На фиг. 7-1, LDO имеет (напряжение-эталон) перепускной булавку опорного напряжения фильтра шума с конденсатором на землю.Добавление входных, выходных и байпасных конденсаторов, указанных в таблице, обычно приводит к беспроблемному уровню шума.

    Среди их эксплуатационных соображений — тип и диапазон приложенного входного напряжения, требуемое выходное напряжение, максимальный ток нагрузки, минимальное падение напряжения, ток покоя, рассеиваемая мощность и ток отключения.

    Управление контуром компенсации частоты LDO с включением нагрузочного конденсатора снижает чувствительность к ESR конденсатора (эквивалентное последовательное сопротивление), что обеспечивает стабильный LDO с конденсаторами хорошего качества любого типа.Кроме того, выходной конденсатор должен располагаться как можно ближе к выходному.

    Дополнительные функции в некоторых LDO:

    • Вход разрешения, позволяющий внешнее управлять включением и выключением LDO.

    • Плавный пуск, который ограничивает пусковой ток и контролирует время нарастания выходного напряжения при включении питания.

    • Перепускных контактные, что позволяет внешний конденсатор для уменьшения шума опорного напряжения.

    • Выходной сигнал ошибки, указывающий, выходит ли выход из регулирования.

    • Тепловое отключение, при котором LDO отключается, если его температура превышает заданное значение.

    • Защита от перегрузки по току (OCP), которая ограничивает выходной ток LDO и рассеиваемую мощность.

    LT3042

    LT3042 от Linear Technology — это линейный стабилизатор с малым падением напряжения (LDO), в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).

    PSRR описывает, насколько хорошо схема отклоняет пульсации, введенные на ее входе.Пульсации могут быть вызваны либо входным источником питания, например пульсациями питания 50/60 Гц, пульсациями переключения от преобразователя постоянного / постоянного тока, либо пульсациями из-за совместного использования входного питания с другими цепями.

    Для LDO PSRR — это функция регулируемой пульсации выходного напряжения по сравнению с пульсацией входного напряжения в заданном частотном диапазоне (обычно от 10 Гц до 1 МГц), выраженная в децибелах (дБ). Это может быть важным фактором, когда LDO питает аналоговые схемы, потому что низкий PSRR может позволить пульсации на выходе влиять на другие схемы.

    выходные конденсаторы с низким ESR и добавлены шунтирующие конденсаторы опорного напряжения улучшить производительность PSRR. В аккумуляторных системах должны использоваться LDO, которые поддерживают высокий PSRR при низком напряжении аккумуляторной батареи.

    LT3042, показанный на упрощенной схеме на рис. 7-2, представляет собой LDO, который снижает шум и увеличивает PSRR. Вместо опорного напряжения, используемого большинство традиционных линейных регуляторов, то LT3042 использует текущую ссылку, которая работает с типичным шумом текущего уровнем 20pA / √Цем (6nARMS над 10 Гц до 100 кГц полосы пропускания).

    7-2. LT3042 — это LDO-стабилизатор, в котором используется уникальная архитектура для минимизации шумовых эффектов и оптимизации подавления пульсаций источника питания (PSRR).

    Источник тока сопровождается высокопроизводительным буфером напряжения Rail-to-Rail, что позволяет легко подключать его параллельно для дальнейшего снижения шума, увеличения выходного тока и распределения тепла на печатной плате. Параллельное подключение нескольких LT3042 дополнительно снижает уровень шума в √N раз, где N — количество параллельных цепей.

    LT3080

    LT3080 компании

    Linear Technology является уникальным, 1. 1A LDO, который можно подключить параллельно для увеличения выходного тока или распределения тепла в платах для поверхностного монтажа (рис. 7-3). Эта ИС выводит коллектор проходного транзистора, чтобы обеспечить работу с малым падением напряжения — до 350 мВ — при использовании с несколькими источниками питания. Функции защиты включают защиту от короткого замыкания и безопасную рабочую зону, а также тепловое отключение.

    7-3. LT3080 может программировать выходное напряжение на любой уровень от нуля до 36 В.

    Ключевой особенностью LT3080 является способность обеспечивать широкий диапазон выходного напряжения.Используя опорный ток через единственный резистор, выходное напряжение программируется на любой уровень от нуля до 36 В. Он стабилен с емкостью на выходе 2,2 мкФ и может использовать небольшие керамические конденсаторы, которые не требуют дополнительного ESR, в отличие от других регуляторов.

    LT3080 особенно хорошо подходит для приложений, требующих нескольких рельсов. Его архитектура регулируется до нуля с помощью одного резистора, который обслуживает современные низковольтные цифровые ИС, а также обеспечивает простую параллельную работу и управление температурой без радиаторов.Регулировка выхода на «ноль» позволяет отключить схему с питанием, а когда вход предварительно регулируется — например, входной источник 5 В или 3,3 В — внешние резисторы могут помочь распределить тепло.

    Прецизионный «0» внутренний источник тока TC 10 мкА подключается к неинвертирующему входу его операционного усилителя мощности, который обеспечивает низкоомный буферизованный выход для напряжения на неинвертирующем входе. Один резистор между неинвертирующим входом и землей устанавливает выходное напряжение; установка этого резистора на ноль дает нулевой выходной сигнал.Любое выходное напряжение может быть получено от нуля до максимума, определяемого входным источником питания.

    Использование источника истинного тока позволяет регулятору демонстрировать усиление и частотную характеристику независимо от положительного входного импеданса. Старые регулируемые регуляторы изменяют коэффициент усиления контура с выходным напряжением и изменяют полосу пропускания при обходе регулировочного штифта. Для LT3080 коэффициент усиления контура не изменяется при изменении выходного напряжения или обходе. Регулировка выхода не фиксируется в процентах от выходного напряжения, а составляет фиксированную долю милливольт.Использование истинного источника тока позволяет все усиления в усилителе буфера, чтобы обеспечить регулирование и ни один из этого усиления не требуется, чтобы повысить ссылку на более высоком выходном напряжении.

    ИС может работать в двух режимах. Один из них — это трехконтактный режим, который соединяет управляющий контакт с входным контактом питания, что ограничивает его падение до 1,35 В. В качестве альтернативы вы можете подключить вывод «control» к более высокому напряжению, а вывод питания IN к более низкому напряжению, что приведет к падению напряжения 350 мВ на выводе IN и минимизации рассеиваемой мощности.Это позволяет источнику питания 1,1 А регулировать от 2,5VIN до 1,8VOUT или от 1,8VIN до 1,2VOUT с низким уровнем рассеивания.

    Импульсные ИС

    На рис. 7-4 показан упрощенный ШИМ-контроллер, используемый с импульсным преобразователем. Во время работы часть выходного постоянного напряжения возвращается в усилитель ошибки, который заставляет компаратор управлять временем включения и выключения ШИМ. На рис. 7-4 показано, как изменяется ширина импульса ШИМ для разных процентов времени включения и выключения. Чем больше время включения, тем выше выпрямленное выходное напряжение постоянного тока.Регулировка выходного напряжения сохраняется, если выходной сигнал отфильтрованного силового MOSFET имеет тенденцию к изменению, если это происходит, обратная связь регулирует рабочий цикл ШИМ, чтобы поддерживать выходное напряжение на желаемом уровне.

    7-4. Контроллер PWM генерирует прямоугольные волны разной ширины в зависимости от обратной связи по выходному напряжению.

    Для генерирования ШИМ-сигнала, усилитель ошибки принимает в качестве входного сигнала обратной связи и ссылки стабильное напряжение для получения выходного сигнала, связанный с разностью двух входов.Компаратор сравнивает выходное напряжение усилителя ошибки с пилообразной характеристикой генератора, создавая модулированную ширину импульса. Выход компаратора применяется к логической схеме переключения, выход которой поступает на выходной драйвер для внешнего силового полевого МОП-транзистора. Логика переключения обеспечивает возможность включения или отключения сигнала ШИМ, подаваемого на силовой полевой МОП-транзистор.

    Большинство микросхем ШИМ-контроллеров обеспечивают токоограничивающую защиту, измеряя выходной ток. Если вход считывания тока превышает определенный порог, он завершает текущий цикл (поцикловое ограничение тока).

    Компоновка схемы имеет решающее значение при использовании резистора считывания тока, который должен быть типа с низкой индуктивностью. Расположите конденсатор фильтра считывания тока очень близко к выводу PWM IC и подключите его напрямую. Кроме того, все чувствительные к шуму соединения маломощного заземления должны быть соединены вместе рядом с GND IC, а одно соединение должно быть выполнено с заземлением питания (точка заземления сенсорного резистора).

    В большинстве микросхем ШИМ-контроллеров частоту генератора задает один внешний резистор или конденсатор.Чтобы установить желаемую частоту генератора, используйте уравнение в таблице данных контроллера для расчета номинала резистора.

    Некоторые преобразователи ШИМ включают возможность синхронизации генератора с внешними часами с частотой, которая либо выше, либо ниже частоты внутреннего генератора. Если нет необходимости в синхронизации, подключите вывод синхронизации к GND, чтобы предотвратить шумовые помехи.

    Поскольку ИС ШИМ является частью цепи обратной связи, вход усилителя ошибки должен использовать схему частотной компенсации для обеспечения стабильности системы.

    Типичный преобразователь мощности принимает входной сигнал постоянного тока, преобразует его в частоту переключения, а затем выпрямляет его для получения выходного постоянного тока. Часть его выхода постоянного тока сравнивается с опорным напряжением (V REF ) и управляет ШИМ. Если выходное напряжение имеет тенденцию к увеличению, напряжение, подаваемое обратно в схему ШИМ, снижает ее рабочий цикл, в результате чего ее выходное напряжение уменьшается и поддерживается надлежащее регулируемое напряжение. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь приводит к увеличению рабочего цикла переключателя мощности, поддерживая регулируемый выход при надлежащем напряжении.

    Обычно силовой полупроводниковый переключатель включается и выключается с частотой от 100 кГц до 1 МГц, в зависимости от типа ИС. Частота переключения определяет физический размер и стоимость катушек индуктивности, конденсаторов и трансформаторов фильтра. Чем выше частота переключения, тем меньше физический размер и стоимость компонентов. Чтобы оптимизировать эффективность, материал магнитопровода для индуктора и трансформатора должен соответствовать частоте переключения. То есть материал сердечника трансформатора / катушки индуктивности следует выбирать таким образом, чтобы он эффективно работал на частоте переключения.

    На рис. 7-5 показана упрощенная схема импульсного регулятора напряжения. Для импульсных преобразователей постоянного и постоянного тока требуется средство для изменения выходного напряжения в ответ на изменения нагрузки. Один из подходов заключается в использовании широтно-импульсной модуляции (ШИМ), которая управляет входом в соответствующий переключатель питания. Сигнал ШИМ состоит из двух значений: ВКЛ и ВЫКЛ. Фильтр нижних частот, подключенный к выходу переключателя питания, обеспечивает напряжение, пропорциональное времени включения и выключения контроллера ШИМ.

    7-5. Импульсный преобразователь использует широтно-импульсный модулятор для управления регулированием

    Существует два типа импульсных преобразователей: изолированные и неизолированные, что зависит от наличия прямого пути постоянного тока от входа к выходу. В изолированном преобразователе используется трансформатор, обеспечивающий изоляцию входного и выходного напряжения (рис. 7-6).

    7-6. Изолированный импульсный преобразователь использует трансформатор для изоляции.

    В неизолированном преобразователе обычно используется индуктор, и между входом и выходом нет развязки по напряжению (рис. 7-7). Для подавляющего большинства приложений подходят неизолированные преобразователи. Однако в некоторых приложениях требуется изоляция между входным и выходным напряжениями. Преимущество преобразователя на основе трансформатора состоит в том, что он может легко создавать несколько выходных напряжений, тогда как преобразователь на основе индуктора обеспечивает только один выход.

    7-7.Неизолированный импульсный преобразователь.

    Топологии цепей

    В преобразователях питания постоянного тока используются две основные топологии ИС. Если выходное напряжение ниже входного напряжения, ИС называется понижающим преобразователем. Если выходное напряжение выше входного напряжения, ИС называется повышающим преобразователем.

    В своей базовой схеме (рис. 7-8) понижающий стабилизатор принимает входной сигнал постоянного тока, преобразует его в частоту переключения ШИМ (широтно-импульсный модулятор), которая управляет выходным сигналом силового полевого МОП-транзистора (Q1).Внешний выпрямитель, катушка индуктивности и выходной конденсатор создают регулируемый выход постоянного тока. ИС регулятора сравнивает часть выпрямленного выходного напряжения постоянного тока с опорным напряжением (V REF ) и изменяет рабочий цикл ШИМ для поддержания постоянного выходного напряжения постоянного тока. Если выходное напряжение имеет тенденцию к увеличению, ШИМ снижает свой рабочий цикл, вызывая уменьшение выходного сигнала и поддержание регулируемого выходного сигнала при надлежащем напряжении. И наоборот, если выходное напряжение имеет тенденцию к снижению, обратная связь заставляет рабочий цикл ШИМ увеличиваться и поддерживать регулируемый выход.

    7.8. Базовый понижающий преобразователь; индуктор всегда «противостоит» входному напряжению.

    Топология понижающего или понижающего регулятора имеет преимущества простоты и низкой стоимости. Однако он имеет ограниченный диапазон мощности, и его прямой путь постоянного тока от входа к выходу может создать проблему, если есть закороченный переключатель питания.

    LT8602

    LT8602 от Linear Technology представляет собой монолитный понижающий импульсный стабилизатор постоянной частоты, работающий по току, с четырьмя выходными каналами (рис.7-9). Два канала — это каналы высокого напряжения с входом от 3 до 42 В, а два других — каналы низкого напряжения с входом от 2,6 до 5,5 В.

    7-9. Четырехканальный понижающий преобразователь LT8602 имеет два канала высокого напряжения с входом от 3 до 42 В, а два других — каналы низкого напряжения с входом от 2,6 до 5,5 В.

    В ИС используется один генератор, который генерирует два тактовых сигнала (CLK) на 180 градусов. не в фазе. Каналы 1 и 3 работают с CLK1, а каналы 2 и 4 работают с CLK2.Понижающий стабилизатор потребляет входной ток только во время верхнего цикла включения, поэтому многофазный режим снижает пиковый входной ток и удваивает частоту входного тока. Это снижает как пульсации входного тока, так и требуемую входную емкость.

    Каждый канал высокого напряжения (HV) представляет собой синхронный понижающий стабилизатор, который работает от собственного вывода PVIN. Внутренний полевой МОП-транзистор с максимальной мощностью включается в начале каждого цикла генератора и выключается, когда ток, протекающий через верхний МОП-транзистор, достигает уровня, определяемого его усилителем ошибки.Усилитель ошибки измеряет выходное напряжение через внешний резистивный делитель, подключенный к выводу FB, для управления пиковым током в верхнем переключателе.

    Пока верхний полевой МОП-транзистор выключен, нижний полевой МОП-транзистор включен на оставшуюся часть цикла генератора или до тех пор, пока ток в катушке индуктивности не начнет реверсировать. Если в результате перегрузки через нижний переключатель проходит ток более 2 А (канал 1) или 3,3 А (канал 2), следующий тактовый цикл будет отложен до тех пор, пока ток переключения не вернется к более низкому безопасному уровню.

    Высоковольтные каналы имеют входы Track / Soft-Start (TRKSS1, TRKSS2). Когда этот контакт находится ниже 1V, преобразователь регулирует FB штифт к TRKSS напряжения вместо внутреннего эталона. Вывод TRKSS имеет подтягивающий ток 2,4 мкА. Вывод TRKSS также может использоваться, чтобы позволить выходу отслеживать другой регулятор, либо другой канал высокого напряжения, либо внешний регулятор.

    Как показано на упрощенной схеме индуктивно-повышающего преобразователя постоянного тока (рис. 7-10), включение силового полевого МОП-транзистора вызывает нарастание тока через катушку индуктивности.При выключении силового МОП-транзистора ток через диод направляется к выходному конденсатору. Несколько циклов переключения создают напряжение выходного конденсатора из-за заряда, который он накапливает от тока катушки индуктивности. В результате выходное напряжение выше входного.

    7-10. Базовый неизолированный импульсный индуктивно-повышающий преобразователь постоянного тока.

    LTC3124

    Типичная прикладная схема LTC3124 компании Linear Technology, показанная на рис. 7-11, использует внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода из 2.От 5 до 15 В. При настройке на выход 12 В он может непрерывно выдавать до 1,5 А от входа 5 В. Ограничение по току 2,5 А на фазу, а также возможность программирования выходного напряжения до 15 В делают его пригодным для различных приложений.

    7-11. В прикладной схеме LTC3124 используется внешний резистивный делитель напряжения от VOUT до FB и до SGND для программирования выхода от 2,5 до 15 В.

    Использование двух фаз, расположенных на равном расстоянии 180 град. кроме того, удваивает частоту пульсаций на выходе и значительно снижает ток пульсаций выходного конденсатора.Хотя для этой архитектуры требуются две катушки индуктивности, а не одна, она имеет несколько важных преимуществ:

    • Существенно более низкий пиковый ток индуктивности позволяет использовать индукторы меньшего размера и с меньшими затратами.

    • Значительно сниженный выходной ток пульсации сводит к минимуму требования к выходной емкости.

    • Более высокочастотные пульсации на выходе легче отфильтровать для приложений с низким уровнем шума.

    • Входной ток пульсации также снижен для снижения шума VIN.

    При двухфазном режиме работы одна фаза всегда подает ток на нагрузку, если VIN больше половины VOUT (для рабочих циклов менее 50%).По мере дальнейшего уменьшения рабочего цикла, ток нагрузки между двумя фазами начинает перекрываться, происходя одновременно для растущей части каждой фазы по мере того, как рабочий цикл приближается к нулю. По сравнению с однофазным преобразователем, это значительно снижает как выходной ток пульсации, так и пиковый ток в каждой катушке индуктивности.

    LTC3124 обеспечивает преимущество для систем с батарейным питанием, он может запускаться от входов с напряжением до 1,8 В и продолжать работать от входов с напряжением до 0.5 В при выходном напряжении более 2,5 В. Это увеличивает время работы за счет максимального увеличения количества энергии, извлекаемой из входного источника. Ограничивающими факторами для приложения являются способность источника питания обеспечивать достаточную мощность на выходе при низком входном напряжении и максимальный рабочий цикл, который ограничен 94%. При низких входных напряжениях небольшие падения напряжения из-за последовательного сопротивления становятся критическими и ограничивают подачу мощности преобразователем.

    Даже если входное напряжение превышает выходное напряжение, ИС будет регулировать выход, обеспечивая совместимость с любым типом батарей.LTC3124 — идеальное решение для повышающих приложений, требующих выходного напряжения до 15 В, где определяющими факторами являются высокая эффективность, небольшие размеры и высокая надежность.

    LTC3110

    LTC3110 от Linear Technology представляет собой комбинацию понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного питания системы (рис. 7-12). Это двунаправленное, программируемое зарядное устройство для суперконденсаторов с понижающим и повышающим входным током обеспечивает активную балансировку заряда для суперконденсаторов серии 1 или 2.Его запатентованная топология понижающего-повышающего шума с низким уровнем шума выполняет работу двух отдельных импульсных регуляторов, экономя размер, стоимость и сложность.

    7-12. LTC3110 представляет собой комбинацию понижающе-повышающего регулятора / зарядного устройства постоянного / постоянного тока на 2 А с выбираемыми контактами режимами работы для зарядки и резервного питания системы.

    Двунаправленный относится к потоку постоянного тока, связанному с VSYS, выводом источника питания для резервного выходного напряжения системы и входного напряжения зарядного тока. В одном направлении LTC3110 работает как понижающий-повышающий стабилизатор, снимая ток с суперконденсатора и обеспечивая регулируемое напряжение на нагрузке на выводе VSYS.В другом направлении знак тока меняется на противоположный, и точно ограниченный ток течет от системной шины обратно, чтобы зарядить суперконденсатор. Если VSYS падает из-за потери мощности, он может автономно переключать направление для стабилизации напряжения системы, подавая ток от суперконденсатора в VSYS.

    LTC3110 имеет диапазоны напряжения конденсатора / батареи от 0,1 до 5,5 В и резервного напряжения системы от 1,8 до 5,25 В, что делает его подходящим для широкого спектра приложений резервного копирования с использованием суперконденсаторов или батарей, например:

    • Он объединяет все функции, необходимые для использования преимуществ суперконденсаторов, зарядки, балансировки и резервного копирования.

    • Ограничение входного тока с точностью ± 2% исключает использование внешних компонентов, снижает IQ и позволяет использовать все возможности источника питания без превышения пределов безопасности.

    • Распределение входной мощности позволяет LTC3110 и другим преобразователям постоянного / постоянного тока или нагрузкам использовать один и тот же источник питания с минимальным снижением номинальных характеристик / запасом.

    • Активный балансировщик синхронно перемещает заряд между конденсаторами, устраняя внешние балластные резисторы и их потери мощности, что приводит к меньшему количеству циклов перезарядки и более быстрой зарядке.

    • Он может автономно переходить из режима зарядки в резервный или переключать режимы на основе внешней команды.

    На рис. 7-13 ШИМ-регулятор включает и выключает полевой МОП-транзистор. Без обратной связи рабочий цикл ШИМ определяет выходное напряжение, которое в два раза больше входного для 50% рабочего цикла. Увеличение напряжения в два раза приводит к тому, что входной ток в два раза превышает выходной ток. В реальной схеме с потерями входной ток немного выше.

    7-13.Базовый прямой преобразователь может работать как повышающий или понижающий преобразователь. Теоретически он должен использовать «идеальный» трансформатор без потоков утечки, нулевого тока намагничивания и потерь.

    Его преимущества — простота, низкая стоимость и возможность увеличения мощности без использования трансформатора. Недостатками являются ограниченный диапазон мощностей и относительно высокая пульсация на выходе из-за постоянной энергии, исходящей от выходного конденсатора.

    Выбор индуктора является важной частью этой схемы повышения, поскольку значение индуктивности влияет на входные и выходные пульсации напряжения и токи.Индуктор с низким последовательным сопротивлением обеспечивает оптимальную эффективность преобразования энергии. Выберите номинальный ток насыщения катушки индуктивности так, чтобы он был выше установившегося пикового тока катушки индуктивности в приложении.

    Для обеспечения стабильности для рабочих циклов выше 50% для индуктора требуется минимальное значение, определяемое минимальным входным напряжением и максимальным выходным напряжением. Это зависит от частоты переключения, рабочего цикла и сопротивления открытого МОП-транзистора.

    Топология прямого преобразователя (рис.7-13) представляет собой изолированную версию понижающего преобразователя. Использование трансформатора позволяет прямому преобразователю быть либо повышающим, либо понижающим преобразователем, хотя наиболее распространенным применением является понижающий преобразователь. Основными преимуществами прямой топологии являются ее простота и гибкость.

    Другая топология с трансформаторной изоляцией, упрощенный обратноходовой преобразователь (рис. 7-14), работает в режиме непрямого преобразования. Топология Flyback — один из наиболее распространенных и экономичных способов генерирования умеренного уровня изолированного питания в преобразователях переменного тока в постоянный.Он обладает большей гибкостью, поскольку может легко генерировать несколько выходных напряжений путем добавления дополнительных вторичных обмоток трансформатора. Недостатком является то, что регулирование и пульсации на выходе не так жестко контролируются, как в некоторых других топологиях, и нагрузки на выключатель питания выше.

    7-14. Трансформатор базового обратноходового преобразователя обычно имеет воздушный зазор, что позволяет ему накапливать энергию во время работы и передавать энергию диоду во время простоя.

    LT3798

    LT3798 компании

    Linear Technology представляет собой изолированный контроллер обратного хода с одноступенчатой ​​активной коррекцией коэффициента мощности (PFC). Эффективность более 86% может быть достигнута при уровне выходной мощности до 100 Вт. В зависимости от выбора внешних компонентов, он может работать в диапазоне входных напряжений от 90 до 277 В переменного тока и может легко увеличиваться или уменьшаться. Кроме того, LT3798 может использоваться в приложениях с высоким входным напряжением постоянного тока, что делает его пригодным для использования в промышленности, электромобилях и сверхвысоких напряжениях, в горнодобывающей промышленности и медицине.

    На рис. 7-15 показано типичное приложение для LT3798. Эта ИС представляет собой контроллер переключения режима тока, специально предназначенный для создания источника постоянного тока / постоянного напряжения с изолированной топологией обратного хода. Для поддержания регулирования в этой топологии обычно используется обратная связь по выходному напряжению и току от изолированной вторичной обмотки выходного трансформатора до VIN. Обычно для этого требуется оптоизолятор. Вместо этого LT3798 использует пиковый ток внешнего полевого МОП-транзистора, полученный из считывающего резистора, для определения выходного тока обратноходового преобразователя без использования оптопары.

    7-15. Контроллер обратного хода LT3798 с одноступенчатой ​​активной коррекцией коэффициента мощности (PFC).

    Как показано на рис. 7-15, выходной трансформатор имеет три обмотки, включая выходную. Сток внешнего полевого МОП-транзистора подключается к одной из первичных обмоток. Третья обмотка трансформатора определяет выходное напряжение, а также подает питание для установившегося режима работы. Вывод VIN подает питание на внутренний LDO, который генерирует 10 В на выводе INTVCC. Схема внутреннего управления состоит из двух усилителей ошибок, схемы минимума, умножителя, передаточного затвора, компаратора тока, генератора низкого выходного тока и главной защелки.Кроме того, схема выборки и хранения контролирует выходное напряжение третьей обмотки. Компаратор обнаруживает режим прерывистой проводимости (DCM) с конденсатором и последовательным резистором, подключенными к третьей обмотке.

    Во время типичного цикла драйвер затвора включает внешний полевой МОП-транзистор, так что ток течет в первичной обмотке. Этот ток увеличивается со скоростью, пропорциональной входному напряжению и обратно пропорциональной индуктивности намагничивания трансформатора. Контур управления определяет максимальный ток, и компаратор выключает переключатель, когда он достигает этого тока.Когда переключатель выключается, энергия трансформатора вытекает из вторичной обмотки через выходной диод D1. Этот ток уменьшается со скоростью, пропорциональной выходному напряжению. Когда ток уменьшается до нуля, выходной диод отключается, и напряжение на вторичной обмотке начинает колебаться в зависимости от паразитной емкости и намагничивающей индуктивности трансформатора.

    Напряжение на всех обмотках одинаковое, поэтому и третья обмотка звонит. Конденсатор, подключенный к выводу DCM, отключает компаратор, который служит детектором du / dt при возникновении звонка.Эта временная информация используется для расчета выходного тока. Детектор du / dt ожидает, пока сигнал вызывного сигнала достигнет своего минимального значения, а затем включается переключатель. Такое переключение аналогично переключению при нулевом напряжении и сводит к минимуму потери энергии при включении переключателя, повышая эффективность до 5%. Эта ИС работает на границе непрерывного и прерывистого режимов проводимости, что называется критическим режимом проводимости (или граничным режимом проводимости). Работа в режиме критической проводимости позволяет использовать трансформатор меньшего размера, чем конструкции, работающие в режиме постоянной проводимости.

    SEPIC

    Несимметричный преобразователь первичной индуктивности (SEPIC) представляет собой топологию преобразователя постоянного / постоянного тока, который обеспечивает положительное регулируемое выходное напряжение от входного напряжения, которое изменяется сверху вниз от выходного напряжения. В упрощенном преобразователе SEPIC, показанном на рис. 7-16, используются две катушки индуктивности, L1 и L2, которые могут быть намотаны на один и тот же сердечник, поскольку на протяжении всего цикла переключения к ним прикладываются одинаковые напряжения. Использование спаренного дросселя занимает меньше места на ПК. плата и, как правило, дешевле, чем два отдельных индуктора.Конденсатор C4 изолирует вход от выхода и обеспечивает защиту от короткого замыкания нагрузки.

    7-16. Две катушки индуктивности в базовом преобразователе SEPIC могут быть намотаны на один и тот же сердечник, поскольку в течение всего цикла переключения к ним прикладываются одинаковые напряжения.

    ИС регулирует выход с помощью ШИМ-управления в текущем режиме, которое включает силовой полевой МОП-транзистор Q1 в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности.Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором. Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяется в каждом цикле переключения. Рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.

    Сигнал пилообразного изменения от генератора добавляется к пилообразному сигналу тока. Эта компенсация наклона предназначена для предотвращения субгармонических колебаний, которые присущи управлению режимом тока при скважности выше 50%. Петля обратной связи регулирует штырь FB к опорному напряжению через усилитель ошибки. Выход усилителя ошибки подключен к выводу COMP. К выводу COMP подключена внешняя RC-компенсационная цепь для оптимизации контура обратной связи для обеспечения стабильности и переходной характеристики.

    TPS61170

    TPS61170 — это монолитный высоковольтный импульсный стабилизатор от Texas Instruments со встроенным силовым полевым МОП-транзистором 1,2 А, 40 В. Устройство может быть сконфигурировано в нескольких стандартных топологиях регулятора, включая повышающий и SEPIC. Рисунок 7-17 показывает конфигурацию SEPIC. Устройство имеет широкий диапазон входного напряжения для поддержки приложений с входным напряжением от батарей или регулируемых шин питания 5 В, 12 В.

    7-17. TPS61170 сконфигурирован как преобразователь SEPIC.

    В ИС встроен полевой транзистор нижнего уровня на 40 В для обеспечения выходного напряжения до 38 В. Устройство регулирует выход с помощью токового режима управления ШИМ (широтно-импульсной модуляцией). Частота переключения ШИМ составляет 1,2 МГц (типовая). Схема управления ШИМ включает переключатель в начале каждого цикла переключения. Входное напряжение подается на катушку индуктивности и сохраняет энергию по мере нарастания тока в катушке индуктивности. Во время этой части цикла переключения ток нагрузки обеспечивается выходным конденсатором.Когда ток катушки индуктивности повышается до порога, установленного выходом усилителя ошибки, выключатель питания выключается, и внешний диод Шоттки смещается в прямом направлении. Катушка индуктивности передает накопленную энергию для пополнения выходного конденсатора и подачи тока нагрузки. Эта операция повторяется каждый цикл переключения. Как показано на блок-схеме, рабочий цикл преобразователя определяется компаратором управления ШИМ, который сравнивает выходной сигнал усилителя ошибки и текущий сигнал.

    TPS61170 работает на 1.Частота коммутации 2 МГц, что позволяет использовать низкопрофильные катушки индуктивности и недорогие керамические входные и выходные конденсаторы. Он имеет встроенную защиту, включая ограничение по току, плавный пуск и тепловое отключение.

    Гистерезисный преобразователь

    Базовый гистерезисный регулятор, показанный на рис. 7-18, представляет собой тип импульсного регулятора, в котором не используется ШИМ. Он состоит из компаратора с входным гистерезисом, который сравнивает выходное напряжение обратной связи с опорным напряжением. Когда напряжение обратной связи превышает опорное напряжение, выход компаратора переходит на низкий уровень, поворачиваясь от понижающего переключателя МОП-транзистора.Выключатель остается выключенным, пока напряжение обратной связи падает ниже опорного напряжения гистерезиса. Затем на выходе компаратора устанавливается высокий уровень, включается переключатель и снова повышается выходное напряжение.

    7-18. Базовый гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока.

    Базовый гистерезисный преобразователь состоит из компаратора ошибок, управляющей логики и внутреннего задания. Выход обычно управляет синхронным выпрямителем, который может быть внутренним или внешним.Часть выходного напряжения возвращается в компаратор ошибок, который сравнивает его с опорным напряжением. Если выход имеет тенденцию к низким относительно опорного напряжения, выходной конденсатор заряжает, пока он не достигнет равновесия с опорным напряжением. Затем компаратор включает синхронный выпрямитель. Когда синхронный выпрямитель включен, выходное напряжение падает достаточно низко, чтобы преодолеть гистерезис компаратора, после чего синхронный выпрямитель отключается, начиная новый цикл.

    В гистерезисном регуляторе нет усилителя ошибки напряжения, поэтому его реакция на любое изменение тока нагрузки или входного напряжения практически мгновенно. Следовательно, гистерезисный регулятор представляет собой самый быстрый способ управления преобразователем постоянного тока. Недостатком обычного гистерезисного регулятора является то, что его частота изменяется пропорционально ESR выходного конденсатора. Поскольку начальное значение часто плохо контролируется, а ESR электролитических конденсаторов также изменяется с температурой и возрастом, практические изменения ESR могут легко привести к изменениям частоты порядка одного-трех.Однако существует модификация гистерезисной топологии, которая устраняет зависимость рабочей частоты от ESR.

    LM3475

    LM3475 — это понижающий (понижающий) контроллер постоянного и переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ) (рис. 7-19). Схема гистерезисного управления не использует внутренний генератор. Частота переключения зависит от внешних компонентов и условий эксплуатации. Рабочая частота снижается при малых нагрузках, что обеспечивает превосходную эффективность по сравнению с архитектурами с ШИМ.Поскольку переключение напрямую контролируется выходными условиями, гистерезисное управление обеспечивает исключительную переходную характеристику нагрузки.

    7-19. LM3475 — это понижающий (понижающий) контроллер постоянного и переменного тока, в котором используется гистерезисная архитектура управления, которая обеспечивает регулирование с частотно-импульсной модуляцией (ЧИМ).

    LM3475 использует контур управления напряжением на основе компаратора. Напряжение на выводе обратной связи сравнивается с опорным напряжением 0,8 В с гистерезисом 21 мВ. Когда вход FB на компаратор падает ниже опорного напряжения, выход компаратора переходит на низкий уровень.Это приводит к тому, что выходной сигнал драйвера PGATE переводит затвор PFET в низкий уровень и включает PFET.

    При включенном PFET входной источник питания заряжает COUT и подает ток на нагрузку через PFET и катушку индуктивности. Ток через катушку индуктивности линейно нарастает, а выходное напряжение увеличивается. Поскольку напряжение в FB достигает верхний порог (опорное напряжение плюс гистерезис) выход компаратора переходит на высоком уровне, а PGATE превращает PFET выключения. Когда PFET выключается, загорается диод, и ток через катушку индуктивности падает.Как падает выходное напряжение ниже опорного напряжения, цикл повторяется.

    Конвертер Cuk

    Преобразователь Cuk — это преобразователь постоянного тока, величина выходного напряжения которого может быть больше или меньше входного напряжения. По сути, это повышающий преобразователь, за которым следует понижающий преобразователь с конденсатором для передачи энергии. Это инвертирующий преобразователь, поэтому выходное напряжение отрицательно по отношению к входному. Неизолированный преобразователь Cuk может иметь только противоположную полярность между входом и выходом.Он использует конденсатор в качестве основного элемента накопления энергии, в отличие от большинства других типов преобразователей, в которых используется катушка индуктивности.

    Как и другие преобразователи (понижающий преобразователь, повышающий преобразователь, понижающий-повышающий преобразователь), преобразователь Cuk может работать в режиме непрерывного или прерывистого тока. Однако, в отличие от этих преобразователей, он также может работать в режиме прерывистого напряжения (напряжение на конденсаторе падает до нуля во время цикла коммутации).

    LM2611 от Texas Instruments представляет собой преобразователь Cuk, который состоит из контроллера режима тока со встроенным первичным переключателем и встроенной схемой измерения тока (рис.7-20). Обратная связь подключена к усилителю внутренней ошибки и использует внутреннюю компенсацию типа II / III. Генератор рампы обеспечивает некоторую компенсацию наклона системе. Вывод SHDN — это логический вход, предназначенный для отключения преобразователя.

    7-20. LM2611 сконфигурирован как преобразователь Cuk

    Режим тока, фиксированная частота переключения ШИМ регулятор LM2611 имеет ссылку -1.23V, что делает его идеальным для использования в преобразователе CUK. Преобразователь Cuk инвертирует вход и может повышать или понижать абсолютное значение.Используя катушки индуктивности как на входе, так и на выходе, преобразователь Cuk производит очень небольшие колебания входного и выходного тока. Это значительное преимущество по сравнению с другими инвертирующими топологиями, такими как повышенно-понижающий и обратный.

    Многофазный преобразователь

    По мере увеличения требований к току возрастает и потребность в увеличении количества фаз в преобразователе. Однофазные понижающие контроллеры подходят для низковольтных устройств с токами до 25 А, однако рассеивание мощности и эффективность являются проблемой при более высоких токах.Одним из подходов к более высоким токовым нагрузкам является многофазный понижающий контроллер. Их производительность делает их идеальными для питания персональной электроники, портативных промышленных устройств, твердотельных накопителей, приложений с малыми ячейками, ПЛИС и микропроцессоров.

    Двухфазная схема, показанная на рис. 7-21, имеет чередование фаз, что снижает токи пульсаций на входе и выходе. Это также уменьшает количество горячих точек на печатной плате или отдельном компоненте. Двухфазный понижающий преобразователь вдвое снижает рассеиваемую мощность тока RMS в полевых МОП-транзисторах и катушках индуктивности.Перемежение также снижает переходные потери.

    7-21. Базовый многофазный преобразователь имеет две чередующиеся фазы, что снижает токи пульсаций на входе и выходе.

    Многофазные элементы работают на общей частоте, но сдвинуты по фазе, так что переключение преобразования происходит через равные промежутки времени, контролируемые общей микросхемой управления. Микросхема управления смещает время переключения каждого преобразователя таким образом, чтобы фазовый угол между переключениями преобразователя составлял 360 градусов./ n, где n — количество фаз преобразователя. Выходы преобразователей параллельны, так что эффективная частота пульсаций на выходе равна n × f, где f — рабочая частота каждого преобразователя. Это обеспечивает лучшие динамические характеристики и значительно меньшую развязывающую емкость по сравнению с однофазной системой.

    Разделение тока между многофазными ячейками необходимо, чтобы не потреблять слишком много тока. В идеале каждая многофазная ячейка должна потреблять одинаковое количество тока.Чтобы добиться равного распределения тока, необходимо контролировать и контролировать выходной ток для каждой ячейки.

    Многофазный подход также предлагает преимущества упаковки. Каждый преобразователь выдает 1 / n от общей выходной мощности, уменьшая физический размер и величину магнитных полей, используемых в каждой фазе. Кроме того, силовые полупроводники в каждой фазе должны обрабатывать только 1 / n общей мощности. Это распределяет внутреннее рассеивание мощности между несколькими силовыми устройствами, устраняя концентрированные источники тепла и, возможно, необходимость в радиаторе.Несмотря на то, что здесь используется больше компонентов, компромисс по стоимости может быть благоприятным.

    Многофазные преобразователи

    имеют важные преимущества:

    • Пониженный среднеквадратичный ток конденсатора входного фильтра, позволяет использовать меньшие и менее дорогие типы

    • Распределенный отвод тепла, снижает температуру горячих точек, повышая надежность.

    • Повышенная общая мощность

    • Повышенная эквивалентная частота без увеличения коммутационных потерь, что позволяет использовать меньшие эквивалентные индуктивности, сокращающие переходное время нагрузки.

    • Пониженный ток пульсаций в выходном конденсаторе снижает пульсации напряжения на выходе и позволяет использовать меньшие и менее дорогие выходные конденсаторы.

    • Превосходная реакция на переходные процессы при нагрузке во всем диапазоне нагрузок

    Многофазные преобразователи

    также имеют некоторые недостатки, которые следует учитывать при выборе количества фаз, например:

    • Необходимость в большем количестве переключателей и выходных катушек индуктивности, чем в однофазной конструкции, что приводит к более высокой стоимости системы, чем однофазное решение, по крайней мере, ниже определенного уровня мощности.

    • Более сложное управление

    • Возможность неравномерного распределения тока между фазами

    • Добавлена ​​сложность топологии схемы

    Синхронное выпрямление

    КПД — важный критерий при проектировании преобразователей постоянного тока, что означает, что потери мощности должны быть минимизированы.Эти потери вызваны переключателем мощности, магнитными элементами и выходным выпрямителем. Для уменьшения потерь в переключателе мощности и магнитных потерь требуются компоненты, которые могут эффективно работать на высоких частотах переключения. В выходных выпрямителях могут использоваться диоды Шоттки, но синхронное выпрямление (рис. 7-22), состоящее из силовых полевых МОП-транзисторов, может обеспечить более высокий КПД.

    7-22. Синхронный выпрямитель более эффективен, чем диодный выпрямитель.

    Полевые МОП-транзисторы

    имеют более низкие потери прямой проводимости, чем диоды Шоттки.В отличие от обычных самокоммутирующихся диодов, полевые МОП-транзисторы включаются и выключаются с помощью управляющего сигнала затвора, синхронизированного с работой преобразователя. Основным недостатком синхронного выпрямления является дополнительная сложность и стоимость, связанные с устройствами MOSFET и соответствующей управляющей электроникой. Однако при низких выходных напряжениях результирующее повышение эффективности более чем компенсирует недостаток стоимости во многих приложениях.

    Компенсация регулятора напряжения

    Импульсные источники питания

    используют отрицательную обратную связь для регулирования своей выходной мощности до желаемого значения.Оптимальная система управления SMPS, использующая отрицательную обратную связь, должна обеспечивать скорость, точность и отклик без колебаний. Один из способов добиться этого — ограничить частотный диапазон, в котором реагирует SMPS. Чтобы быть стабильным, частотный диапазон или полоса пропускания должны соответствовать частоте, на которой тракт передачи с обратной связью от входа к выходу падает на 3 дБ (так называемая частота кроссовера). Обязательно ограничивайте полосу пропускания до того, что на самом деле требуется вашему приложению. Принятие слишком широкой полосы пропускания влияет на помехозащищенность системы, а слишком низкая пропускная способность приводит к плохой переходной характеристике.Вы можете ограничить полосу пропускания системы управления SMPS, сформировав ее кривую усиления контура (V OUT / V IN ) с помощью блока компенсатора G (s), показанного на рис. 7-23. Этот блок гарантирует, что после определенной частоты величина усиления контура упадет и станет ниже 1 или 0 дБ.

    7-23. Типичная модель импульсного источника питания с отрицательной обратной связью использует блок компенсации G (s) и H (s), коэффициент усиления разомкнутого контура. VIN (s) — это вход, а VOUT (s) — это выход.

    Кроме того, для получения отклика, сходящегося к стабильному состоянию, нам необходимо убедиться, что фаза, при которой величина усиления контура равна 1, меньше -180 градусов. Чтобы убедиться, что мы держимся подальше от -180 град. на частоте кроссовера компенсатор G (s) должен адаптировать отклик контура на выбранной частоте кроссовера для создания необходимого запаса по фазе. Соответствующий запас по фазе гарантирует, что, несмотря на внешние возмущения или неизбежные спреды добычи, изменения в усилении контура не поставят под угрозу стабильность системы.Запас по фазе также влияет на переходную характеристику системы. Следовательно, компенсатор G (s) должен обеспечивать желаемые характеристики усиления и фазы.

    Используя анализатор цепей, вы можете определить запасы устойчивости, измерив коэффициент усиления и фазу контура управления, а затем просмотреть полученный график Боде (рис. 7-24), который представляет собой график зависимости коэффициента усиления и фазы от частоты источника питания. . 60 град. запас по фазе предпочтителен, но 45 град. обычно приемлемо. Обычно приемлемым считается коэффициент усиления –10 дБ.Коэффициент усиления и запас по фазе важны, потому что фактические значения компонентов могут изменяться в зависимости от температуры. Таким образом, значения компонентов могут отличаться от блока к блоку при производстве, что приводит к соответствующему изменению коэффициента усиления напряжения и фазы контура управления. Кроме того, значения компонентов могут изменяться со временем и вызывать нестабильность.

    7-24. Типичный график Боде для импульсного стабилизатора напряжения IC показывает частоту кроссовера, усиление и запас по фазе.

    Если значения компонентов приводят к обнулению фазы на частоте кроссовера, регулятор становится нестабильным и колеблется.Целью компенсации является обеспечение наилучшего запаса по усилению и фазе при максимально возможной частоте кроссовера. Высокая частота кроссовера обеспечивает быструю реакцию на изменения тока нагрузки, тогда как высокое усиление на низких частотах обеспечивает быстрое установление выходного напряжения. Значения компонентов и вариации V OUT / V IN могут привести к компромиссу между высокой частотой кроссовера и высоким запасом устойчивости.

    7-25. LM21305 — это ИС импульсного регулятора, в котором используется один узел компенсации, для которого требуются компоненты компенсации RC и CC1, подключенные между контактом COMP и AGND.

    Определение компенсации для источника питания не всегда легко, потому что оценка графика Боде невозможна, когда нет доступа к петле обратной связи к детали. В других случаях доступ к контуру обратной связи затруднен, потому что оборудование интегрировано или потребуется вырезать дорожку печатной платы. В других случаях устройства либо содержат несколько контуров управления, из которых доступен только один, либо порядок контура управления выше второго порядка, и в этом случае график Боде является плохим предсказателем относительной стабильности.Еще одна сложность заключается в том, что во многих портативных электронных устройствах, таких как сотовые телефоны и планшеты, схемы очень малы и густо заполнены, оставляя мало препятствий для доступа к элементам контура управления.

    В вышеуказанных случаях единственный способ проверить стабильность — это оценка неинвазивного запаса стабильности (NISM). Он получен на основе легко доступных измерений выходного импеданса. Математическое соотношение, которое позволяет точно определять стабильность контура управления по данным выходного импеданса, было разработано Picotest и включено в программное обеспечение OMICRON Lab Bode 100 Vector Network Analyzer (VNA).На рисунке 7-26 показана испытательная установка для этого измерения.

    7-26. Недоступные измерения выходного импеданса (Пикотест).

    Один из первых методов компенсации предусматривал использование регулятора напряжения с внешними узлами, чтобы разработчик мог вставлять компоненты компенсации. Определение значений компонентов компенсации включало анализ ИС регулятора и его внешних компонентов. После определения необходимой компенсации разработчик смоделировал или измерил схему регулятора с установленными компенсационными компонентами.Для получения желаемых результатов этот процесс обычно требовал нескольких итераций.

    Для правильного внедрения компенсационной сети требуются инженеры со специальными инструментами, навыками и опытом. Если схема была смоделирована и не измерена, разработчик должен был в конечном итоге вставить фактические компоненты компенсации для измерения характеристик источника питания. Моделирование было настолько хорошо, насколько хорошо дизайнер знал компоненты и паразиты. Модель могла быть неполной или отличаться от реальной схемы, поэтому компенсацию необходимо было проверить путем измерения реальной схемы.Неизменно требовалась доработка из-за возможных ошибок, связанных с заменой компонентов. Ремонтные работы также могут изменить характеристики источника питания и повредить цепи, питаемые от регулятора.

    Некоторые поставщики ИС регуляторов включали компоненты внутренней компенсации, поэтому конструкция не нуждалась в дальнейшем анализе. Однако разработчику пришлось использовать внешние компоненты, указанные производителем.

    Единичный компенсационный узел был следующим этапом в этой эволюции. Примером этого является ИС импульсного регулятора LM21305 компании Texas Instruments, показанная на рис.7-25. LM21305 обычно требует только одного резистора и конденсатора для компенсации. Однако иногда требовался дополнительный конденсатор.

    Автокомпенсация

    Для устранения проблем, связанных с ручным определением компенсации источника питания, две компании разработали технологию автоматической компенсации. В результате были разработаны ИС регулятора смешанных сигналов с автоматической компенсацией. Это избавило проектировщика от необходимости в специальных инструментах, знаниях или опыте для оптимизации производительности.Автоматическая компенсация устанавливает выходные характеристики таким образом, чтобы изменения из-за допусков компонентов, старения, температуры, входного напряжения и других факторов не влияли на производительность.

    Семейство цифровых источников питания

    CUI NDM2Z (рис. 7-27) включает автоматическую компенсацию с использованием ИС регулятора Intersil / Zilker ZL8101M. Автоматическая компенсация обходит традиционную практику создания маржи для учета вариаций компонентов, что может привести к более высоким затратам на компоненты и более длительным циклам проектирования.

    7-27. В семействе источников питания CUI NDM2Z используется автоматическая компенсация, которая позволяет динамически устанавливать оптимальную стабильность и переходную характеристику.

    Источники питания NDM2Z на 50 А обеспечивают КПД 91% при входном напряжении 12 В постоянного тока и выходном напряжении 1,0 В при нагрузке 50%. Все эти источники питания имеют входной диапазон от 4,5 до 14 В постоянного тока и программируемый выход от 0,6 до 5,0 В постоянного тока в версии 12 А и от 0,6 до 3,3 В постоянного тока в версиях 25 А и 50 А.

    Функции модуля

    включают активное разделение тока, последовательность напряжения, отслеживание напряжения, синхронизацию и распределение фазы, программируемый плавный пуск и останов, а также множество возможностей мониторинга.Простой и легкий в использовании графический интерфейс пользователя CUI помогает в этих проектах.

    ZL8101

    В NMD2Z используется синхронный понижающий контроллер Intersil / Zilker ZL8101, работающий в режиме напряжения, с широтно-импульсным модулятором постоянной частоты (PWM). В этом цифровом контроллере третьего поколения используется специальный оптимизированный конечный автомат для генерации точных импульсов ШИМ и собственный микроконтроллер, используемый для настройки, обслуживания и оптимизации (рис. 7-28). Для этого требуются внешние драйверы, силовые полевые МОП-транзисторы, конденсаторы и катушки индуктивности.Интегрированная подрегулировка позволяет работать от одного источника питания от 4,5 В до 14 В. Используя простые штыревые соединения или стандартные команды PMBus, вы можете настроить обширный набор функций управления питанием с помощью графического интерфейса Intersil PowerNavigator.

    7-28. Блок-схема Intersil ZL8101 IC показывает выходы PWM (PWMH и PWML), которые взаимодействуют с внешним драйвером, таким как ZL1505.

    Первоначально автоматическая компенсация ZL8101 измеряет характеристики силовой передачи и определяет требуемую компенсацию.ИС сохраняет значения компенсации и использует их для последующих входов. После включения ZL8101 готов к регулированию мощности и выполнению задач управления питанием без необходимости программирования. Расширенные параметры конфигурации и изменения конфигурации в реальном времени доступны через интерфейс I2C / SMBus. Встроенная энергонезависимая память (NVM) сохраняет данные конфигурации.

    Вы должны выбирать полевые МОП-транзисторы с внешним питанием в первую очередь для RDS (ON) и во вторую очередь для полного заряда затвора. Фактический выходной ток преобразователя мощности зависит от характеристик драйверов и выходных полевых МОП-транзисторов.

    Конфигурируемые функции защиты цепи непрерывно защищают ИС и нагрузку от повреждений из-за сбоев системы. ZL8101 непрерывно контролирует входное напряжение, выходное напряжение / ток, внутреннюю температуру и температуру внешнего термодиода. Вы также можете установить параметры мониторинга для определенных предупреждений о неисправности.

    Петля с нелинейным откликом (NLR) улучшает время отклика и снижает переходные отклонения выходного сигнала нагрузки. Чтобы оптимизировать эффективность преобразователя мощности, ZL8101 отслеживает его рабочие условия и постоянно регулирует время включения и выключения полевых МОП-транзисторов высокого и низкого напряжения.Алгоритмы адаптивной оптимизации производительности, такие как контроль мертвого времени, эмуляция диодов и адаптивная частота, обеспечивают большее повышение эффективности.

    Сигнал Power-Good (PG) указывает, что выходное напряжение находится в пределах указанного допуска от целевого уровня, и условия неисправности отсутствуют. По умолчанию вывод PG определяет, находится ли выходное напряжение в пределах -10% / + 15% от целевого напряжения. Вы можете изменить эти пределы и полярность через интерфейс I2C / SMBus.

    Внутренний контур фазовой автоподстройки частоты (ФАПЧ) служит синхронизатором для внутренних схем.Вы можете управлять ФАПЧ от внешнего источника синхронизации, подключенного к выводу SYNC. Вы можете установить частоту переключения от 200 кГц до 1,33 МГц.

    Графический интерфейс на базе Windows обеспечивает возможность полной настройки и мониторинга через интерфейс I2C / SMBus.

    NDM3Z-90

    CUI — это модуль на 90 А, который имеет несколько функций, обеспечивающих высокую эффективность преобразования мощности. Адаптивные алгоритмы и управление зарядом от цикла к циклу сокращают время отклика и уменьшают отклонение выходного сигнала в результате переходных процессов нагрузки.

    ZL8800

    NDM3Z использует Intersil ZL8800 для автоматической компенсации. Это двойной или двухфазный цифровой контроллер постоянного / постоянного тока. Каждый выход может работать независимо или использоваться вместе в двухфазной конфигурации для сильноточных приложений. ZL8800 поддерживает широкий диапазон выходных напряжений (от 0,54 В до 5,5 В), работая от входных напряжений от 4,5 до 14 В. На рис. 7-29 показана двухфазная конфигурация, в которой используются внешние модули питания DRMOS.

    7-29.Intersil ZL8800 сконфигурирован как двухфазный преобразователь

    Благодаря полностью цифровому управлению ChargeMode Control, ZL8800 будет реагировать на скачок нагрузки в течение одного цикла переключения. Этот уникальный метод модуляции без компенсации позволяет конструкциям соответствовать требованиям к переходным процессам с минимальной выходной емкостью, что позволяет сэкономить средства и место на плате.

    Фирменная однопроводная последовательная шина DDC (Digital-DC) компании

    Intersil позволяет ZL8800 обмениваться данными между другими ИС Intersil.Используя DDC, ZL8800 выполняет сложные функции, такие как балансировка фазных токов между ИС, упорядочивание и устранение неисправностей, устраняя необходимость в сложных системах управления источниками питания с многочисленными внешними дискретными компонентами.

    ZL8800 имеет пошаговую защиту от перегрузки по току на выходе. Входное и выходное напряжение, а также напряжение питания драйвера DrMOS / MOSFET защищены от повышенного и пониженного напряжения. Для контроля температуры доступны два внешних и один внутренний датчик температуры, один из которых используется для защиты от пониженной и повышенной температуры.Функция параметрического захвата моментальных снимков позволяет пользователям делать снимки рабочих данных и данных о неисправностях в нормальных условиях или в условиях сбоя.

    Интегрированные регуляторы

    с малым падением напряжения (LDO) позволяют ZL8800 работать от одного источника питания, устраняя необходимость в дополнительных линейных регуляторах. Выход LDO может использоваться для питания внешних драйверов или устройств DrMOS.

    Благодаря полной совместимости с PMBus, ZL8800 способен измерять и сообщать входное напряжение, входной ток, выходное напряжение, выходной ток, а также внутреннюю температуру устройства, внешние температуры и вход вспомогательного напряжения.

    Этот блок питания включает в себя широкий спектр настраиваемых функций управления питанием, которые легко реализовать с минимальным количеством внешних компонентов. Кроме того, источник питания имеет функции защиты, которые постоянно защищают нагрузку от повреждений из-за неожиданных сбоев системы.

    Стандартная конфигурация источника питания подходит для широкого диапазона операций с точки зрения входного напряжения, выходного напряжения и нагрузки. Конфигурация хранится во внутренней энергонезависимой памяти (NVM).Все функции управления питанием можно перенастроить с помощью интерфейса PMBus.

    Автоматическая компенсация Powervation

    Компания

    Bellnix Co. Ltd. (Япония) использует цифровой контроллер ROHM PV3012 Powervation в своем низкопрофильном модуле постоянного / постоянного тока на 60 А. Цифровой модуль питания BDP12-0.6S60R0 представляет собой неизолированный понижающий преобразователь, совместимый с PMBus, который удовлетворяет потребности в конструкциях с малым форм-фактором, обеспечивая при этом высокую надежность и высокую производительность. ROHM PV3012 — это цифровой двухфазный контроллер (рис.7-30).

    7-30. ИС PV3012 от Powervation — это ИС с автоматической компенсацией в реальном времени с одним выходом, двух- или однофазным цифровым синхронным понижающим контроллером для приложений POL.

    Используется BDP на 60 А, и параллельная работа модуля BDP поддерживается через шину разделения тока DSS компании ROHM. Этот совместимый с PMBus модуль обеспечивает точные измерения и телеметрические отчеты, полную линейку программируемых функций защиты источника питания, хорошее энергопотребление и дополнительную функцию отслеживания — все в компактном 32.Дизайн корпуса SMD, соответствующий ROHS, 8 мм × 23,0 мм.

    Цифровой контроллер

    ROHM PV3012 Powervation также используется в сильноточных цифровых модулях POL серии iJB от TDK-Lambda. Продукты серии iJB поддерживают работу при низком напряжении и сильном токе, обеспечивая точность заданного значения ± 0,5% по линии, нагрузке и диапазону температур. В то время как функциональность модуля PMBus обеспечивает телеметрию напряжения, тока и температуры в реальном времени и обеспечивает полную программируемость преобразователя постоянного / постоянного тока, в продуктах серии iJB также используются контакты для настройки функций, что позволяет использовать их в приложениях, не поддерживающих PMBus. .

    Используя интеллектуальную технологию автонастройки Powervation, Auto-Control, модули iJB POL обеспечивают лучшую динамическую производительность и стабильность системы для приложения. Auto-Control — это запатентованная технология адаптивной компенсации, которая оптимизирует динамические характеристики и стабильность системы в режиме реального времени, не требуя внесения шума или недостатков периодических методов. Это ключевое преимущество для модулей и других конструкций, которые управляют неизвестными или переменными нагрузками на выходе, и решает проблемы, связанные с дрейфом параметров нагрузки, возникающим в зависимости от температуры и времени.

    Еще одним пользователем цифрового контроллера PV3012 является модуль DC / DC OKLF-T / 25-W12N-C от Murata Power Solutions. Это неизолированный преобразователь постоянного тока в постоянный, вырабатывающий максимум 25 А при выходном напряжении 1,2 В при работе до 70 ° C с потоком воздуха 200 LFM. Регулируемые выходы обеспечивают точное регулирование от 0,69 В до 3,63 В в широком диапазоне входных сигналов (от 6,5 В до 14 В).

    Модуль OKLF 25 A компании

    Murata Power Solutions обеспечивает сверхбыструю реакцию на переходные процессы при нагрузке, исключительные характеристики снижения номинальных характеристик и типичный КПД> 90% в форм-факторе с высокой плотностью мощности.Модуль представляет собой полноценный автономный источник питания; Благодаря использованию ИС цифрового управления PV3012 он обеспечивает полный набор функций защиты и прецизионную точность уставки.

    Этот преобразователь POL обеспечивает прецизионную точность уставки ± 0,5% по линии, нагрузке и диапазону температур — намного лучше, чем аналоговые варианты. Кроме того, это предложение повышает ценность за счет использования компактных приподнятых катушек индуктивности и функции автоматического управления Powervation.

    PV3204

    Одним из новых продуктов Powervation от ROHM, обеспечивающих автокомпенсацию, является PV3204, двухфазный цифровой синхронный понижающий контроллер с адаптивной компенсацией контура для приложений точки нагрузки (POL) (рис.7-31). Выход может подавать от 0,6 В до 5,5 В и может быть настроен и управляться через PMBus или посредством программирования, хранящегося в энергонезависимой памяти (NVM). Помимо интерфейса SMBus, PV3204 предоставляет 3-битный параллельный интерфейс VID с отображением от 0,85 В до 1,0 В с шагом 25 мВ и 1,05 В.

    7-31. Powervation PV3204 — это двухфазный цифровой синхронный понижающий контроллер с адаптивной автоматической компенсацией контура для приложений точки нагрузки (POL).

    PV3204

    PV3204 использует фирменный адаптивный цифровой контур управления Powervation, Auto-Control, технологию адаптивной компенсации контура в реальном времени для переключаемых преобразователей мощности, которая автономно уравновешивает компромисс между динамическими характеристиками и стабильностью системы.Auto-Control избавляет от сложных вычислений и настройки оптимальной стабильности, используемой с традиционными методами компенсации. Функция Auto-Control регулирует коэффициенты P, I и D в каждом цикле переключения для непрерывного достижения оптимальной стабильности в широком диапазоне помех. Автоматическое управление встроено в архитектуру управления цифровых устройств Powervation и не зависит от шума, вносимого периодическими калибровками. Непрерывный характер автоматического управления позволяет ему управлять изменениями в системе, которые происходят в режиме реального времени или медленно с течением времени при использовании источника питания.Эта самокомпенсация происходит от цикла к циклу, поэтому Auto-Control может непрерывно регулироваться в соответствии с изменениями температуры, которые происходят во время использования источника питания, и учитывает другие факторы, такие как старение и дрейф.

    Этот контроллер может использоваться в одно- или двухфазном режиме. При использовании в двухфазном режиме фазы могут добавляться или удаляться по мере изменения нагрузки, так что эффективность максимальна во всем диапазоне нагрузки. Кроме того, выходы фаз чередуются, так что эффективная частота переключения на выходе удваивается.

    Цифровые функции этого контроллера преобразователя мощности PMBus позволяют осуществлять системную телеметрию (удаленное измерение и составление отчетов) о токе, напряжении и температуре.

    Кроме того, чтобы максимизировать производительность и надежность системы, ИС обеспечивает температурную коррекцию / компенсацию нескольких параметров.

    Назад к основам: выбор идеального регулятора

    Регулятор напряжения выполняет две функции: изменение входного напряжения на другой уровень на выходе и регулирование (поддержание постоянного выходного напряжения, несмотря на изменение условий нагрузки).Регуляторы постоянного / постоянного тока являются ключевым компонентом любой энергосистемы, поэтому выбор правильного регулятора имеет решающее значение для разработки оптимального решения.

    Хотя инженеры понимают функции регулятора, менее опытным инженерам часто бывает трудно выбрать лучший регулятор для своего применения. В этом сообщении в блоге определены критерии, которые может использовать любой, кто не является опытным разработчиком электроэнергии, чтобы выбрать идеальный регулятор.

    Понижающий, повышающий или понижающий-повышающий регулятор?

    Есть три основных категории:

    • Buck — регуляторы с выходным напряжением ниже, чем на входе
    • Boost — регуляторы с выходным напряжением выше, чем на входе
    • Понижающий-повышающий — регуляторы, которые могут обеспечивать выходное напряжение, которое выше, ниже или такое же, как входное

    В большинстве приложений напряжение понижается от шины к нагрузке, поэтому обычно используются понижающие стабилизаторы.Другие приложения требуют увеличения напряжения с помощью повышающего регулятора: например, если мощность постоянного тока должна передаваться по длинному кабелю, потери I 2 R можно уменьшить, повысив напряжение перед передачей, а затем снова понизив его на Загрузка. В аккумуляторных батареях пониженно-повышающие регуляторы часто используются для обеспечения постоянного стабильного напряжения, преодолевая изменение выходного напряжения, которое проявляется в процессе заряда и разряда батареи.

    Номинальные входы и выходы

    Многие системы предъявляют четкие требования к входному и выходному напряжению — например, вам может потребоваться понизить шину 12 В до 3.3В. Для многих приложений в наличии будет подходящий регулятор, отвечающий требованиям к напряжению.

    Очевидно, что регулятор должен обеспечивать мощность, требуемую нагрузкой. Мощность регулятора обычно определяется максимальным выходным током.

    Диапазоны ввода и вывода

    Хотя приложениям часто требуется определенное напряжение, для других требуется регулируемый выход. Это может быть связано с изменением нагрузки — например, в части испытательного оборудования — или может быть, что нагрузка питается по длинному кабелю, и напряжение необходимо подрезать немного выше, чем требуется нагрузке, чтобы компенсировать падение напряжения на кабеле.

    Диапазоны входного напряжения особенно важны для таких приложений, как системы с батарейным питанием. В автомобильном применении аккумулятор с номинальным напряжением 12 В может выдавать 12,5 В при полной зарядке и падать до 10 В или меньше по мере разряда аккумулятора. Регулятор с узким входным диапазоном может больше не работать при падении напряжения батареи, а это означает, что полная емкость батареи не может быть использована. Поэтому обеспечение достаточно широкого диапазона входных сигналов является важным критерием при выборе регулятора.

    Выбор регуляторов с широким входом также имеет еще одно преимущество: они также могут снизить затраты на складские запасы, поскольку один регулятор может использоваться в различных ситуациях.

    КПД

    КПД — один из критериев для большинства проектируемых сегодня энергосистем. Выбор регулятора с высокими потерями мощности может сделать почти невозможным достижение целей эффективности. Также важно помнить, что эффективность регулятора непостоянна: обычно эффективность регулятора резко падает по мере увеличения коэффициента понижения или повышения и уменьшения тока, потребляемого на выходе.

    Современные регуляторы, например, на основе топологии переключения при нулевом напряжении (ZVS) от Vicor, по своей сути обладают высокой эффективностью и более стабильны во всем рабочем диапазоне.

    Шум

    Импульсные регуляторы обеспечивают высокий КПД, но схема переключения генерирует шум. В некоторых системах, особенно с чувствительными аналоговыми компонентами, шум источника питания может ограничивать общую производительность. Излишний электронный шум также может затруднить получение сертификата ЭМС.

    Как и в случае с эффективностью, топология регулятора является ключом к достижению низкого уровня шума: гораздо проще использовать компонент, который не генерирует шум, чем пытаться отфильтровать этот шум. ZVS, например, представляет собой топологию с мягким переключением, которая по своей сути является малошумной, что упрощает разработку высокопроизводительных систем.

    Формат и упаковка

    Сегодня электронные системы часто ограничены пространством. Даже если цель не состоит в том, чтобы сделать систему как можно меньше, например, продукты, размещенные в стандартизированных 19-дюймовых стойках, уменьшение размера системы питания позволяет использовать сэкономленное пространство для добавления дополнительных функций.

    При любом расчете размера следует также учитывать периферийные компоненты, необходимые для регулятора. За счет более высокого уровня интеграции и высокой частоты переключения размер и количество периферийных компонентов могут быть уменьшены, что потенциально может обеспечить большую экономию места, чем простой выбор регулятора в меньшем корпусе.

    Доступные типы пакетов не только определяют необходимое пространство: часто пакеты меньшего размера могут быть расположены ближе к нагрузке, что обеспечивает более точное регулирование нагрузки и более быструю реакцию на переходные процессы.

    Помимо размера, важным фактором может быть вес, особенно в тех случаях, когда оборудование может перемещаться. Примеры таких систем варьируются от переносного портативного оборудования до автомобильной электроники и дронов.

    Рабочая температура и тепловые характеристики

    Регуляторы

    не могут быть эффективными на 100%, поэтому они всегда будут рассеивать тепло, которое необходимо отводить. Если требуется радиатор, это может значительно увеличить как размер, так и вес системы питания.Неспособность рассеять тепло также может повлиять на производительность системы и другими способами: например, в системах освещения или отображения, если регулятор вызывает повышение температуры светодиодов, это снизит интенсивность и изменит длину волны и, следовательно, оттенок светодиода. генерируемый свет.

    Регулятор должен надежно работать во всем диапазоне температур, которым он может подвергаться. В целом, более эффективные регуляторы смогут работать при более высоких температурах, поскольку им не нужно рассеивать так много тепла, но продукты от разных поставщиков могут сильно различаться, поэтому важно проверять технические характеристики.

    Дополнительные возможности

    В дополнение к критериям, описанным выше, вашему приложению может потребоваться определенная функциональность, которая может ограничить выбор. Примеры этих дополнительных функций:

    • Возможность параллельного подключения: если регуляторы могут быть подключены параллельно, то могут быть получены более высокие выходные токи. Не все регуляторы могут иметь параллельные выходы, поскольку во многих топологиях это вызовет нестабильность.
    • Постоянный выходной ток: в аккумуляторных приложениях требуется постоянное напряжение для питания нагрузки, но постоянный ток требуется для зарядки.Некоторые регуляторы предлагают выходы, которые можно настроить как на постоянный ток, так и на постоянное напряжение, что делает их идеальными для этих систем.
    • Плавный запуск: возможность медленного увеличения напряжения помогает обеспечить стабильность системы питания, даже когда к выходу регулятора подключена большая емкость.
    • Защита от перенапряжения: регуляторы, которые имеют защиту, гарантирующую, что они не могут выдавать напряжение, превышающее заданное выходное напряжение, гарантируют, что нагрузка не будет повреждена даже во время неисправности.Другая схема защиты может отключить регулятор, если входное напряжение выходит за пределы допустимого диапазона.
    • Переходная реакция: некоторые нагрузки быстро изменяют требуемый им ток. Быстрый переходный отклик гарантирует, что регулятор может выдавать необходимую мощность без больших выходных конденсаторов для хранения энергии.

    Заключение

    Хотя регуляторы концептуально являются простыми компонентами — они принимают напряжение на входе и подают другое напряжение на выходе — существует множество факторов, которые определяют лучший регулятор для вашего приложения.Тщательное рассмотрение критериев, изложенных выше, поможет выбрать идеальный регулятор для вашей системы.

    PMP15008 Миниатюрный низкопрофильный стабилизатор напряжения в точке нагрузки 10 А, эталонная конструкция

    См. Важное примечание и Заявление об ограничении ответственности, касающиеся эталонных проектов и других ресурсов TI.

    Основной документ

    Описание

    Эталонная конструкция PMP15008 представляет собой небольшой высокочастотный стабилизатор напряжения в точке нагрузки.Уникальная топология преобразователя обеспечивает высокий КПД при работе на частоте 2 МГц на фазу. Эта конструкция предназначена для таких приложений, как питание процессора или памяти с входным напряжением от 8 В до 14 В и от 0,5 В до 2 В с выходным током до 10 А.

    Характеристики
    • Компактное решение: 13,1 x 10,3 мм
    • Низкий профиль: высота 1,25 мм (макс. 1,45 мм)
    • Пиковая эффективность более 90%
    • Высокая полоса пропускания (частота кроссовера более 300 кГц)
    • Превосходное регулирование нагрузки: ± 0.1%

    См. Важное примечание и отказ от ответственности, относящиеся к эталонным проектам и другим ресурсам TI.

    Схема / блок-схема

    Быстро понять общую функциональность системы.

    Скачать схему

    Руководство по проектированию

    Получайте результаты быстрее благодаря проверенным данным испытаний и моделирования.

    Скачать руководство по дизайну

    Устройства TI (1)

    Закажите образцы, получите инструменты и найдите дополнительную информацию о продуктах TI в этом справочном дизайне.

    Символы CAD / CAE

    Texas Instruments и Accelerated Designs, Inc. сотрудничали друг с другом, чтобы предоставить клиентам TI схематические символы и посадочные места на печатных платах для продуктов TI.

    Шаг 1 : Загрузите и установите бесплатную загрузку.

    Шаг 2 : Загрузите символ и посадочное место из таблицы файла CAD.bxl.

    Texas Instruments и Accelerated Designs, Inc. сотрудничали друг с другом, чтобы предоставить клиентам TI схематические символы и посадочные места на печатных платах для продуктов TI.

    Шаг 1 : Загрузите и установите бесплатную загрузку.

    Шаг 2 : Загрузите символ и посадочное место из таблицы файла CAD.bxl.

    Шаг 3 : Откройте файл .bxl с помощью программного обеспечения Ultra Librarian.

    Вы всегда можете получить доступ к полной базе данных символов CAD / CAE по адресу https://webench.ti.com/cad/

    Посадочные места печатных плат и условные обозначения доступны для загрузки в формате, не зависящем от производителя, который затем может быть экспортирован в ведущие инструменты проектирования EDA CAD / CAE с помощью Ultra Librarian Reader. Читатель доступен в виде (скачать бесплатно).

    UL Reader — это подмножество набора инструментов Ultra Librarian, которое может создавать, импортировать и экспортировать компоненты и их атрибуты практически в любом формате EDA CAD / CAE.

    Техническая документация

    См. Важное примечание и Заявление об ограничении ответственности, относящиеся к эталонным проектам и другим ресурсам TI.

    Руководство пользователя (1)
    Файлы дизайна (6)

    Поддержка и обучение

    Выполните поиск в нашей обширной онлайн-базе знаний, где доступны миллионы технических вопросов и ответов круглосуточно и без выходных.

    Найдите ответы от экспертов TI

    Контент предоставляется «КАК ЕСТЬ» соответствующими участниками TI и Сообществом и не является спецификациями TI.
    См. Условия использования.

    Если у вас есть вопросы о качестве, упаковке или заказе продукции TI, посетите нашу страницу поддержки.

    Линейные и импульсные регуляторы напряжения

    Регуляторы напряжения являются неотъемлемой частью большинства электронных устройств.Функция регулятора напряжения заключается в обеспечении стабильного напряжения на выходе регулятора, в то время как входное напряжение может изменяться.

    Товар Рейтинг: 7 из 10

    Регуляторы напряжения

    в целом можно разделить на линейные и переключаемые.

    Линейные регуляторы

    Линейные регуляторы можно рассматривать как устройства с переменным сопротивлением, в которых внутреннее сопротивление изменяется для поддержания постоянного выходного напряжения.В действительности переменное сопротивление обеспечивается с помощью транзистора, управляемого контуром обратной связи усилителя.

    Линейные регуляторы обычно состоят как минимум из трех контактов — входного входа, выходного контакта и контакта заземления. Внешние конденсаторы размещаются на входных и выходных клеммах, чтобы обеспечить фильтрацию и улучшить переходную реакцию на внезапные изменения нагрузки. Выходной конденсатор также необходим для стабильности цепи обратной связи регулятора напряжения.

    Количество тока, протекающего через регулятор, и количество мощности, рассеиваемой в устройстве, будут влиять на выбор корпуса устройства и требования к теплоотводу.Линейные регуляторы намного менее эффективны, чем импульсные регуляторы, и поэтому расходуют больше энергии, которая рассеивается в виде тепла.

    Если устройство будет рассеивать более 100 мВт, рекомендуется провести более тщательный термический анализ, учитывающий максимальную рабочую температуру и тепловое сопротивление корпуса ИС (известного как Theta-JA). Если регулятор устанавливает тета-JA на уровне 50 ° C / Вт, это означает, что сама температура IC (называемая температурой перехода) будет повышаться на 50 ° C на каждый ватт рассеиваемой мощности.

    Большинство ИС рассчитаны на температуру перехода до 125 ° C. Так, например, если регулятор с тета-JA 50 ° C / Вт рассеивает 1 Вт, то максимальная температура окружающей среды, при которой он может использоваться, будет 125 ° C — 50 ° C = 75 ° C.

    Линейным регуляторам требуется входное напряжение выше выходного. Минимальная разница уровней напряжения между входом и выходом называется падением напряжения. Для нормального линейного регулятора напряжения падение напряжения составляет около 2 вольт.

    Регуляторы с малым падением напряжения (LDO) могут регулировать напряжение до менее 100 мВ.Однако их способность подавлять шум и пульсации на входном источнике питания будет значительно снижена ниже 500 мВ.

    Для большинства приложений линейный стабилизатор или, более конкретно, стабилизатор LDO имеет больше смысла, если входное напряжение не более чем на пару вольт превышает выходное напряжение. В противном случае регулятор будет тратить слишком много энергии, и более эффективный импульсный регулятор будет лучшим вариантом.

    Линейные регуляторы имеют три основных преимущества. Они просты, дешевы и обеспечивают исключительно «чистые» выходы напряжения.

    Импульсные регуляторы

    Импульсные регуляторы преобразуют одно напряжение в другое, временно сохраняя энергию, а затем высвобождая эту накопленную энергию на выход с другим напряжением.

    Термины «преобразователь постоянного тока в постоянный», импульсный источник питания (SMPS), импульсный стабилизатор и импульсный преобразователь относятся к одному и тому же. Они работают, управляя твердотельным устройством, например транзистором или диодом, которое действует как переключатель.

    Переключатель прерывает прохождение тока к компоненту накопителя энергии, например конденсатору или катушке индуктивности, чтобы преобразовать одно напряжение в другое.

    Существует множество типов топологий импульсных регуляторов, включая три наиболее распространенных:

    Понижающие (понижающие) регуляторы переключения

    Понижающий преобразователь может понижать более высокое напряжение на входе до более низкого напряжения на выходе. Это похоже на линейный регулятор, за исключением того, что понижающий регулятор потребляет гораздо меньше энергии. Поэтому, если входное напряжение намного выше желаемого выходного напряжения, понижающий стабилизатор обычно предпочтительнее линейного регулятора.

    Регуляторы переключения Boost (Step-Up)

    Повышающий преобразователь способен создавать более высокое напряжение на выходе, чем на входе. Например, повышающий преобразователь можно использовать для генерации 5 В или 12 В постоянного тока от одной литий-ионной батареи 3,7 В постоянного тока.

    Регуляторы переключения понижающего / повышающего (понижающего / повышающего) уровня

    Понижающий / повышающий преобразователь, как вы могли догадаться, способен выдавать фиксированное выходное напряжение из входного напряжения, которое может изменяться выше и ниже выходного напряжения.Этот тип регулятора напряжения очень полезен в оборудовании с батарейным питанием, где входное напряжение со временем уменьшается.

    Самая простая топология — это просто схема понижающего преобразователя, приведенная выше, за которой следует схема повышающего преобразователя. Два индуктора соединены последовательно, поэтому их можно объединить в один индуктор.

    В этом уроке я проектирую печатную плату, используя простой линейный регулятор, а в этом более глубоком курсе я проектирую индивидуальную плату, используя более сложный импульсный стабилизатор.

    Сводка общих спецификаций регуляторов напряжения

    Независимо от того, является ли регулятор напряжения линейным или импульсным, разработчикам необходимо базовое понимание параметров, характеризующих рабочие характеристики регулятора.

    Выходное напряжение: Выходное напряжение может быть фиксированным или регулируемым. Если фиксировано, напряжение устанавливается внутри устройства, и вы приобретаете конкретный номер детали для требуемого выходного напряжения.

    Если регулятор регулируемого типа, напряжение обычно устанавливается делителем напряжения, состоящим из двух резисторов. Это дает некоторую гибкость, но за счет дополнительных компонентов.

    Входное напряжение: Необходимо строго соблюдать указанные минимальное и максимальное входное напряжение. Они просто не будут работать при напряжении ниже минимального и выйдут из строя, если они будут работать при напряжении выше максимального.

    Токовый выход: Максимальный ток, который может обеспечить регулятор напряжения, ограничен и обычно определяется пропускной способностью внутреннего силового транзистора.Все решения для регуляторов IC включают в себя встроенную схему ограничения тока для предотвращения повреждений.

    Выходная пульсация или коэффициент подавления источника питания (PSRR): Выходная пульсация относится к небольшим колебаниям выходного напряжения. Количество пульсаций выходного напряжения очень важно учитывать, поскольку многие типы цепей будут чувствительны к любому шуму на их входном питании.

    Линейные регуляторы подавляют входную пульсацию без добавления дополнительной пульсации. Их способность подавлять пульсации определяется коэффициентом отклонения источника питания (PSRR).Чем выше PSRR, тем лучше линейный регулятор подавляет любые пульсации входного напряжения.

    С другой стороны, импульсные регуляторы

    создают пульсации на выходе по своей природе переключения. Количество пульсаций от переключающего преобразователя можно уменьшить за счет фильтрации и тщательного выбора компонентов.

    Обычный метод проектирования заключается в использовании импульсного регулятора для понижения напряжения питания с минимальным рассеянием мощности, а затем линейного регулятора для устранения любых пульсаций.

    Многие линейные регуляторы с низким уровнем шума и высоким значением PSRR имеют дополнительный вывод, обычно называемый выводом NR или выводом шумоподавления. Размещение конденсатора около 10nF на этом контакт с землей помогает отфильтровать шум и пульсации на внутреннем опорное напряжение и, следовательно, выходное напряжение.

    Шум: Многие электронные компоненты, такие как резисторы и транзисторы, также производят фундаментальный физический шум, который обычно путают с пульсацией. Шум будет отображаться как случайные колебания выходного напряжения по сравнению с пульсациями, которые будут отображаться в виде небольшой периодической формы волны.Хотя это и не связано с пульсацией, те же методы, которые уменьшают пульсации на выходе, обычно также уменьшают шум — в основном, за счет использования шумоподавляющего конденсатора.

    Регулировка нагрузки: Регулировка нагрузки относится к способности регулятора поддерживать постоянное выходное напряжение при изменении тока нагрузки. Эта спецификация часто приводится в технических характеристиках устройства в виде графика зависимости выходного напряжения от тока нагрузки.

    ПРИМЕЧАНИЕ:
    Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки вашего нового электронного оборудования .

    Load Transient: Это мера того, как выходное напряжение реагирует на внезапное скачкообразное изменение тока нагрузки. Обычно имеет место небольшой выброс или недостаточный выброс выходного напряжения, поскольку схема регулятора пытается восстановить и обеспечить стабильное выходное напряжение.

    Линейное регулирование: Изменения входного напряжения регулятора могут вызвать изменения выходного напряжения, и линейное регулирование является мерой этого изменения.

    Line Transient: Это мера того, как выходное напряжение реагирует на внезапное скачкообразное изменение входного напряжения.Как и в случае переходного процесса нагрузки, будет небольшое превышение или недостижение выходного напряжения, поскольку контур обратной связи регулятора реагирует на внезапное изменение. Регуляторы с высокими характеристиками PSRR (т. Е. С низким уровнем пульсаций на выходе) обычно обладают лучшими характеристиками переходных процессов в линии.

    Падение напряжения: Падение напряжения для классических линейных регуляторов, таких как серии LM317 или LM78xx, составляет около 2 вольт. Это означает, что для работы регулятора входное напряжение должно быть как минимум на 2 вольта выше выходного напряжения.

    Регуляторы

    с малым падением напряжения (LDO) могут работать с гораздо меньшей разницей входного и выходного напряжения. Например, семейство стабилизаторов с малым падением напряжения TPS732 имеет диапазон входного напряжения от 1,7 до 5,5 вольт и отпускное напряжение 40 мВ при 250 мА.

    КПД: КПД — это мера того, сколько энергии теряет регулятор. Как упоминалось ранее, линейный регулятор потребляет намного больше энергии, чем импульсный регулятор. Это означает, что линейный регулятор имеет гораздо более низкий КПД.Эффективность можно рассчитать, разделив выходную мощность на входную.

    Таким образом, если выходная мощность такая же, как и входная, тогда КПД равен 100%, и регулятор не тратит впустую энергию. Это идеальный, но недостижимый сценарий. Большинство импульсных регуляторов имеют КПД 80-90%.

    КПД линейного регулятора зависит от отношения входного напряжения к выходному. Это связано с тем, что для линейного регулятора входной ток всегда практически идентичен выходному току.Поскольку мощность равна напряжению, умноженному на ток, токи в уравнении эффективности компенсируются, оставляя только напряжения. Это означает, что чем больше разница между входным и выходным напряжением, тем хуже эффективность линейного регулятора.

    Так, например, для линейного регулятора с входным напряжением 5 В постоянного тока и выходным напряжением 3,3 В постоянного тока эффективность составляет:

    КПД = 3,3 В постоянного тока / 5 В постоянного тока = 66%

    Но если входное напряжение увеличивается до 12 В постоянного тока, эффективность падает до

    КПД = 3.3 В постоянного тока / 12 В постоянного тока = 27,5%

    , что означает, что 72,5% мощности теряется линейным регулятором!

    Основным преимуществом стабилизатора с малым падением напряжения является то, что он обеспечивает выходное напряжение, очень близкое к входному, что означает, что эффективность регулятора намного выше. Например, при генерации выходного напряжения 3,3 В постоянного тока от литий-ионной батареи 3,7 В постоянного тока требуется LDO с падением напряжения менее 400 мВ. При этих напряжениях КПД составляет 3,3 В постоянного тока / 3,7 В постоянного тока = 89%, что сопоставимо с высокоэффективным понижающим стабилизатором.

    В отличие от линейного регулятора, идеальный импульсный регулятор будет иметь КПД 100%, что означает, что входная мощность равна выходной мощности. Это означает, что входной ток никогда не будет таким же, как выходной. Фактически, входной ток всегда будет меньше, чем выходной ток для понижающего регулятора, и всегда будет выше, чем выходной ток для повышающего регулятора.

    Выходной конденсатор: Размер выходного конденсатора имеет решающее значение как для линейных, так и для импульсных регуляторов, поэтому обязательно следуйте рекомендациям в техническом описании.В большинстве случаев керамический конденсатор (с тепловым рейтингом X7R или X5R) является лучшим выбором. Керамические конденсаторы имеют очень низкое паразитное сопротивление (называемое эквивалентным последовательным сопротивлением или ESR), которое обычно улучшает переходную характеристику регулятора. Однако будьте осторожны, потому что некоторые регуляторы требуют использования танталовых конденсаторов с более высоким ESR для стабилизации контура управления с обратной связью.

    Электромагнитные помехи (EMI)

    Одной из проблем при проектировании импульсных источников питания является возможность электромагнитных помех (EMI).

    Переключающее действие активного устройства, которое может быть на частотах от 100 килогерц до нескольких мегагерц, может генерировать широкий спектр излучения. Эти излучения могут проводиться и передаваться на близлежащее оборудование, вызывая вредные помехи или даже собственные помехи.

    Имейте в виду, что компоновка печатной платы импульсного стабилизатора очень важна, гораздо больше, чем для линейного регулятора. Поэтому обязательно следуйте рекомендациям по компоновке в таблице данных.Если в техническом описании выбранного вами импульсного регулятора нет рекомендаций по компоновке, я настоятельно рекомендую выбрать другой регулятор.

    Заключение

    Когда энергоэффективность не является проблемой или когда входное напряжение лишь немного выше выходного напряжения, лучшим выбором обычно является линейный стабилизатор. Линейные регуляторы обычно дешевле, менее сложны и требуют меньшего количества компонентов. Если требуется действительно чистое выходное напряжение без пульсаций, то линейный стабилизатор также является лучшим выбором.

    С другой стороны, если ключевым моментом является энергоэффективность или входное напряжение намного выше, чем желаемое выходное напряжение, то понижающий импульсный преобразователь является лучшим выбором. Если требуется выходное напряжение выше входного, выбор прост — только повышающий стабилизатор может выполнить этот трюк.

    Как и во всех аспектах проектирования, между различными решениями всегда приходится идти на компромисс. Во многих случаях лучшим решением является импульсный регулятор, за которым следует линейный регулятор.Таким образом, вы получаете лучшее из обоих миров: эффективность и сверхчистое выходное напряжение.

    Наконец, не забудьте загрузить бесплатно PDF : Окончательное руководство по разработке и продаже нового электронного оборудования . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.

    Другой контент, который может вам понравиться:

    Шунтирующий регулятор напряжения и источник питания

    »Примечания по электронике

    Шунтирующие регуляторы напряжения используются во многих областях — они не самые эффективные регуляторы напряжения, но часто очень удобны.


    Схемы линейного источника питания Праймер и руководство Включает:
    Линейный источник питания
    Шунтирующий регулятор
    Регулятор серии
    Ограничитель тока
    Регуляторы серий 7805, 7812 и 78 **

    См. Также:
    Обзор электроники блока питания
    Импульсный источник питания
    Защита от перенапряжения
    Характеристики блока питания
    Цифровая мощность
    Шина управления питанием: PMbus
    Бесперебойный источник питания


    Шунтирующий регулятор или шунтирующий регулятор напряжения — это форма регулятора напряжения, в которой регулирующий элемент шунтирует ток на землю.

    Шунтирующий регулятор работает, поддерживая постоянное напряжение на своих выводах, и он принимает избыточный ток для поддержания напряжения на нагрузке.

    Одним из наиболее распространенных примеров шунтирующего регулятора является простая схема стабилитрона, в которой стабилитрон действует как шунтирующий элемент.

    Как таковой, шунтирующий регулятор напряжения является важным элементом в технологии линейных источников питания.

    Шунтирующий регулятор напряжения, основы

    Принцип работы шунтирующего регулятора напряжения можно увидеть на схеме.По существу, нагрузка работает с резистором последовательно с источником напряжения и шунтирующим регулятором, а затем параллельно с нагрузкой.

    Чтобы поддерживать постоянное напряжение на нагрузке, через последовательный резистор необходимо пропускать ток, чтобы поддерживать требуемое напряжение на нагрузке. Нагрузка потребляет часть, а оставшийся ток потребляется шунтирующим регулятором напряжения.

    Схема разработана таким образом, что при максимальном токе нагрузки шунтирующий регулятор практически не потребляет ток, а при минимальном токе нагрузки шунтирующий регулятор напряжения пропускает полный ток.

    В результате можно увидеть, что шунтирующие регуляторы неэффективны, потому что максимальный ток потребляется от источника независимо от тока нагрузки, то есть даже при отсутствии тока нагрузки.

    Шунтирующий стабилизатор стабилитрона

    Одной из наиболее распространенных и простых форм шунтирующего стабилизатора является простая схема стабилизатора на стабилитроне, показанная ниже. Его работа очень проста. При превышении своего небольшого минимального тока стабилитрон поддерживает почти постоянное напряжение на своих выводах.

    В этой схеме последовательный резистор понижает напряжение от источника к стабилитрону и нагрузке. Поскольку стабилитрон сохраняет свое напряжение, любые изменения тока нагрузки не влияют на напряжение на стабилитроне.

    Он принимает изменения тока, необходимые для обеспечения правильного падения на последовательном резисторе. Таким образом, он шунтирует ток, достаточный для поддержания напряжения на его выводах и, следовательно, на нагрузке.

    Схема шунтирующего стабилизатора на стабилитроне

    В этой схеме шунтирующего регулятора напряжения стабилитрон должен обеспечивать рассеивание мощности от максимального значения тока, с которым он может работать.Скорее всего, это будет немного больше, чем максимальный ток, подаваемый на нагрузку, поскольку стабилитрон должен будет пропускать весь ток, когда ток нагрузки равен нулю.

    Таким образом, общий максимальный ток, который будет принят диод ток нагрузки плюс резерв на ток для поддержания опорного напряжения, когда нагрузка принимает его максимальный ток.

    Следует также отметить, что для схемы шунтирующего регулятора последовательное сопротивление складывается из номинала последовательного резистора плюс любое сопротивление источника.В большинстве случаев значение последовательного резистора будет преобладать, и сопротивление источника можно игнорировать, но это не всегда так.

    Шунтирующий регулятор с обратной связью

    Базовый шунтирующий регулятор напряжения, указанный выше, не имеет обратной связи, т.е. работает в режиме разомкнутого контура.

    Как и предполагалось, производительность этой формы шунтирующего регулятора достаточна для многих приложений, но гораздо более высокий уровень производительности может быть достигнут путем обеспечения обратной связи на основе выходного напряжения шунтирующего регулятора напряжения и подачи его обратно в систему, чтобы гарантировать, что требуемое выходное напряжение точно поддерживается.

    Related Posts

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *