Схема бестрансформаторного блока питания на 12 вольт для светодиодов: Бестрансформаторный блок питания | KAVMASTER

Содержание

Бестрансформаторный блок питания | KAVMASTER

Данная схема бестрансформаторного блока питания для светодиодов и светодиодной ленты достаточно проста и эффективна. Собрать её можно как навесным монтажом так и изготовить для неё печатную плату. Схема блока питания проверенна и полностью рабочая, а с помощью простой формулы для расчета гасящего конденсатора (балластового), можно легко подобрать необходимый ток для питания светодиодов.

Схема бестрансформаторного блока питания

В данной схеме, используется балластовый конденсатор C1, который гасит сетевое напряжение, после чего, ток поступает на диодный выпрямитель собранный на диодах VD1-VD4. Конденсатор C2 используется в качестве фильтра. Для быстрой разрядки конденсаторов C1 и С2, в схеме предусмотрены резисторы R2 и R3. Резистор R1 ограничивает ток при включении нагрузки.

[ads1]

Перед сборкой схемы, необходимо рассчитать конденсатор C1 так как именно от его номинала, зависит ток который блок питания способен обеспечить. Для расчета госящего конденсатора, используют простую формулу:

С = 3200∙I/Uc где:

  • I — ток нагрузки в A
  • Uc — напряжение сети
  • С — в микрофарадах

Для примера, светодиодная лента длиной 30 см. по параметрам, потребляет ток максимум 400 Ma, но конечно же не желательно питать её максимальным током, ограничим его до 150 Ma. Напряжение сети составляет 230 вольт, значит нам нужно 3200×0.15÷230=2.08 мкФ.

Теперь осталось подобрать номинал конденсатора близких к расчетному, это будет 2.2 мкФ не менее 400 Вольт! На этом все, осталось только применить его по назначению.

Внимание! Данная схема бестрансформаторного блока питания, не имеет гальванической развязки с питающей сетью. Поэтому будьте осторожны при монтаже данной схемы, соблюдайте технику безопасности! Все соединения элементов, должны быль изолированны или помещены в пластиковых корпус!

>> Светодиодные ленты и блоки питания <<

Как сделать блок питания, выбор схемы.

— Радиомастер инфо

Как известно, блок питания едва ли не самое распространенное электронное устройство. Простой блок питания сделать под силу даже начинающим. Но какую схему выбрать? Их столько, что многие теряются. В данной статье коротко рассказано об основных четырех типах схем и даны рекомендации их использования.

Перед тем, ка вы решили изготовить или подобрать готовый блок питания необходимо ответить на следующие вопросы:

  1. Какое напряжение должен выдавать блок питания? Это можно определить по характеристикам того устройства, которое будет подключаться к блоку питания.
  2. Какой ток должен обеспечивать блок питания? Это так же указано на устройстве, которое будет подключено. Если указана потребляемая мощность, то ток можно определить, разделив мощность на напряжение.

Учитывая сказанное, перейдем к рассмотрению основных типов схем.

  1. Бестрансформаторный блок питания с гасящим конденсатором.

Применяется при небольших токах, десятки миллиампер, редко сотни миллиампер. На практике используется для зарядки аккумуляторов небольших фонарей, питания светодиодов и т.д. Схема такого блока питания:

Величина емкости С1 при активной нагрузке определяется по формуле:

С1 – емкость, Ф

Iэфф – эффективное значение тока нагрузки, А

Uc — напряжение сети, В

Uн – напряжение на нагрузке, В

f -частота сети, 50 Гц

π — число 3,14

Если нагрузка не всегда подключена, или ее ток меняется, то схема должна содержать стабилитрон, который не позволит напряжению на конденсаторе С2 и нагрузке превысить допустимое значение:

Величина емкости С1 рассчитывается с учетом максимального тока стабилитрона и тока нагрузки.

В этой формуле: 3,5 — коэффициент, Iстmin — минимальный ток стабилитрона, Iнmax — ток нагрузки максимальный, Ucmin — напряжение сети минимальное, Uвых — напряжение выхода блока питания.

Тип емкости С1 К73-17 или подобные, рабочее напряжение не ниже 400 В. Можно С1 зашунтировать резистором несколько сотен кОм, для разряда конденсатора в выключенном состоянии.

Подробнее о расчетах таких схем рассказано в журнале Радио №5 за 1997 год (стр. 48-50).

Понятно, что при отключенной нагрузке блок питания будет потреблять мощность на работу стабилитрона, соизмеримую с мощностью нагрузки. КПД поэтому низкий. Это одна из причин использования таких схем только для малых токов. Работая с такими блоками питания важно помнить, что их детали имеют гальваническую связь с сетью и опасность поражения током велика.

  1. Второй тип схем, трансформаторные блоки питания. Вот основная схема.

По такой схеме можно делать блоки питания практически на любые напряжения и токи. На практике они представлены от маломощных, например, блок питания антенного усилителя собранный в сетевой вилке, до сварочника, вес которого десятки килограмм.

Приблизительный расчет трансформатора можно посмотреть здесь, более подробный и точный здесь.

Если токи нагрузки большие, емкость фильтра С1 нужна большая, тысячи микрофарад. В этом случае после диодного моста нужно ставить сопротивление, несколько Ом, чтобы в момент включения, когда С1 разряжен, бросок зарядного тока не вывел из строя диодный мост.

Если токи несколько ампер, то на диодах будет рассеиваться большая мощность. Для ее снижения применяют диоды Шоттки, на них падает меньшее напряжение (до 0,5 В), в отличие от кремниевых диодов на которых при больших токах может падать больше 1 В.

Чтобы еще снизить потери, применяют двухполупериодный выпрямитель с двумя диодами и двумя обмотками. Вот его схема:

В данном случае вторичных обмотки две. Они соединены последовательно. Мотаются проводом в половину тоньше, чем для схемы с четырьмя диодами. Так, что количество меди то же самое. Потери ниже вдвое, так как диода два. Допустим на каждом падает 1 В, при токе 10 А, это мощность потерь 10 Вт на каждом диоде. Если диода два вместо четырех, в тепло идет не 40 Вт, а 20. Польза очевидна.

Вышеприведенные схемы имеют существенный недостаток. Напряжение на выходе меняется при изменении напряжения сети. Как известно, допустимые изменения напряжения сети ±5%, от 220 В это составит (209-231) В, предельные изменения ±10%, (198-242) В. В процентном отношении так же будет изменяться и выходное напряжение.

Для устранения этого недостатка применяют стабилизаторы, от простейших на стабилитроне, иногда с транзистором, до стабилизаторов на микросхемах.

Например:

Здесь 7812 (LM7812 или аналог) распространенная микросхема стабилизатор на 12 В. Основные правила применения таких микросхем:

— напряжение на входе от 14 В до 35 В, (при минимальном напряжении сети не менее 14 В при максимальном не более 35 В)

— максимальный ток, при длительной работе 1,5 А

— мощность, рассеиваемая без теплоотвода 1,5 Вт, с теплоотводом до 15 Вт (в некоторых справочниках пишут даже 9 Вт).

Главная ошибка, которую допускают при применении таких микросхем заключается в том, что в основном смотрят на ток и забывают про мощность. Например, от микросхемы хотят запитать нагрузку на напряжение 12 В потребляющую ток 1 А. Кажется, что это можно сделать без проблем, ведь максимальный ток этой микросхемы 1,5 А.

Но, допустим, в сети максимальное напряжение 242 В и на входе микросхемы 35 В. Эта микросхема компенсационного типа, т.е. все лишнее напряжение 35 – 12 = 23 В упадет на микросхеме. При этом мощность, которая будет рассеиваться на микросхеме будет равна 23В х 1А= 23Вт. А допустимая мощность, с радиатором, всего 15 Вт. Микросхема перегреется и сгорит. Для такого случая ее допустимый ток 15 Вт : 23 В = 0,65 А, и это с радиатором.

  1. Импульсные стабилизаторы в трансформаторных блоках питания.

Эти стабилизаторы имеют значительно меньшие потери, чем выше рассмотренные. В них регулирующий элемент работает в ключевом режиме. У него два состояния полностью открыт или полностью закрыт. Падение напряжения на нем при этом минимально и рассеиваемая мощность также. Величина выходного напряжения пропорциональна длительности выходных импульсов.

Uвых = tоткр/T × Uвх

Где:

Uвых — напряжение на выходе стабилизатора

tоткр – время открытого состояния ключа

Т — период импульсов

Uвх – входное напряжение стабилизатора

Схема, поясняющая принцип работы:

Как видим, здесь присутствует индуктивность L, в которой накапливается энергия и импульсный диод VD. Именно с помощью этих двух элементов, ну и конечно конденсатора С, установленного за индуктивностью, импульсы после ключа VT превращаются в постоянное напряжение.

Пример такой схемы на транзисторах:

И на микросхеме:

  1. Импульсные блоки питания.

Это самые эффективные и малогабаритные блоки. У них нет большого понижающего трансформатора, даже при больших токах и мощностях. Пример наиболее мощного импульсного блока питания — сварочный инвертор, который при сварочных токах 250 А весит всего несколько килограмм.

Принцип работы.

Напряжение сети 220 В поступает на диодный мост и затем на фильтр (конденсатор). Напряжение приобретает значение 310 В (при напряжении сети 220 В). Это напряжение питает выходной трансформаторный каскад и генератор. Вся схема работает на частотах до 100 кГц и даже выше. На таких частотах трансформаторы делают из феррита и их габариты в десятки раз меньше, чем у трансформаторов, работающих на частоте сети 50 Гц. Как правило, сама схема импульсного блока питания является стабилизатором и напряжение на выходе не зависит от изменения напряжения сети. Современные импульсные блоки питания, как правило работают при изменении напряжения сети от 110 В до 240 В.

Пример схемы импульсного блока питания, поясняющий принцип работы, на наиболее распространенной микросхеме UC3842.

Напряжение сети 220В через плату фильтра (ППФ) поступает на сетевой выпрямитель (СВ), конденсатор фильтра (Сф) и через обмотку трансформатора на ключ VT. Через сопротивление R3 уменьшенное напряжение поступает на вывод 7 для запуска микросхемы. После начала работы на вывод 7 дополнительно, через диод VD1, с обмотки трансформатора поступает питание в установившемся режиме.

Внутри микросхемы мы видим генератор (ГЕН), ШИМ (широтно-импульсный модулятор) для управления мощным ключом, выполненном на полевом транзисторе VT. На вывод 3 поступает сигнал обратной связи.

Практическая схема импульсного блока питания на микросхеме UC3842:

Пример изготовления схемы блока питания для ноутбука можно посмотреть здесь.

Есть микросхемы импульсных блоков питания, совмещенные с мощным выходным ключом. Но их принцип работы аналогичен рассмотренному.

Вывод.

Если нужны токи десятки миллиампер блок питания можно сделать по схеме первого типа.

Дешевый блок питания, габариты которого не так важны можно собрать по схеме второго типа. Компенсационные стабилизаторы целесообразно применять на токах до 1 А.

Так же недорогой блок питания, даже со стабилизатором выходного напряжения, на токи до 3 А можно собрать по схеме третьего типа.

Ну а если нужен малогабаритный блок питания, с защитой от перегрузок, на токи больше 3 А, с малым уровнем пульсаций, устойчивый к изменениям напряжения сети — конечно нужно собирать по схеме четвертого типа.

Материал статьи продублирован на видео:

 

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

   Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение — 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.

Принципиальная схема бестрансформаторного блока питания

   Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.

   Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).

   Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.

   Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.

   Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.

   Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.

   Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.

   Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!

   На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

Видео работы схемы бестрансформаторного БП

   Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.

   Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.

   Форум по ИП

   Форум по обсуждению материала БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Блок питания для светодиодной ленты своими руками

Современная электроника часто комплектуется внешними источниками питания на 5В, 12В, 19В. После того как прибор выходит из строя, они часто валяются в кладовке или тумбочке.

  • 5V — это напряжение зарядных устройств для телефонов и USB;
  • 12V — используется в компьютерах, некоторых планшетах, ТВ, сетевых маршрутизаторах.
  • 19V — в ноутбуках, мониторах, моноблоках.

Мы будем рассматривать, каким образом можно адаптировать любой блок питания для светодиодной ленты на 12В. Будут только простые и бюджетные варианты доступные каждому. Зарядники на 5В не подходят. Но из таких зарядников я делаю ночники, на корпус приклеивается от 3 или 6 диодов. Ночью светит не ярко, в самый раз.



Содержание

  • 1. Источники питания на 12V
  • 2. БП на 19V
  • 3. Характеристики импульсных стабилизаторов
  • 4. Простые схемы своими руками
  • 5. Видео, как доработать своими руками
  • 6. Готовые модули из Китая
  • 7. Питание и драйвер в одном модуле
  • 8. Где купить дешево?

Источники питания на 12V

БП от маршрутизатора 12V, 1А

Источники питания на 12В от электроники обычно бывают от 6 до 36 Ватт. 10 Ватт хватает для подсветки рабочей поверхности светодиодной лентой на кухне. Такие блоки делятся на 2 основных вида:

  1. старые на трансформаторах, отличаются большим весом;
  2. современные импульсные, еще называют электронный трансформатор, отличаются малым весом и большой мощностью при малых габаритах.

Использовать на трансформаторах не рекомендую. При установке светодиодной ленты я сперва подключил трансформаторный БП от роутера, мощность которого была в 2 раза больше мощности ленты. Сам выпрямитель стал сильно греться. Поставил диодный мост выпрямителя на самодельный радиатор для охлаждения, все равно греется сильно, долго он так не протянет. Времени не было разбираться в тонкостях, поэтому спросил у специалиста. Он кое-как нашел причину, светодиоды имеют особенную вольт-амперную характеристику (сокращенно ВАХ), что приводит к сильному нагреву. Он подарил мне от телевизора на 12В и 2 Ампера, то есть мощность равна 24W. Теперь все работает без проблем и не греется.

БП на 19V

БП ноутбучного типа на 19В, 90W

Напряжение в 19В широко используется в настольной компьютерной технике, чаще всего в ноутбуках, моноблоках, мониторах, сканерах. В эту категорию можно отнести БП от принтеров, они мощные, бывает 16В, 20В, 24В, 32В.

У меня давно валяется отличный блок питания для светодиодов на 90W и 19V от ноутбука Asus. Такой мощности хватит, чтобы запитать светодиодную ленту на 6000 Люмен, а этого хватит, чтобы сделать диодное освещение комнаты 20 квадратов. Но БП не 12 вольт, и потребуется доработка. Внутрь корпуса мы не полезем, перепаивать схему под 12 вольт сложно, долго и надо быть электронщиком. Сделаем проще, подключим  небольшой  понижатель со стабилизатором. Существует два типа.

Тип №1

Стабилизатор  на 7812

Стабилизатор на микросхеме типа КРЕН 7812 (lm317), выглядит почти как транзистор, при установке на радиатор охлаждения выдерживает ток 1 Ампер. Этот вариант устаревший и громоздкий. Для использования всей мощности ноутбучного БП потребуется 5-6 таких (или 1 большая) и большой алюминиевый радиатор для охлаждения.

Тип №2

Импульсный на специализированных микросхемах

Современный импульсный стабилизатор, миниатюрен, не греется, простой как 3 рубля. В русских магазинах за него просят 600-900 р, цена сильно завышенная. У китайцев на 3 ампера стоит 50 р., 5-7А продается за 100-150 р., поэтому рекомендую заказать пару штук на Aliexpress.

Рекомендую использовать импульсный, КПД у него выше 80-90%, проще и дешевле. Только не покупайте источник тока на LM2596, вам нужен источник напряжения. Чтобы найти в китайском интерне-магазине используйте запросы:

  • LM2596 power supply;
  • 12v switching regulator;
  • voltage regulator 12v 7a;

Характеристики импульсных стабилизаторов

Специалист на видео инструкции расскажет основные технические характеристики современных импульсных стабилизаторов, схемотехнику и рекомендации по их правильному использованию. Чтобы вы своими руками не спалили его во время экспериментов.

Простые схемы своими руками

Примеры готовых импульсных модулей на 36W

..

Если вышеописанные БП вам не подходят, то блок питания для светодиодной ленты 12в можно спаять по схеме своими руками. Для самодельного потребуется много времени и немало деталей, не буду рассматривать полные схемы для подключения к сети 220B. при современном развитии электроники их проще купить у китайцев. Есть схемы для сборки своими руками еще на TL594 и других новых элементах. Но мне больше нравится описанный ниже, легко повторяется за 10 минут.

Рассмотрим оптимальный и современный на LM2596. Потребуется установить всего 4 радиоэлемента. Аналоги, схожие по функционалу, это ST1S10, L5973D, ST1S14.

Существует несколько модификаций микросхемы:

  • фиксированное 12 V, LM2596-12, указано в конце маркировки;
  • регулируемый вариант LM2596ADJ;
  • цена в России одной 170 р.. В Китае весь собранный блок на LM2596 стоит 35р. включая доставку.

Характеристики

ПараметрЗначение
Входное напряжение, не более40В
Вольт на выходе3-37В
Выходной ток
Срабатывание защиты по току
Частота преобразования150 кГц

Видео, как доработать своими руками

Коллега подобно расскажет, как подключить и настроить стабилизатор к блоку питания от ноутбука на 19V.

Готовые модули из Китая

Вариант с регулятором  на выходе от 3 до 37В

В первой схеме будем использовать LM2596ADJ с регулируемым вольтажом на выходе. Выпускаться она может в разных корпусах, но самый оптимальный как на картинке. Плюсом такой конструкции будет возможность регулировать яркость led ленты без диммера.

Схема с фиксированным 12B

Стабилизатор на микросхеме LM2596-12, отсутствует переменный резистор для регулировки, на выходе ровно 12B. Схема проще на одну детальку.

Питание и драйвер в одном модуле

Универсальный блок с 3 регуляторами

Универсальный вариант, регулируется сила тока и напряжение. Можно запитать не только диодную ленту, но и светодиоды. то есть может выступать в качестве драйвера и электронного трансформатора.

На видео ролике вам покажут как пользоваться и настраивать самостоятельно универсальный вариант модуля с драйвером, регулируемой силой тока.

Где купить дешево?

Бывает, что у вас дома не оказалось БП подходящего от бытовых приборов, но точно есть у других, тоже валяется без дела. Сперва спросите у знакомых или соседей, наверняка что то есть. За пару сотен или жидкую валюту вы можете сними договорится.

Большой ассортимент  вы найдете на Авито и на местных форумах. Многие избавляются от ненужного хлама и продают БП за символическую цену, потому что выбрасывать жалко, а реальную стоимость не знают. Таким образом, я часто покупаю хорошие приборы, тем более торг никто не отменял. Недавно мне удалось купить фирменный ACER от моноблока на 190W за 400 р. Он герметичен и высокого качества, так как компьютерная электроника требует очень стабильного и качественного питания в отличие от диодной ленты.

Простейший бестрансформаторный источник питания для светодиодной матрицы

Для питания многих светодиодных лампочек и прожекторов требуется 12 В, что вынуждает покупать или где-то доставать источник питания. На самом деле его можно сделать самому из недорогих запчастей.

Материалы:

  • Светодиодная матрица 12 В 5 Вт.
  • 4 диода 1N4007;
  • керамический конденсатор 1 мкФ, напряжение не ниже 400 В;
  • 1 резистор в промежутке 300 кОм — МОм;
  • конденсатор 220 мкФ 25 В;
  • электрокабель с вилкой.

Сборка бестрансформаторного источника

Для начала нужно спаять между собой 4 диода 1N4007, по схеме как на фото. Обратите внимание на полярность. Важно, чтобы направление анода и катода были как на фотографии. Начинающим любителям радиотехники нужно просто ориентироваться по серой полоске по окружности корпуса диода. Как видно одна пара из них соединяются полоской к полоске, а вторая темными сторонами. Соответственно между собой пары спаяны полоса к однотонной стороне.

У конденсатора 220 мкФ 25 В нужно разогнуть контакты и припаять их к рамке из диодов. На его корпусе имеется продольная полоса. Противоположный к ней электрод паяется к контактам диодов соединенных полоска к полоске. Примыкающий до метки контакт скрепляется соответственно с диодами со стороны противоположной до полос.

Далее к имеющейся схеме припаивается одним усиком керамический конденсатор 1 мкФ (105J). Для этого его следует расположить по левую руку и повернуть маркировкой к себе.

Между усиками керамического конденсатора впаивается резистор 1 МОм. В нем нет полярности, поэтому его можно расположить любой стороной. Этот резистор нужен для разряда конденсатора, когда питание отключено от всей цепи.

К схеме подключается потребитель. В данном случае используется светодиодная матрица на 12 В и 5 Вт.

Чтобы он светил, нужно соблюсти полярность. Минус присоединяется к электродам со стороны полоски на конденсаторе 220 мкФ 25 В. Плюс паяется напротив.

Чтобы запитать схему от сети 220В нужно присоединить двухжильный кабель с вилкой. Одна жила паяется к электроду керамического конденсатора и резистора, а вторая к незадействованной противоположной части рамки из диодов.

Включаем в сеть.

Работает отлично.

Важно! Техника безопасности

Это очень дешевый в изготовлении источник для питания светодиодов и их матриц, но он имеет один очень существенный недостаток: к нему нельзя прикасаться, чтобы не получить разряд в 220 В, так как вся схема не имеет гальванической развязки. Поэтому не всем может подойти эта самоделка.
Готовый источник необходимо разместить в коробе из диэлектрического материала. Во время работы запрещается дотрагиваться даже до светодиодной матрицы, учтите это обязательно.

Смотрите видео

Как подключить светодиодную ленту? Ответ эксперта

Кажущееся, на первый взгляд, простым подключение светодиодной ленты на 12 вольт к блоку питания (БП), на самом деле таковым не является. Чтобы собранная осветительная система была надёжной и долговечной, необходимо заранее учесть все нюансы, определить подходящий для себя способ монтажа и подключения и только после этого приступать к выполнению работ.

Подключение светодиодной ленты напрямую к сети 220 В без блока питания

Подавляющая часть имеющихся в продаже светодиодных лент рассчитана на подключение к блоку питания постоянного тока напряжением 12 В. Реже встречаются светодиодные ленты с питанием 5 вольт либо 24 вольт и выше. Включать такие осветительные приборы напрямую в сеть переменного тока 220 В нельзя – не пройдёт и секунды, как все SMD светоизлучающие диоды и резисторы попросту перегорят.

Тем не менее существует один рабочий способ, позволяющий запитать низковольтную светодиодную ленту от сети 220 В. Для его реализации ленту на 12 В любого типа и цвета свечения разрезают на 24 равных отрезка. Затем их необходимо соединить между собой последовательно. Для этого с помощью короткого провода соединяют минусовой контакт первого отрезка с плюсовым контактом второго отрезка. Далее припаивают провод к минусу второго и плюсу третьего отрезка и так далее. В результате, вместо параллельного соединения, получится цепочка из последовательно включённых отрезков светодиодной ленты, способная выдержать напряжение 288 вольт.

Для подключения получившейся конструкции к сети 220 В придётся выпрямить и сгладить напряжение с помощью диодного моста VD1 (Uобр=600 В, Iпр=10 А) и полярного конденсатора C1 на 10 мкФ – 400 В, на выходе которого получится примерно 280 В.

Несмотря на то что данная схема вполне работоспособна, у неё есть ряд недостатков:

  • на каждом из отрезков в местах пайки присутствует опасное для жизни высокое напряжение;
  • конструкция имеет низкую надёжность из-за огромного количества соединений;
  • низкая эргономичность готового изделия.

Чтобы не заниматься самостоятельной переделкой светодиодной ленты с 12 на 220 вольт, можно купить готовую ленту промышленного производства, рассчитанную на прямое подключение к однофазной бытовой сети переменного тока. Её конструктивное отличие состоит в том, что SMD светодиоды соединены последовательно в группы не по 3 шт., а по 60 шт., а диодный мост входит в комплект поставки. Подробную информацию о таких LED-лентах, линейках и модулях можно найти в отдельной статье о светодиодных лентах на 220 вольт.

Использование бестрансформаторной схемы

Желание сэкономить на покупке качественного источника питания для светодиодной ленты подталкивает некоторых радиолюбителей к использованию бестрансформаторного блока питания (БТБП). Простая схемотехника, недорогие компоненты и возможность быстрого изготовления своими руками – вот основные преимущества БТБП. Действительно их можно встретить фактически во всей электронной китайской продукции, работающей от сети 220 В (настенные часы, люстры с ПДУ, реле напряжения и т.д.) Но на самом деле схемы питания, в которых нет трансформатора, имеют два существенных недостатка:

  1. Отсутствие гальванической развязки, в результате чего потенциал высокого напряжения присутствует на всех участках электрической цепи. Другими словами, прикосновение к оголённым проводникам опасно для жизни и может вызвать сильный удар током.
  2. Низкая надёжность. Со временем конденсатор теряет ёмкость, напряжение на выходе снижается, и устройство перестаёт работать. Если же случится пробой конденсатора, то подключенная светодиодная лента полностью перегорит.

Простейший классический вариант бестрансформаторного блока питания показан на рисунке выше. Его главный элемент – гасящий конденсатор (С1), который снижает сетевое напряжение до нужного значения. Затем оно проходит через выпрямитель – диодный мост (VD1), стабилитрон (VD2) и сглаживающий фильтр (С2). Расчёт ёмкости гасящего конденсатора производят, исходя из заданного напряжения и тока в нагрузке. Ввиду перечисленных выше недостатков подключать светодиодную ленту через такой блок питания не рекомендуется.

Активное применение БТБП в китайской электронике обусловлено исключительно экономией средств.

Схема подключения светодиодной ленты через блок питания

Чтобы 12 вольтовая светодиодная лента стабильно работала на протяжении долгих лет, её необходимо подключать от импульсного блока питания с напряжением на выходе 12 В. Это самый правильный вариант – импульсные источник питания имеют малый вес и компактные размеры, высокий КПД и коэффициент стабилизации, а также безопасны в эксплуатации. К недостаткам можно причислить генерацию импульсных помех, отдаваемых обратно в сеть и сложность схемы, для ремонта которой нужны специальные навыки.

Принять правильное решение в пользу того или иного источника питания поможет статья о выборе блока питания для светодиодной ленты.

До 5 метров

Очень часто рядовых пользователей интересует вопрос о том, как подключить светодиодную ленту длиной до 5 метров? Тут все очень просто. Достаточно воспользоваться приведенной ниже схемой.

Процедуру подключения выполняют в следующей последовательности:

  • с помощью коннектора или путём пайки к одному из концов ленты подключают 2 питающих провода сечением 1-1,5 мм2;
  • свободные концы этих проводов зажимают в соответствующих клеммах блока питания (+V, -V), соблюдая полярность;
  • к клеммам L и N (220V AC) подключают сетевой провод.

Аналогичным образом выполняют параллельное подключение нескольких отрезков к одному блоку питания. Главное, чтобы мощность БП была больше суммарной мощности подключаемой светодиодной ленты минимум на 30%.

Чтобы яркость светодиодов была равномерной по всей длине LED-ленты, к отрезкам длиною больше 4 метров рекомендуется подводить провода с обоих концов. Это связано с падением напряжения на токоведущих печатных проводниках (дорожках), в результате чего к самым дальним светодиодам поступает напряжение меньше 12 В и их яркость падает. Плюс этого способа – равномерное свечение, а минус – затраты на дополнительные провода.

Свыше 5 метров

То, что длина светодиодной ленты в бобине ограничена 5 метрами – это не случайность, а вынужденная технологическая мера. Дело в том, что токопроводящие дорожки, приклеенные вдоль ленты, очень тонкие, узкие, и рассчитаны на подключение определённого количества светодиодов. Именно по этой причине нельзя подключать последовательно 2 отрезка общей длиной более 5 метров.

Чтобы избежать токовых перегрузок, подключение светодиодных лент длиною 10, 15 и даже 20 метров следует выполнять по одной из приведенных схем ниже. Первый вариант предполагает использование одного блока питания большой мощности, способного обеспечить в нагрузке ток до 20 А. Для равномерного свечения светодиодов напряжение питания на каждый из 5 метровых отрезков подаётся с обеих сторон. Во втором варианте каждый отрезок запитан от отдельного источника 12В. Реализовать данную схему немного сложнее, так как потребуется еще один блок питания и больше соединительных проводов. На третьей схеме кроме двух источников постоянного напряжения на 12 В в цепь добавлены диммер и одноканальный усилитель сигнала. Диммер служит для регулировки яркости светового потока. Задача усилителя сигнала – в точности продублировать сигнал с диммера для тех светодиодных лент, которые запитаны от второго БП.

Рассмотренные способы включений LED-лент являются типовыми, но их вариации могут использоваться для разработки более сложных схем с целью реализации определенных задач или удовлетворения требований заказчика.

Подключение RGB или RGBW LED-лент

Правила и особенности подключения, о которых было сказано выше, необходимо соблюдать и при монтаже мультицветных аналогов. Однако функциональные схемы с RGB и RGBW лентами будут выглядеть немного сложнее из-за появления контроллера и дополнительных проводов. RGB/RGBW контроллер значительно расширяет возможности осветительной системы за счёт диммирования отдельных цветов, создания световых эффектов и управления с пульта дистанционного управления (ПДУ). RGB/RGBW контроллер предназначен для подключения мультицветных лент с отдельно расположенными белыми светодиодами, что позволяет использовать такую систему не только, как дополнительный, но и как основной источник света в помещении.

Для удобства читателей все основные схемы, правила монтажа, примеры и нюансы включения мультицветных лент собраны в отдельной статье о схемах подключения светодиодных RGB и RGBW-лент.

Подключение через выключатель

Разумеется, любой осветительный прибор должен подсоединяться к электросети через выключатель. Причём светодиодные ленты, управляемые с пульта, не должны быть исключением. Но на каком участке схемы должен находиться выключатель, чтобы эксплуатация всей осветительной системы была безопасной? В этом вопросе только один правильный ответ: в самом начале схемы, разрывая фазу в цепи переменного тока.

Если выключатель установить в цепи постоянного тока, то блок питания будет всегда оставаться под напряжением. Это плохо по двум причинам. Во-первых, радиодетали имеют рабочий ресурс, который будет исчерпан значительно раньше. Во-вторых, блоку питания придётся круглосуточно противостоять импульсным сетевым помехам и скачкам напряжения, которые только ускорят его износ.

Несколько важных моментов

Руководствуясь описанными рекомендациями, несложно будет разработать схему для реализации подсветки или полноценного освещения, рассчитать длину проводов и определить оптимальное место размещения каждого функционального блока. Но прежде чем приступить к выполнению работ следует помнить о правилах техники безопасности:

  • работы по подключению и монтажу выполнять только на отключенном оборудовании;
  • перед первым включением дополнительно проверить надёжность всех контактов и правильность собранной схемы.

Также рекомендуется заранее приобрести некоторые расходные материалы:

  • термоусадочную трубку для изоляции спаянных участков проводов;
  • наконечники для проводов;
  • коннекторы для последовательного соединения двух участков лент;
  • алюминиевый профиль, чтобы не допустить перегрев светоизлучающих диодов.

В статье были определены все основные моменты, касающиеся подключения светодиодных лент на 12 В как с блоком, там и без блока питания. К сожалению, рассмотреть все схемы невозможно, ввиду многообразия их вариаций. К тому же постоянное совершенствование светодиодной продукции способствует появлению новых схемных решений, которые могут вызывать у рядовых пользователей вопросы с подключением и проведением расчётов.

Если у Вас возникли сложности с подключением – задайте вопрос в комментариях ниже, наши технические специалисты обязательно помогут.

Бестрансформаторный блок питания. Расчет. Ч2

   

   Итак, давайте разберем последовательность расчета бестрансформаторного источника питания, рассмотренного в предыдущей статье. Описанная метода не претендует на истину в последней инстанции и может отличаться от других источников. Дополнительную информацию по такой схеме можно почерпнуть на зарубежных ресурсах, погуглив в сети запрос «capacitor power supply».

рис. 1

   Первое от чего мы должны отталкиваться при расчете бестрансформаторного источника питания — это ток нагрузки. На рисунке 1 он обозначен как Iam, а в качестве нагрузки выступает резистор R3. Заменим этот резистор небольшой схемой с микроконтроллером и определим потребляемый ею ток. 

рис. 2

Сделать это можно двумя способами: 
— путем расчета, просуммировав примерное потребление всех компонентов схемы,
— с мощью амперметра включенного между источником напряжения и нашей схемой.

   Второй способ, конечно, будет точнее, но он осуществим только при наличии собранной схемы. Попробуем выполнить теоретический расчет.
  
   В схеме на рисунке 2 три основных потребителя — стабилизатор 7805, микроконтроллер ATtiny13 и светодиод. Для простоты положим, что микроконтроллер при подаче питания всего лишь зажигает светодиод, а потом крутится в бесконечном цикле.
   Ток покоя стабилизатора 7805 по даташиту равен 5 мА (параметр quiescent current). При изменении тока нагрузки и входного напряжения значение тока покоя меняется на 0.5 — 0.8 мА. Значение небольшое и можно им пренебречь.
   Оценить потребление микроконтроллера ATtiny13 можно по графику Active Supply Current vs. VCC, представленнму в даташите в разделе Electric Characteristics. Допустим, у нас напряжение питания 5 Вольт, а тактовая частота — 9.6 МГц. При таких условиях attiny13 потребляет в активном режиме 5.5 мА.
Ток светодиода рассчитываем по формуле:

Iled = (Upin — Uled)/R2

где Upin — напряжение логической единицы на выводе микроконтроллера, В; Uled — прямое падение напряжения на светодиоде, В.

   Для зеленого светодиода прямое падение напряжения равно примерно 2 В, Upin примерно 5 В, значит ток через светодиод будет равен:

Iled = (5 — 2)/330 = 9 мА.

   Если быть честным, то при любом вытекающем токе напряжение на выводе микроконтроллера будет меньше напряжения питания. В чем можно убедиться, изучив график I/O Pin Source Current vs. Output Voltage (Low Power Ports, VCC = 5V), представленный в даташите. При токе 9 мА, напряжение на выводе микроконтроллера ATtiny13 будет примерно 4.8 В. Но мы, опять таки, не учитываем такие мелочи в расчете.

Итого: 5 + 5.5 + 9 = 19.5 мА.
Реальное значение потребляемого тока 18.6 мА.

   Как видишь, разница незначительная. Округлим расчетное значение в большую сторону и будем отталкиваться от значения Iam = 20 мА.

   Ток нагрузки нам известен, теперь нужно рассчитать значение тока на входе источника питания. На рисунке 1 он обозначен как Iac. В отличие от постоянного тока нагрузки, ток на входе бестрансформаторного источника питания переменный. А переменный ток характеризуется такими величинами как амплитудное и действующее значение. 
   Амплитудное значение переменного тока — это максимальное значение тока за период колебания. Действующее значение переменного тока — это такая величина постоянного тока, который за время равное одному периоду колебания переменного тока, выделит на том же сопротивлении R такое же количество тепла, что и переменный ток.
   Для переменного тока, изменяющегося по синусоидальному закону, амплитудное и действующее значения связаны следующим соотношением:

где Iac — действующее значение, А; а Im — амплитудное, А.

   Действующее значение переменного тока на входе схемы Iac рассчитывается из тока нагрузки Iam по следующей формуле:

Таким образом, ток на входе схемы будет равен:

Iac = 20*2.221 = 44,4 мA действующее значение
Im = 44*1.41 = 62.6 мA амплитудное значение

 

   У всех линейных стабилизаторов, к которым относится и микросхема 7805, есть такой параметр как dropout напряжение — наименьшая разность напряжений между входом и выходом. Этот параметр определяет минимальное входное напряжение стабилизатора, при котором он все еще будет работать в номинальном режиме. Для микросхемы 7805 выходное напряжение равно 5 В, а типовое dropout напряжение равно 2 В. Значит минимальное входное напряжение для стабилизатора 7805 будет составлять 5 + 2 = 7 В. С учетом того, что на конденсаторе С2 напряжение будет пульсировать, 7 Вольт — это минимальное значение пульсирующего напряжения. Накинем 1 В для запаса и будем отталкиваться от значения 8 Вольт.

 

   В качестве стабилизатора не обязательно выбирать микросхему 7805, можно использовать то, что есть под рукой. При этом нужно учитывать следующие параметры:
— максимальное входное напряжение стабилизатора,
— максимальный выходной ток стабилизатора,
— dropout напряжение,
— максимальная рассеиваемая мощность.

   Нагрузка у нас запитывается от сети во время положительного полупериода входного напряжения. Во время отрицательного полупериода нагрузка получает энергию от конденсатора С2. За время отрицательного полупериода он не должен успеть разрядиться до напряжения меньше 8 В. Этого не случиться, если начальное напряжение на конденсаторе и его емкость достаточны для поддержания заданного тока нагрузки. 

   Емкость сглаживающего конденсатора рассчитывается по следующей формуле.

C > Iam/(2*f*dU),

где Iam — ток нагрузки, А; f — частота переменного напряжения, Гц; С — емкость конденсатора, Ф; dU — размах пульсаций, В.

dU = Umax — Umin

Umin у нас равно 8 В.
Umax выбираем из следующих соображений. Большее напряжение позволяет использовать конденсатор меньшей емкости, но сильнее нагружает стабилизатор, который вынужден гасить на себе остаточное напряжение. Меньшее напряжение разгружает стабилизатор напряжения, но требует конденсатор большей емкости.
Я выбрал 9.3 В.

С2 > 0.02/(2*50*(9.3 — 8)) = 0.000153 Ф = 153 мкФ

   Выбираем большее соседнее значение из ряда Е12 – 180 мкФ.
   Также не забываем про максимальное напряжение, на которое рассчитан конденсатор. Берем с полуторным или двойным запасом, например на 16 Вольт.

   Требуемое номинальное напряжение стабилитрона равно максимальному напряжению на сглаживающем конденсаторе С2 плюс величина падения напряжения на диоде VD2, то есть:

9.3 + 0.7 = 10 В. 

0.7 — это значение падения напряжения на диоде, включенном в прямом направлении. Стандартное значение, используемое в инженерных расчетах.

   Помимо номинального напряжения стабилизации также важны такие параметры стабилитрона как номинальный и максимальный токи стабилизации, максимальный постоянный прямой ток, максимальный импульсный ток и рассеиваемая мощность. 

   Для данной схемы я выбрал стабилитрон 1N4740А, который имеет следующие характеристики:

— номинальное напряжение стабилизации 10 В,
— номинальный ток стабилизации 25 мА,
— максимальный ток стабилизации 91 мА,
— максимальный импульсный ток 454 мА,
— максимальный ток в прямом направлении 200 мА,
— рассеиваемая мощность 500 мВт.

   В положительный полупериод сетевого напряжения через стабилитрон может протекать ток в диапазоне от 0 до 62 мА (Im). Если нагрузка будет потреблять меньший ток, стабилитрон будет брать часть тока на себя, если нагрузка отключится, весь входной ток будет протекать через стабилитрон. Поэтому максимальный ток стабилизации стабилитрона должен быть больше амплитудного значения входного тока. В нашем случае > 62 мА. У стабилитрона 1N4740 максимальный ток стабилизации 91 мА, значит, по этому параметру он подходит. 

   В отрицательный полупериод стабилитрон будет работать как обычный диод, и через него будет протекать весь входной ток источника питания. Нагрузка в этот момент запитывается от конденсатора C2. В прямом направлении стабилитрон выдерживает 200 мА, это больше амплитудного значения входного тока (62 мА), значит, по этому параметру он тоже подходит.

   Рассчитаем максимальную мощность, которая будет рассеиваться на стабилитроне. В положительный полупериод сетевого напряжения на стабилитроне будет 10 В, в отрицательный полупериод Ud = 1.2 В (значение из даташита для тока 200 мА). Для расчета возьмем среднее значение переменного тока за полпериода. Оно рассчитывается по формуле:

Iav = (2 * Im)/3.14 = 0.637*Im

где Im — амплитудное значение переменного тока, А.

  Максимальная мощность рассеиваемая на стабилитроне будет равна:

P = (0.637 * Im)*Ust + (0.637 * Im)*Ud = (0.637 * Im)*(Ust + Ud)
P = 0.637*62*(10 + 1.2) = 442 мВт

   Такая мощность будет рассеиваться на стабилитроне в худшем случае — когда через него будет идти весь ток нагрузки. На практике значение мощности будет меньше, так как в положительный полупериод через стабилитрон будет протекать меньший ток. По этому параметру стабилитрон тоже проходит.

Ток нагрузки Iam = 20 мА.
Максимальное обратное напряжение на диоде приблизительно равно номинальному напряжению стабилитрона VD1, то есть 10 В.
Мощность, рассеиваемая на диоде, равна P = Ud*Iam = 0.7 * 20 = 14 мВт.
Берем по каждому из этих значений двойной запас и выбираем диод. Я выбрал диод 1N4148. 

   Сетевое напряжение бытовой электросети составляет 220 В. Эта так называемое действующее значение. Действующее значение в корень из 2 раз меньше амплитудного значения. Я уже говорил об этом выше.
Амплитудное значение сетевого напряжения составляет:

Um = 220 * 1.41 = 311 В

   В начальный момент включения схемы, когда конденсатор C1 разряжен, может происходить бросок тока. Нужно подобрать такой номинал резистора R2, чтобы при максимальном входном напряжении импульсный ток через стабилитрон был меньше 454 мА.

R2 > Um/Ispike = 311/450 = 691 Ом

Выбираем ближайшее значение из ряда E24 — 750 Ом

Мощность рассеиваемая на этом резисторе будет равна

Pr = Iac * Iac * R = 44 * 44 * 750 Ом = 1.5 Вт

Берем 2 ваттный резистор.

 

   Номинал конденсатора С1 рассчитывается по следующей формуле:

где Iac – действующее значение тока в цепи, А; Uac – минимальное действующее значение напряжения в цепи, В; f – частота переменного напряжения, Гц; R – сопротивление резистора R2, Ом.

   Формула выведена из закона Ома для цепи переменного тока, состоящей из конденсатора и резистора.

   Все величины известны:

Iac = 44 мА
Uac = 220 В
R2 = 750 Ом
f = 50 Гц

   Подставляем их формулу и получаем значение C1. Оно будет равно 650 нФ. Возьмем большее соседнее значение из ряда Е12 — 680 нФ.

   Рабочее напряжение С1 должно быть больше чем Um = 311 В. Можно взять конденсатор с рабочим напряжением 400 В, но лучше взять конденсатор рассчитанный на 600 В.

   В качестве C1 нужно выбирать конденсаторы, предназначенные для работы в цепях переменного тока, например отечественные металлопленочные конденсаторы К73-17 или их импортные аналоги. Если не удается подобрать конденсатор нужное емкости, можно соединить два конденсатора меньшей емкости параллельно.

   Резистор R1 выбираем номиналом 1.5-2 МОм. Мощность, которая будет рассеиваться на этом резисторе, можно грубо оценить по формуле:

P = (Uac*Uac)/R1 = (220*220)/1500000 = 32 мВт

Выбираем резистор мощностью 0.125 —  0.25 Вт.

Разъем Х1 для подключения устройства к сети. 
Разъем Х3 для подачи постоянного напряжения при отладке и программировании устройства.

   Ну и напоследок о самом главном.
   Не подключайте устройство с бестрансформаторным источником питания к компьютеру или программатору, когда оно запитано от сети. Что-то из них может сгореть.
   Для программирования или отладки устройства запитывайте его от отдельного источника постоянного напряжения, когда оно отключено от сети.
   Не дотрагивайтесь до элементов и проводников устройства, когда оно подключено к сети, это может привести к поражению электрическим током.
   Не подключайтесь к работающему устройству осциллографом.

Бестрансформаторный источник питания


Одной из основных проблем, которая должна быть решена при проектировании электронной схемы, является производство низковольтного источника питания постоянного тока от переменного тока для питания схемы. Обычный метод — это использование понижающего трансформатора для понижения 230 В переменного тока до желаемого уровня низкого напряжения переменного тока. Наиболее подходящим и недорогим методом является использование конденсатора падения напряжения последовательно с фазовой линией.

Выбор падающего конденсатора и конструкции схемы требует определенных технических знаний и практического опыта для получения желаемых напряжения и тока.Обычный конденсатор не справится с этой задачей, так как устройство будет разрушено быстрым током от сети. Скачки напряжения в сети создадут дыры в диэлектрике, и конденсатор перестанет работать. Конденсатор класса X, предназначенный для использования в сети переменного тока, необходим для снижения напряжения переменного тока.

Рис.1: Изображение конденсатора

X Номинальный конденсатор 400 В

Перед тем, как выбрать сбрасывающий конденсатор, необходимо понять принцип работы и принцип действия сбрасывающего конденсатора.Конденсатор класса X рассчитан на 250, 400, 600 В переменного тока. Также доступны версии для более высокого напряжения. Эффективное сопротивление (Z), сопротивление (X) и частота сети (50–60 Гц) являются важными параметрами, которые следует учитывать при выборе конденсатора. Реактивное сопротивление (X) конденсатора (C) на частоте сети (f) можно рассчитать по формуле

X = 1 / (2 ¶ фКл)

Например, реактивное сопротивление конденсатора 0,22 мкФ, работающего при частоте сети 50 Гц, будет X = 1 / {2 x 50 x 0.22 x (1/1 000 000)} = 14475,976 Ом или 14,4 кОм. Сопротивление конденсатора 0,22 мкФ рассчитывается как X = 1 / 2Pi.f. C. Где f — частота сети 50 Гц, а C — значение емкости конденсатора в фарадах. То есть 1 микрофарад равен 1/1000000 фарад, следовательно, 0,22 мкФ составляет 0,22 x 1/1000000 фарад. Следовательно, прямое сопротивление конденсатора составляет 14475,97 Ом или 14,4 кОм. Чтобы получить ток, я делю напряжение сети на прямое сопротивление в килоомах, то есть 230 / 14,4 = 15,9 мА.

Эффективный импеданс (Z) конденсатора определяется путем принятия сопротивления нагрузки (R) в качестве важного параметра.Импеданс можно рассчитать по формуле

Z = v R + X

Предположим, что ток в цепи равен I, а напряжение сети равно V, тогда уравнение выглядит как

I = В / Х

Таким образом, окончательное уравнение становится

I = 230 В / 14. 4 = 15,9 мА.

Следовательно, если используется конденсатор 0,22 мкФ, рассчитанный на 230 В, он может обеспечить ток около 15 мА в цепи. Но для многих схем этого недостаточно. Поэтому для таких цепей рекомендуется использовать конденсатор емкостью 470 нФ, рассчитанный на 400 В, чтобы обеспечить требуемый ток.

X Номинальные конденсаторы переменного тока — 250 В, 400 В, 680 В переменного тока

Таблица, показывающая типы конденсаторов номиналом X, а также выходное напряжение и ток без нагрузки

Рис. 3: Таблица, показывающая типы конденсаторов номиналом X, а также выходное напряжение и ток без нагрузки

Исправление

Диоды, используемые для выпрямления, должны иметь достаточное пиковое обратное напряжение (PIV). Пиковое обратное напряжение — это максимальное напряжение, которое диод может выдержать при обратном смещении.Диод 1N 4001 выдерживает до 50 Вольт, а 1N 4007 — до 1000 Вольт. Важные характеристики выпрямительных диодов общего назначения приведены в таблице.

Рис. 4: Таблица, показывающая характеристики выпрямительных диодов общего назначения

Так что подходящий вариант — выпрямительный диод 1N4007. Обычно у кремниевого диода прямое падение напряжения составляет 0,6 В. Номинальный ток (прямой ток) выпрямительных диодов также может быть разным.Большинство выпрямительных диодов общего назначения серии 1N имеют номинальный ток 1 А.

Рис.5: Изображение диода

Сглаживание постоянным током

Сглаживающий конденсатор используется для генерации постоянного тока без пульсаций. Сглаживающий конденсатор также называется фильтрующим конденсатором, и его функция заключается в преобразовании полуволнового / двухполупериодного выходного сигнала выпрямителя в плавный постоянный ток. Номинальная мощность и емкость — два важных аспекта, которые следует учитывать при выборе сглаживающего конденсатора.Номинальная мощность должна быть больше, чем выходное напряжение без нагрузки источника питания. Значение емкости определяет количество пульсаций, которые появляются на выходе постоянного тока, когда нагрузка принимает ток. Например, двухполупериодный выпрямленный выходной сигнал постоянного тока, полученный от сети переменного тока 50 Гц, работающей в цепи, потребляющей ток 100 мА, будет иметь размах колебаний 700 мВ от пика до пика в конденсаторе фильтра номиналом 1000 мкФ. Пульсации, возникающие в конденсаторе, прямо пропорциональны току нагрузки и обратно пропорциональны значению емкости.Лучше, чтобы пульсации были ниже 1,5 В от пика к пику при полной нагрузке. Поэтому для получения постоянного тока на выходе без пульсаций необходимо использовать конденсатор высокой емкости (1000 мкФ или 2200 мкФ) с номинальным напряжением 25 В или более. Если пульсация будет чрезмерной, это повлияет на работу схемы, особенно RF и IR схем.

Регулирование напряжения

Стабилитрон

используется для генерации регулируемого выхода постоянного тока. Стабилитрон предназначен для работы в области обратного пробоя. Если кремниевый диод смещен в обратном направлении, достигается точка, в которой его обратный ток внезапно увеличивается.Напряжение, при котором это происходит, называется значением диода «лавина или стабилитрон». Стабилитроны специально сделаны, чтобы использовать эффект лавинного для использования в ««опорного напряжения регуляторов. Стабилитрон может использоваться для генерации фиксированного напряжения путем пропускания через него ограниченного тока с помощью последовательного резистора (R). R не оказывает серьезного влияния на выходное напряжение стабилитрона, и выходное напряжение остается стабильным опорным напряжением. Но важен ограничительный резистор R, без которого стабилитрон выйдет из строя.Даже при изменении напряжения питания R будет принимать любое избыточное напряжение. Значение R можно рассчитать по формуле

.

R = Vin — Vz / Iz

Где Vin — входное напряжение, выходное напряжение Vz и ток Iz через стабилитрон

В большинстве схем Iz поддерживается на уровне 5 мА. Если напряжение питания составляет 18 В, напряжение, которое должно быть понижено на R, чтобы получить выходное напряжение 12 В, составляет 6 вольт. Если максимально допустимый ток Зенера составляет 100 мА, тогда R будет пропускать максимальный желаемый выходной ток плюс 5 мА.Таким образом, значение R выглядит как

.

R = 18 — 12/105 мА = 6/105 x 1000 = 57 Ом

Номинальная мощность стабилитрона также является важным фактором, который следует учитывать при выборе стабилитрона. По формуле P = IV. P — мощность в ваттах, ток I в амперах и V — напряжение. Таким образом, максимальное рассеивание мощности, которое может быть допущено в стабилитроне, — это напряжение стабилитрона, умноженное на ток, протекающий через него. Например, если стабилитрон 12 В пропускает ток 12 В постоянного тока и 100 мА, его рассеиваемая мощность будет равна 1.2 Вт. Поэтому следует использовать стабилитрон мощностью 1,3 Вт.

Светодиодный индикатор

и схема

Светодиодный индикатор

Светодиодный индикатор

используется в качестве индикатора включения. Значительное падение напряжения (около 2 вольт) происходит на светодиодах при прохождении прямого тока. Падение прямого напряжения различных светодиодов показано в таблице.

Рис. 6: Таблица, показывающая прямые падения напряжения различных светодиодов

Обычный светодиод может пропускать ток 30–40 мА без повреждения устройства.Нормальный ток, обеспечивающий достаточную яркость стандартного красного светодиода, составляет 20 мА. Но это может быть 40 мА для синих и белых светодиодов. Токоограничивающий резистор необходим для защиты светодиода от протекающего через него избыточного тока. Номинал этого последовательного резистора должен быть тщательно выбран, чтобы предотвратить повреждение светодиода, а также получить достаточную яркость при токе 20 мА. Токоограничивающий резистор можно выбрать по формуле

R = V / I

Где R — значение резистора в омах, V — напряжение питания, а I — допустимый ток в амперах.Для типичного красного светодиода падение напряжения составляет 1,8 В. Таким образом, если напряжение питания составляет 12 В (Vs), падение напряжения на светодиоде составляет 1,8 В (Vf), а допустимый ток составляет 20 мА (если), то значение последовательного резистора будет

.

Vs — Vf / If = 12 — 1,8 / 20 мА = 10,2 / 0,02 A = 510 Ом.

Подходящее номинальное сопротивление резистора составляет 470 Ом. Но рекомендуется использовать резистор 1 кОм, чтобы продлить срок службы светодиода, даже если будет небольшое снижение яркости. Так как светодиод занимает 1.8 вольт, выходное напряжение будет на 2 вольта меньше значения стабилитрона. Так что если для схемы требуется 12 вольт, необходимо увеличить значение стабилитрона до 15 вольт. Приведенная ниже таблица представляет собой готовый счетчик для выбора ограничительного резистора для различных версий светодиодов на разные напряжения.

Рис. 7: Таблица, показывающая готовый счетчик для выбора ограничивающего резистора для различных версий светодиодов при разных напряжениях.

Принципиальная схема

Схема, показанная ниже, представляет собой простой бестрансформаторный источник питания.Здесь используется конденсатор с номиналом 225 К (2,2 мкФ) 400 вольт X для падения 230 вольт переменного тока. Резистор R2 — это спускной резистор, который удаляет накопленный ток из конденсатора, когда цепь отключена. Без R2 есть шанс получить смертельный шок при прикосновении к цепи. Резистор R1 защищает схему от пускового тока при включении. Двухполупериодный выпрямитель, состоящий из D1 — D4, используется для выпрямления переменного тока низкого напряжения на конденсаторе C1, а C2 удаляет пульсации постоянного тока. При такой конструкции на выходе будет доступно около 24 В при токе 100 мА.Эти 24 В постоянного тока можно отрегулировать до необходимого выходного напряжения с помощью подходящего стабилитрона мощностью 1 Вт. Лучше добавить предохранитель в фазную линию и MOV между фазной и нейтральной линиями в качестве меры безопасности, если есть скачок напряжения или короткое замыкание в сети.

Осторожно: Строительство этого источника питания рекомендуется только лицам, имеющим опыт или компетентность в работе с сетью переменного тока. Поэтому не пытайтесь использовать эту схему, если у вас нет опыта работы с высокими напряжениями.

В недостаток конденсаторного блока питания входит

1. Отсутствует гальваническая развязка от сети. Выход из строя блока питания может повредить гаджет.

2. Слаботочный выход. С конденсаторным источником питания. Максимальный доступный выходной ток составляет 100 мА или меньше, поэтому для работы с мощными индуктивными нагрузками не рекомендуется.

3. Выходное напряжение и ток не будут стабильными при изменении входного переменного тока.

Осторожно

Следует проявлять особую осторожность при проверке источника питания с использованием понижающего резистора.Не прикасайтесь ни к каким точкам на печатной плате, так как некоторые точки находятся под напряжением сети. Даже после выключения цепи не прикасайтесь к точкам вокруг падающего конденсатора, чтобы предотвратить поражение электрическим током. Следует проявлять особую осторожность при построении цепи, чтобы избежать короткого замыкания и возгорания. Между компонентами должно быть достаточное расстояние. Сглаживающий конденсатор большой емкости взорвется, если он подключен с обратной полярностью. Капающий конденсатор неполяризован, поэтому его можно подключать любым способом.Блок питания необходимо изолировать от остальной части цепи с помощью изоляторов. Схема должна быть размещена в металлическом корпусе, не касаясь какой-либо части печатной платы в металлическом корпусе. Металлический корпус следует правильно заземлить.

Схемы соединений

Простые бестрансформаторные схемы питания

Я часто делаю небольших проектов . Им требуется малый блок питания . Но я не могу найти маленькие трансформаторы.Обычный трансформатор большой и тяжелый, не подходит для моего проекта.

Но я осматриваю свой дом в маленьком бытовом приборе в Китае. Даже в большинстве светодиодных лампочек. В них используется бестрансформаторная схема питания .

Они используют конденсатор вместо более крупного трансформатора . Таким образом, блоки питания меньше и легче.

Сегодня мы познакомимся с этой бестрансформаторной схемой питания . Так что можете выбирать как хотите.

Надеюсь, он будет вам полезен. Есть три схемы, как показано ниже.

СМОТРИТЕ ниже!

Сеть переменного тока

Во-первых, нам нужно знать, что СЕТЬ переменного тока находится под высоким напряжением 220 В или 110 В. Его номинальное напряжение намного выше, чем у аккумулятора. А также имеют разные формы сигнала.

Это называется переменным током (AC). Обычно генерируется вращением катушки в магнитном поле.

Сеть 50 Гц или 60 Гц (в США).

Опасно!

Не прикасайтесь к каким-либо частям этих цепей.Поскольку , вы можете получить удар током . Хотя делает низкое напряжение. Мы не можем коснуться всего этого. Потому что в нем не используется изолированный трансформатор .

Почему сеть переменного тока опасна?

Наше тело может работать только от 60 до 80 В. Итак, любые перенапряжения, которые могут вызвать мгновенную смерть.

Сеть переменного тока Измерение

Обычно мы знаем напряжение в 0,707 раз больше пикового напряжения. Это называется среднеквадратичным напряжением. И пиковое напряжение (или ток) равно 1.В 41 раз больше среднеквадратичного значения.

Например, среднеквадратичное напряжение 220 В составляет 311 В (размах). Это очень высокое напряжение.

СЕТЬ ПЕРЕМЕННОГО ТОКА опасна. Потому что напряжение слишком высокое.
Фактически это 311 В для 220 В переменного тока. или 345 В для 240 В.

Посмотрите на изображение

Линия поднимается на 311 В, затем падает на 311 В ниже «земли» 50 раз в секунду (частота 50 Гц). Тогда это вызовет ТЕКУЩИЙ ПОТОК через ваше тело, и это очень быстро убьет вас.

Базовая схема источника питания постоянного тока

См. Ниже.Это трансформаторная схема питания.

Базовая нерегулируемой цепи питания 12В 0,2А. Также мы назвали схему полупрямого выпрямителя.

Мы используем трансформатор для переключения с высокого переменного напряжения на более низкое. Смотрите в его символе. Между первичной и вторичной обмотками находится изоляция.

А имеет две линии, обозначающие магнитную цепь, которая существует между двумя обмотками.

Силовой трансформатор Четко разделите катушки. Таким образом, мы вполне защищены от поражения электрическим током.Но если использовать конденсатор вместо небольшого трансформатора

ИСТОЧНИК ПИТАНИЯ НА КОНДЕНСАТОРЕ

Если нейтраль подключена к 0В источника питания. Это не проблема.

Но что будет, если провода поменять местами.
Линия подключается к 0V как отверстие розетки в стене.

Если потрогать. Вы получите шок.

Опасности ИСТОЧНИКА ПИТАНИЯ

С КОНДЕНСАТОРНЫМ ПИТАНИЕМ

Давайте узнаем об опасностях ИСТОЧНИКА ПИТАНИЯ С КОНДЕНСАТОРНЫМ ПИТАНИЕМ.И как это работает.

Какое выходное напряжение?

В нормальной цепи с подключенной нагрузкой выходное напряжение
конденсаторного источника питания падает только до 12 В или 35 В.

Но…

Когда нагрузка снимается, напряжение питания возрастает до 180 В, 311 В или 340 В. Это еще одна причина, почему они так ОПАСНЫ.

Простой расчет конденсатора

Все наши расчеты производятся с конденсаторами, кратными 0,1 мкФ.
Это упрощает вычисления.
Конденсатор 0,1 мкФ пропускает 7 мА при подключении к мосту. Или 3,5 мА, если только один диод (полупрямой выпрямитель).

И все значения уменьшаются вдвое для 110 В переменного тока.

Например. Вы используете 0,33 мкФ. Он будет пропускать 7 мА x 0,33 мкФ = 23,1 мА

Простейшая схема светодиодного дисплея сети переменного тока

Вот простейшие схемы светодиодного дисплея сети переменного тока. Или это блок питания с конденсатором FED, для которого требуется диод и красный светодиод.

Эти два элемента называются НАГРУЗКОЙ.

Конденсатор пропускает (заряжает) ток в одном направлении при повышении напряжения в сети.Затем он пропускает ток (разряжается) в обратном направлении, когда сеть падает.

Это синусоидальный сигнал, как указано выше.

Когда напряжение в сети растет, а мощность источника питания увеличивается. А когда 1,7в. Красный светодиод загорается, и это напряжение больше не повышается.

Итак, теперь конденсатор будет накапливать или заряжать напряжение около 309В. (Сеть переменного тока — ВЛЭД).

При падении напряжения в сети. Выход блока питания будет отрицательным. А когда он равен 0.7V отрицательный. диод предотвращает падение напряжения.

Затем конденсатор разряжается и начинает заряжаться в обратном направлении до 309В.

Красный светодиод показывает НАГРУЗКУ в одном направлении, а диод — нагрузку в другом направлении.

Полуволновой бестрансформаторный источник питания

Посмотрите на схему ниже. Это основной полуволновой источник питания с конденсаторным питанием, показанный на схеме.

Каждые 0,1 мкФ емкости обеспечивают среднеквадратичное значение 7 мА.
В полуволновом питании конденсатор выдает 3.5 мА RMS. Потому что ток теряется в нижнем диоде, когда он разряжает конденсатор.

Использование стабилитрона

См. Схему. Это только один стабилитрон вместо двух предыдущих. Это умный дизайн.

Почему?

Стабилитрон выходит из строя в обоих направлениях.
Сверху, на катоде ломается стабилитрон 12В. И
в обратную сторону пробивает на 0,7В.

Максимальная нагрузка составляет 12 В. И стабилитрон разрядит конденсатор.Чтобы подготовиться к следующему циклу.

Принцип работы

Выходной ток 16 мА. Потому что конденсатор 0,47мкФ.

Когда подключаем нагрузку. Некоторый ток будет вытягиваться из стабилитрона и протекать через НАГРУЗКУ.

Это интересный момент.

  • Уменьшите сопротивление нагрузки. Тогда через нагрузку будет протекать больший ток. Пока не дойдет до 16 мА. Весь ток от конденсатора будет проходить только через нагрузку. Нет тока на диод Ценнера.
  • Увеличивайте нагрузку до тех пор, пока напряжение на ней не упадет до 11 В, 10 В, 9 В…. Но ток останется на уровне 16 мА. В конце концов, напряжение снизится до 1 В при 16 мА.
  • Но если нет нагрузки, весь ток от конденсатора будет проходить через стабилитрон.

Каков рейтинг стабилитрона?

Стабилитрон имеет номинальную мощность как резистор. Это количество тепла, от которого он избавляется, не становясь слишком горячим. Если он перегрет.В конце концов, его можно повредить. Мы должны правильно выбрать и настроить схему.

Часто мы видим 500 мВт и 1Вт.

Мы можем легко определить рассеиваемую мощность.

Его мощность составляет V x I

  • Во-первых, V — это напряжение стабилитрона. Это 12 В.

На каждые 0,1 мкФ схема будет выдавать 3,5 мА
Предположим, что емкость конденсатора 0,47 мкФ = 16 мА

Рассеиваемая мощность стабилитрона будет 12 × 16 = 200 мВт.
Мы можем использовать 500 мВт.Не будет слишком жарко.

Полуволновой источник питания с конденсатором и электролитическим фильтром

Как и другие источники постоянного тока. Если нам нужны низкие пульсации напряжения. Нам нужно добавить фильтр электролитического конденсатора.

Посмотрите:

Нам нужно добавить диод, чтобы предотвратить электролитический разряд во второй половине цикла.

Мы видим, что однополупериодный бестрансформаторный источник питания имеет то преимущество, что он прост, но дает низкий ток. Мы должны выбрать лучшую мостовую схему.Читать дальше.

Использование специального конденсатора

Мы должны использовать специальный тип конденсатора. И он должен быть рассчитан на тип 400 В переменного тока. И должен быть построен с материалами и изоляцией, чтобы не взорваться.

Эти специальные типы конденсаторов имеют обозначение X2.
Подойдет любой конденсатор. Но у некоторых произойдет короткое замыкание или взрыв без видимой причины.

X2 Capacitor

Потому что конденсатор заряжается и разряжается 100 или 120 раз в секунду.

Фольга и изоляция испытывают определенное напряжение.почему это должно быть прочно построено.

Хотя теоретически в конденсаторе нет потерь энергии, он немного нагревается из-за потерь.

Зарядка и разрядка сгруппированы как пульсирующий ток, и этот ток всегда вызывает небольшой нагрев.

Добавление

ПРЕДОХРАНИТЕЛЕЙ

Когда цепь включена. Мы не знаем, напряжение в сети равно нулю, небольшому положительному значению или полному 311В.

Если это 311В. Сначала для зарядки конденсатора будет протекать очень сильный ток.Это повредит светодиод.

Чем мы можем помочь?

Ограничьте этот ток. Мы добавляем резистор 470 Ом последовательно с линией переменного тока.

6 светодиодных дисплеев с сетью переменного тока

См. Эту схему: 6 светодиодных дисплеев для сети переменного тока.
Если можно добавить в схему еще светодиодов. Они ВСЕ будут светиться.

Мы не можем добавить сотни светодиодов. Поскольку, когда мы добавляем еще один светодиод, напряжение на комбинации увеличивается на 1,7 В.

И когда сумма станет 311в. Ни один из светодиодов не загорится.

Это потому, что разница в напряжении между сетевым напряжением и напряжением светодиода равна нулю.

Плохая конструкция с использованием одного диода. Потому что светодиоды горят только на каждом полупериоде.

Светодиоды включаются и выключаются очень быстро, и они тоже будут мигать. Это лучшая схема, если использовать МОСТ.

Мостовой бестрансформаторный источник питания

Работает как обычный мостовой источник питания постоянного тока. Мост — это набор из 4 диодов. Форма выходного сигнала называется Pulsating DC или «DC with Ripple».

В мостовой схеме можно использовать нижний конденсатор. Потому что это двухполупериодный выпрямитель.

Почему?

При использовании 0,1 мкФ выходной ток составляет 7 мА. Если мы используем 0,47 мкФ. Выходной ток? (0,47 мкФ x 7 мА) / 0,1 мкФ = 32,9 мА

Мост подает 2 импульса энергии в течение каждого цикла. И это приведет к 100 миганиям каждую секунду (50 Гц).
А если еще светодиодов добавить. Все они будут светиться.

Устранение мерцания

Если мы хотим устранить мерцание.На выходе нужен электролитический конденсатор. Это сохранит энергию во время пика и доставит ее при низком сетевом напряжении.

Посмотрите осциллограмму на цепи. Напряжение остается достаточно высоким, чтобы светодиод постоянно светился.

100 белых светодиодов на сети переменного тока

Вот 100 белых светодиодов Отображение на сети переменного тока. Эта схема проста и очень умна. Т.к. выпрямительные диоды не нужны. Мы используем светодиоды в выпрямителях.

Как?

Нам нужно использовать не менее 50 светодиодов в каждой цепочке и резистор 1 кОм.Чтобы предотвратить их повреждение из-за скачка напряжения. Если цепь включена на пике формы волны.

Резистор предназначен для пропускания сильного импульсного тока через одну из цепочек светодиодов, если цепь включается, когда сеть находится на пике.

Хотя мы можем добавить больше светодиодов в каждую цепочку, ток будет немного падать до тех пор, пока в конечном итоге, когда у вас будет 90 светодиодов в каждой цепочке, ток станет нулевым.

Для 50 светодиодов в каждой цепочке общее характеристическое напряжение будет 180 В.Для каждого светодиода требуется от 3,3 до 3,6 В.

Каждый светодиод потребляет пик менее 7 мА в течение полупериода, в котором он светится.

Все равно посмотрите резистор 1К. Он упадет на 7В. Потому что среднеквадратичный ток составляет 7 мА (7 мА x 1000 Ом = 7 В).

И его мощность составляет 7 В x 7 мА = 49 мВт

У вас должны быть светодиоды в обоих направлениях для зарядки и разрядки конденсатора.

5 светодиодных дисплеев с лучшей схемой питания с конденсатором

Эта схема является лучшим источником питания с питанием от крышки для 5 светодиодных дисплеев.

В нем используются 4 диода (мостиковые диоды) для получения максимального тока от конденсатора 0,22 мкФ и электролитический для сглаживания любого мерцания.

38 СВЕТОДИОДНАЯ ЛАМПА с бестрансформаторным питанием

Это пример практического использования светодиодных ламп. Это лампа из 38 светодиодов, использующая конденсаторный источник питания для освещения 38 белых светодиодов.

Общее напряжение на светодиодах составляет 38 x 3,6 = 138 В. Конденсатор емкостью 0,33 мкФ обеспечивает около 20 мА. При мощности около 4,4 Вт (220 В x 20 мА)

Бестрансформаторный источник питания с фиксированным напряжением

Вот схема питания трансформатора с регулируемым напряжением постоянного тока.

Смотрите в схеме. Эта умная конструкция использует 4 диода в мосте для создания источника питания с фиксированным напряжением, способного выдерживать ток 35 мА.

Все диоды (все типы диодов) — стабилитроны. Все они выходят из строя при определенном напряжении. Дело в том, что силовой диод выходит из строя при напряжении 100 или 400 В, и его стабилитрон бесполезен.

А вот если поставить 2 стабилитрона в мост с двумя обычными силовыми диодами, мост выйдет из строя при напряжении стабилитрона.

Вот что мы сделали.Если мы используем стабилитроны 18 В, на выходе будет стабилизированный источник питания 17 В 4.

Когда входящее напряжение сверху положительно, левый стабилитрон D1 обеспечивает ограничение 18 В. А другой стабилитрон (D2) дает падение 0,6 В.

Это позволяет правому стабилитрону пропускать ток, как обычный диод.

Выходной формат 17v4. То же и с другим полупериодом.

Ток устанавливается величиной конденсаторов C1 и C2 (параллельно). С мостового выпрямителя ток составляет 7 мА на каждый 0.1 мкФ. Итак, у нас есть емкость 1u. Итак, схема будет выдавать 70 мА. но он будет выдавать только 35 мА до того, как выходной сигнал упадет.

Конденсаторы C1 и C2 должны соответствовать классу X1 или X2.

Резистор R1, 10 Ом — это предохранительный резистор.

Проблема с этим источником питания в том, что он убьет вас, поскольку ток будет проходить через диод и быть смертельным. если вам нужно коснуться отрицательной шины (или положительной шины) и любого заземленного устройства, такого как тостер, чтобы убить.

Единственное решение заключено с этой схемой в коробку без выходов.

Бестрансформаторный источник питания 9 В постоянного тока

Это источник питания 9 В постоянного тока без трансформатора, это простая схема и небольшой размер.

Из принципа выше. Пробуем установить эту схему.

Выходное напряжение такое же, как падение напряжения на стабилитроне -ZD1.

Можно найти ток 7 мА для конденсатора 0,1 мкФ. Должно быть 70мА.Но некоторые токи падают с R4 на R6 (параллельно). Выходной сигнал на 35 мА ниже фиксированного напряжения 9 В. Таким образом, мы можем использовать это вместо батареи 9 В.

Если вам нравится эта схема, посмотрите: Сирена переменного тока без трансформатора

Заключение

Мы видим, что бестрансформаторные источники питания очень полезны и популярны. Особенно в светодиодных лампах. Но хотелось бы сделать акцент на безопасности. Всегда на первом месте.

Примечание:
Хотя раньше я использовал этот тип схемы питания.В технике китайского производства.

Им интересуются многие друзья. Я учился во многих местах. Я нашел, что мистер Колин Митчелл описал это очень легко для понимания.
Спасибо. Источник http://www.talkingelectronics.com/

Читать дальше: Бестрансформаторный источник питания 5 В

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Схема цепи бестрансформаторного источника питания

Генерация низкого напряжения постоянного тока из сети переменного тока 220 или 110 В очень полезна и необходима в области электроники.Низкое напряжение постоянного тока, такое как 5В, 6В, 9В, 12В, используется в электронных схемах, светодиодных лампах, игрушках и многих предметах бытовой электроники. Обычно для их питания используются батареи, но их необходимо время от времени заменять, что нерентабельно, а также требует нашего времени и энергии. Таким образом, альтернативой является создание постоянного тока из сети переменного тока, для которой доступно множество адаптеров переменного тока в постоянный, но какие схемы они используют внутри?

Простой и понятный подход — использовать понижающий трансформатор для понижения переменного тока, но недостатки использования трансформатора состоят в том, что они дороги по стоимости, тяжелые по весу и большие по размеру.Мы уже рассмотрели этот тип преобразования переменного тока в постоянный с использованием трансформатора в этой статье «Схема зарядного устройства для сотового телефона». И да, мы также можем преобразовать высокое напряжение переменного тока в низкое напряжение постоянного тока без использования трансформатора, это называется Бестрансформаторный источник питания . Основным компонентом цепи бестрансформаторного источника питания является конденсатор падения напряжения или конденсатор класса X, которые специально разработаны для сети переменного тока. Этот конденсатор с номиналом X подключен последовательно к фазной линии переменного тока для падения напряжения.Этот тип бестрансформаторного источника питания называется Capacitor Power Supply .

Конденсатор X-Rated

Как уже упоминалось, они подключены последовательно с фазной линией переменного тока для снижения напряжения, они доступны в номиналах 230 В, 400 В, 600 В переменного тока или выше.

Ниже приведена таблица выходного тока и выходного напряжения (без нагрузки) для различных номиналов конденсаторов X-класса:

Код конденсатора

Емкость конденсатора

Напряжение

Текущий

104к

0.1 мкФ

4 v

8 мА

334 тыс.

0,33 мкФ

10 в

22 мА

474 тыс.

0,47 мкФ

12 в

25 мА

684 тыс.

0,68 мкФ

18 в

100 мА

105 КБ

1 мкФ

24 в

40 мА

225 тыс.

2.2 мкФ

24 в

100 мА

Выбор конденсатора падения напряжения важен, он основан на реактивном сопротивлении конденсатора и величине потребляемого тока. Реактивное сопротивление конденсатора определяется по следующей формуле:

.

X = 1 / 2¶fC

X = реактивное сопротивление конденсатора

f = частота переменного тока

C = емкость конденсатора номиналом X

Мы использовали 474k означает 0.Конденсатор 47 мкФ и частота сети AV составляет 50 Гц, поэтому реактивное сопротивление X составляет:

.

X = 1/2 * 3,14 * 50 * 0,47 * 10 -6 = 6776 Ом (приблизительно)

Теперь мы можем рассчитать ток (I) в цепи:

I = V / X = 230/6775 = 34 мА

Вот как рассчитываются реактивное сопротивление и ток.

Описание цепей

Схема проста, конденсатор падения напряжения 0,47 мкФ подключен последовательно с фазной линией переменного тока, это неполяризованные конденсаторы, поэтому его можно подключать с любой стороны.Резистор 470 кОм подключен параллельно конденсатору для разряда накопленного в конденсаторе тока при отключении цепи, что предотвращает поражение электрическим током. Это сопротивление называется сопротивлением Bleeder .

Дополнительный мостовой выпрямитель (комбинация из 4 диодов) был использован для удаления отрицательной половины компонента переменного тока. Этот процесс называется Rectification . Конденсатор 1000 мкФ / 50 В использовался для фильтрации , означает устранение пульсаций в результирующей волне.И, наконец, стабилитрон на 6,2 В / 1 Вт используется в качестве регулятора напряжения. Как мы знаем, эта схема обеспечивает прибл. На выходе 12 В (см. Таблицу выше), поэтому этот стабилитрон регулирует его до прибл. Напряжение 6,2 В и отводить дополнительный ток. Другое значение стабилитрона также может использоваться для желаемого напряжения, такого как 5,1 В, 8 В и т. Д. Светодиод подключается для индикации и тестирования. R3 (100 Ом) используется как токоограничивающий резистор.

Используйте резистор номиналом 1 Вт или выше (5 Вт), особенно резистор R4.В противном случае через некоторое время он загорится. Обычно они толще обычного резистора. Ниже представлена ​​схема для разных типов резисторов:

Преимущества этого бестрансформаторного блока питания по сравнению с блоком питания на базе трансформатора заключаются в следующем: он экономичен, легче и меньше.

Банкноты

  • Делайте это на свой страх и риск, работать от сети переменного тока без надлежащего опыта и мер предосторожности крайне опасно.Соблюдайте особую осторожность при построении этой схемы.
  • Не заменяйте конденсатор номиналом X на обычный конденсатор, иначе он лопнет.
  • Если требуется большее выходное напряжение и выходной ток, используйте конденсатор с номиналом X другого номинала в соответствии с таблицей.
  • Используйте только резистор номиналом 1 Вт или выше (5 Вт) и стабилитрон.
  • Предохранитель

  • A на 1 ампер также можно использовать перед конденсатором класса X, последовательно с фазной линией, в целях безопасности.
  • Стабилизатор напряжения

  • IC также может использоваться вместо стабилитрона для регулирования напряжения.

Конструкция, работа и ее типы

В обычных электронных продуктах источник питания постоянного тока преобразует переменное напряжение в небольшое постоянное напряжение с помощью понижающего трансформатора. Импульсный источник питания или понижающий трансформатор преобразует более высокое переменное напряжение в более низкое переменное напряжение, а затем в желаемое низкое напряжение постоянного тока. Этот процесс имеет главный недостаток, заключающийся в том, что он будет стоить дорого и потребует больше места во время производства и проектирования продукта. Итак, чтобы преодолеть эти недостатки, используется бестрансформаторный блок питания.Это не что иное, как блок питания на основе переключателя. В данной статье описан бестрансформаторный блок питания на 12 В.

Что такое бестрансформаторный источник питания?

Определение: Бестрансформаторный источник питания преобразует высокое входное напряжение переменного тока (120 В или 230 В) в желаемое выходное низкое напряжение постоянного тока (3 В или 5 В или 12 В) с низким выходным током в миллиамперах. Он используется в маломощных электронных устройствах, таких как светодиодные лампы, игрушки и бытовая техника. Это рентабельно и требует меньше места.

Принцип работы

Основной принцип работы бестрансформаторного источника питания представляет собой схему делителя напряжения, которая преобразует однофазное высокое напряжение переменного тока в желаемое низкое постоянное напряжение без использования трансформатора и катушки индуктивности. Вся концепция этого источника питания включает выпрямление, деление напряжения, регулировку и ограничение бросков тока. Принципиальная схема бестрансформаторного источника питания представлена ​​ниже.

Принципиальная электрическая схема бестрансформаторного источника питания

Однофазное высокое напряжение переменного тока (120 В или 230 В) преобразуется в низкое постоянное напряжение (12 В, 3 В или 5 В).Диоды используются для выпрямления и регулирования желаемого постоянного напряжения. Конденсатор, подключенный последовательно с переменным током, ограничивает прохождение переменного тока из-за его реактивного сопротивления. Он контролирует поток тока до определенного значения в зависимости от его типа.

Обычно в этом источнике питания используется конденсатор класса X. Резистор используется для отвода избыточной энергии в виде тепла и тока. Диоды используются для выпрямления высокого напряжения переменного тока в низкое напряжение постоянного тока. Схема мостового выпрямителя снимает отрицательное напряжение и стабилизирует пиковое напряжение в процессе выпрямления.Стабилитрон используется для удаления пульсаций и регулирования напряжения. Светодиод подключается для проверки цепи.

Конструкция / конструкция бестрансформаторного источника питания

Конструкция этого источника питания очень проста. В нем используется неполяризованный конденсатор 225 кОм / 400 В, подключенный последовательно к основному напряжению питания переменного тока и подключенный параллельно к резистору 470 кОм / 1 Вт для разрядки тока (цепь отключена) и предотвращения поражения электрическим током. Конденсатор поддерживает постоянный ток тока благодаря своему реактивному сопротивлению.Так как реактивное сопротивление конденсатора больше сопротивления резистора. Конденсатор класса X используется для снижения тока, а его рабочее напряжение составляет от 250 до 600 В.

Мостовая выпрямительная схема с 4 диодами для выпрямления. Он предназначен для преобразования переменного тока в постоянный (от 220 до 310 В постоянного тока). Конденсатор C2 470мкФ / 100В используется для фильтрации. Он удаляет пульсации из полученного выходного напряжения и поддерживает пиковое напряжение. Стабилитрон используется в качестве регулятора для преобразования в желаемое напряжение постоянного тока (5 В, 3 В или 12 В) в зависимости от области применения.Резистор R3 220 Ом / 1Вт предназначен для ограничения броска тока и действует как ограничивающий ток резистор.

Схема бестрансформаторного источника питания

Принципиальная схема этого источника питания показана ниже. Схема бестрансформаторного источника питания

Этот тип источника питания преобразует высокое переменное напряжение в низкое постоянное напряжение без использования трансформатора и индуктора. Он в основном используется в электронных устройствах малой мощности. Использование бестрансформаторного источника питания снижает стоимость электронных продуктов и занимает меньше места при производстве и проектировании.Они доступны в небольшом размере и небольшом весе по сравнению с источниками питания на основе трансформатора или переключателя. Основным недостатком этого типа является отсутствие развязки между входом и выходом высокого напряжения переменного тока, что приводит к сбоям и проблемам безопасности в цепи.

Типы бестрансформаторных источников питания

Доступны два типа, включая следующие.

Резистивный бестрансформаторный источник питания

Резистор используется параллельно резистору, понижающему напряжение, для сброса избыточной энергии в виде тепла.Он ограничивает избыточный ток за счет своего сопротивления. Резистор падения напряжения рассеивает мощность. Используется резистор с удвоенной номинальной мощностью, потому что на нем рассеивается больше мощности.

Емкостный бестрансформаторный источник питания

он более эффективен, так как тепловыделение и потери мощности низкие. В этом типе конденсатор с номиналом X на 230 В, 600 В или 400 В подключается последовательно к сети для падения напряжения и действует как конденсатор падения напряжения.

Основное различие между резистивным и емкостным типами заключается в том, что избыточная энергия рассеивается в виде тепла на резисторе падения напряжения, а в емкостном типе избыточное напряжение падает на резисторе падения напряжения без какого-либо рассеивания тепла и потерь энергии. Бестрансформаторный источник питания 12В

На приведенной выше схеме представлен бестрансформаторный источник питания 12В.Это не что иное, как преобразование основного переменного напряжения 220 В в напряжение постоянного тока 12 В с использованием конденсатора, резистора, мостового выпрямителя и стабилитрона. Как видно из рисунка выше, C1 используется в качестве конденсатора X-класса для падения высокого переменного напряжения. Мостовой выпрямитель (D1, D2, D3, D4) преобразует переменный ток в постоянный посредством выпрямления. Он преобразует 230 В переменного тока в высокий 310 В постоянного тока из-за пикового среднеквадратичного значения в сигнале переменного тока. Конденсатор C2 удаляет пульсации из полученного напряжения постоянного тока.

Резистор R1 снимает накопленный ток при отключении цепи.Резистор R2 ограничивает прохождение избыточного тока и используется для ограничения броска тока. Стабилитрон используется для снятия пикового обратного напряжения, стабилизации и регулирования выходного постоянного напряжения до 12 В. К цепи подключается светодиод, чтобы проверить, работает он или нет. Вся схема защищена противоударным корпусом, чтобы избежать поражения электрическим током и повреждений. Для изоляции от основного источника переменного тока на входе источника питания можно подключить небольшой изолированный трансформатор.

Приложения

Приложения бестрансформаторного источника питания 12 В включают маломощные и недорогие приложения, такие как

  • Мобильные зарядные устройства
  • Светодиодные лампы
  • Электронные игрушки
  • Аварийное освещение
  • Схемы делителя и регулятора напряжения
  • Телевидение приемники
  • Аналого-цифровые преобразователи
  • Телекоммуникационные системы
  • Цифровые системы связи и т. д.

Итак, это все о бестрансформаторных источниках питания 12 В: определение, теория, конструкция, типы и применения. Вот вам вопрос: «Каковы преимущества и недостатки бестрансформаторного источника питания

12 В Источник питания для светодиодов 150 Вт, водонепроницаемый трансформатор низкого напряжения, 12 В — YGS-Tech

  • Водонепроницаемый блок питания мощностью 150 Вт со степенью защиты IP67, 3-контактный кабель 3,3 фута в комплекте.
  • Входное напряжение 100 — 240 В переменного тока, 50/60 Гц; Выходное напряжение 12 В постоянного тока.5А.
  • Металлический корпус из алюминиевого сплава, легко рассеивает тепло и обеспечивает стабильность.
  • Широко используется для светодиодных лент, светодиодных ламп и любых светодиодных фонарей 12 В постоянного тока.
  • Автоматическая защита от короткого замыкания / перегрузки / перенапряжения / перегрева.

Водонепроницаемый трансформатор драйвера светодиодов IP67 Блок питания 12 В мощностью 150 Вт с 3-контактной вилкой Водонепроницаемый трансформатор драйвера светодиодов
— это надежный источник питания для светодиодных лент и любых других устройств с мощностью менее 150 Вт и рабочим напряжением 12 В постоянного тока.
Его водонепроницаемость подтверждается полностью герметичным корпусом из хромированного алюминиевого сплава. Корпус трансформатора изготовлен из чистого металла со встроенным предохранителем, он защищает от столкновений, ударов, грома. Шнур переменного тока 3,3 фута и вилка с 3 контактами в комплекте, вам просто нужно подключить его к розетке, легко подключить.

Технические характеристики продукта :
Вход: 100-240 В переменного тока, 50/60 Гц
Выход: 12 В постоянного тока, 12,5 А
Мощность: 150 Вт
Рабочая температура: от -10 ℃ до + 60 ℃, 20% -90% относительной влажности
Размеры: 6 .8 * 2,7 * 1,6 дюйма
Водонепроницаемость: IP67
Эффективность входа: 85%
Вес: 2 фунта
Гарантия: 2 года

Характеристики :
Источник питания постоянного напряжения
Универсальный вход переменного тока / Полный диапазон
Охлаждение на открытом воздухе конвекция
Полностью инкапсулирована со степенью защиты IP67
Испытание на выгорание при 100% полной нагрузке
Малый объем, малый вес и высокая эффективность
Защита от короткого замыкания, перегрузки, перенапряжения и температуры

Предупреждения :
Не открывать или модифицируйте источник питания светодиода.
Пожалуйста, оставьте детей подальше от источников питания высокого напряжения.
Используйте его в соответствии с инструкциями профессионального электрика.
Любое злоупотребление или неправильное использование аннулирует гарантию.

Список пакетов :
Водонепроницаемый блок питания 1 * 150 Вт

Бестрансформаторное светодиодное освещение Схема светодиодной лампы

Бестрансформаторная схема со светодиодной лампой 220 В переменного тока работает. Вместо полуполярных светодиодов используется конденсатор емкостью 1 мкФ для запуска трансформатора. В высоковольтном бестрансформаторном корпусе все светодиоды включены последовательно для изучения печатного чертежа… Проекты электроники, Бестрансформаторное светодиодное освещение Схема светодиодной лампы «Светодиодные проекты, проекты силовой электроники, проекты простых схем», Дата 2019/08/03

Бестрансформаторная схема со светодиодной лампой 220 В переменного тока работает. Вместо полуполярных светодиодов используется конденсатор емкостью 1 мкФ для запуска трансформатора. Высоковольтные бестрансформаторные все светодиоды соединены последовательно, чтобы изучить чертеж печатных плат, подготовленный соответствующим образом во время установки светодиодов + — не перепутайте концы.

Количество световых фонарей можно использовать, так как ночная работа неплохая. Раковина, маленькие комнаты, освещения в прихожей местами вроде хватает. Использование светодиодов, имеющих McD (мощность света) не менее 2000 .. В схеме светодиодного освещения используется бестрансформаторное около 55 штук белых светодиодов.

ВНИМАНИЕ! Схема бестрансформаторной светодиодной лампы работает с подключением высоковольтного конденсатора. Соблюдайте осторожность. просто ;

Материалы, которые будут использоваться на некоторых, позвольте мне сказать вам первый чертеж печатной платы без страховки, при желании не использовать ее, но страховка предложит использовать шнур питания не менее 220 В переменного тока, который можно подключить к стеклянным предохранителям небольшого типа на рынке.. .1 мкФ 400 В емкость конденсатора на материале 1 мкФ, как обычно можно написать «105» автор также может написать рабочее напряжение 250 В переменного тока или 275 В переменного тока, вы можете использовать их + резистор 20 Ом, расположенный только на выезде, будет не менее 1 Вт

Proteus ARES электрическая схема светодиодного освещения на печатной плате:

СПИСОК ССЫЛКИ ДЛЯ ЗАГРУЗКИ ФАЙЛОВ (в формате TXT): LINKS-19961.zip

Светодиодный аварийный свет с бестрансформаторным блоком питания

На этой принципиальной схеме используется источник питания 230 В без трансформатора для освещения комбинации из 36 светодиодов SMD или DIP.Поскольку эта цепь не изолирована от 230 В переменного тока трансформатором, существует опасность поражения электрическим током во время тестирования, поэтому необходимо соблюдать особую осторожность. В качестве альтернативы можно использовать адаптер постоянного тока на 12 В и не менее 500 мА на стабилитроне вместо бестрансформаторного источника питания.

Когда источник питания включен, аккумулятор заряжается, и светодиоды не светятся. При отключении питания светодиоды загорятся через аккумулятор. Различные батареи на 12 В от 2 Ач до 7.2Ah можно использовать.

Кроме того, также можно использовать питание 12 В от солнечной панели с током около 320 мА и выше. Но два источника питания должны быть подключены через переключатель DPDT. Центральная клемма перейдет на + ve батареи. Один из других выводов будет подключаться к выходу + ve солнечной панели, а третий — к выходу + ve адаптера переменного / постоянного тока. Все трое соединяются вместе. Поскольку напряжение солнечной панели зависит от интенсивности солнечного света, необходимо подключить диод 1N5402 между + ve солнечной панели и + ve батареи, чтобы предотвратить обратный ток, протекающий от батареи к солнечной панели.

Если используется батарея на 12 В с емкостью более 2 Ач, необходимо увеличить значение R2 до 10 кОм или 15 кОм или даже больше, чтобы предотвратить разряд батареи через него.

Список деталей

Все резисторы 1/4 Вт, 5%,

R1 = 1M

R2 = 1K,

R3 — R14 = 56 Ом

C1 = 2uF / 400V PP конденсатор

Также C1 = 2 nos 1uF / 400V PP
Конденсаторы, подключенные параллельно
1 мкФ / 400 В, как 105/400 В

C2 = 100 мкФ / 25 В

D1, D2 = 1N4007,

D3, D4 = 1N5402

T1 = TIP127

Z1 = 15 В Стабилитрон 1 Вт

Аккумулятор = 12 В / 2 Ач или более

светодиода SMD, 3 В светодиода = белый , 20 мА

Поскольку эта принципиальная схема не имеет защиты от перезарядки батареи, рекомендуется подключить стабилитрон 13 В к клеммам батареи.

Аккумулятор 12 В 7,2 Ач может использоваться для освещения до 100 светодиодов.

Когда схема запитана, напряжение на базе и эмиттере должно быть около 0 В.

При пропадании входного переменного тока должно быть небольшое напряжение на базе и эмиттере. Это необходимо для протекания тока от эмиттера к коллектору от батареи к светодиодам.

В зависимости от емкости используемой батареи в Ач значение R2 необходимо увеличивать до тех пор, пока светодиоды не погаснут полностью при включенном питании переменного тока.

* Напряжение, подаваемое для зарядки аккумулятора, всегда должно быть выше номинального напряжения аккумулятора.

*** Вышеупомянутая схема может использоваться для зарядки аккумуляторов с различным напряжением, изменяя значение конденсатора C1 и значение стабилитрона Z1.

Для защиты от пусковых импульсных токов термистор может быть подключен последовательно к входному источнику питания 230 В.
Пример:

.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *