Стабилизатор напряжения переменного напряжения своими руками: схема + инструктаж по сборке

Содержание

Виды и схемы стабилизаторов напряжения

Автор: Александр Старченко

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

 

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

 

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

 

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Схема мощного стабилизатора напряжения 220в своими руками. Стабилизатор напряжения — как все сделать своими руками. Видео. Преимущества и недостатки перед фабричными

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками. Часть схем рассматривают стабилизатор без защиты от КЗ в нагрузке, в других заложена возможность плавного регулирования напряжения от 0 до 20 Вольт. Ну а отличительной чертой отдельных схемы является возможность защиты от короткого замыкания в нагрузке.

5 очень простых схем в основном собранных на транзисторах, одна из них, с защитой от КЗ

Очень часто бывает когда для питания вашей новодельной электронной самоделки требуется стабильное напряжение, которое не меняется от нагрузки, например, 5 Вольт или 12 Вольт для питания автомагнитолы. И чтобы сильно не заморачиваться с конструированием самодельного блока питания на транзисторах, используются так называемые микросхемы стабилизаторы напряжения. На выходе такого элемента мы получим напряжение, на которое спроектирован этот прибор

Многие радиолюбители уже неоднократно собирали схемы стабилизаторов напряжения на специализированных микросхемах серий 78хх, 78Мхх, 78Lxx. Например, на микросхеме KIA7805 можно собрать самодельную схему рассчитаную на выходное напряжение +5 В и максимальный ток нагрузки 1 А. Но мало кто знает, что имеются узко специализированный микросхемы серии 78Rxx, которые сочитают в себе стабилизаторы напряжения положительной полярности с малым напряжением насыщения, которое не превышает 0, 5 В при токе нагрузки 1 А. Одну из этих схем мы и рассмотрим более подробно.

Регулируемый трехвыводной стабилизатор положительного напряжения LM317 обеспечивает ток нагрузки 100 мА в диапазоне выходного напряжения от 1.2 до 37 В. Стабилизатор очень удобен в применении и требуют только два внешних резистора для обеспечения выходного напряжения. Кроме того, нестабильность по напряжению и току нагрузки у стабилизатора LM317L имеет лучшие показателями, чем у традиционных стабилизаторов с фиксированным значением выходного напряжения.

Для стабилизации напряжения постоянного тока достаточно большой мощности в числе других применяются компенсационные стабилизаторы непрерывного действия. Принцип действия такого стабилизатора заключается в поддержании выходного напряжения на заданном уровне за счет изменения падения напряжения на регулирующем элементе. При этом величина управляющего сигнала, поступающего на регулирующий элемент, зависит от разницы между заданным и выходным напряжениями стабилизатора.

При стационарной эксплуатации аппаратуры, CD и аудиоплейеров возникают проблемы с БП. Большинство блоков питания, выпускаемых серийно отечественным производителем, (если быть точным) практически все не могут удовлетворить потребителя, так как содержат упрощенные схемы. Если говорить об импортных китайских
и им подобных блоках питания, то они, вообще, представляют интересный набор деталей «купи и выброси». Эти и многие другие проблемы заставляют радиолюбителейно изготовлять блоки питания. Но и на этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Данная радиолюбительская разработка представлена как вариант нетрадиционного включения операционного усиителя, ранее опубликованного и вскоре забытого

Почти все радиолюбительские самоделки и конструкции имеют в своем составе стабилизированный источник питания. А если ваша конструкция работает от напряженияпять вольт, то лучшим вариантом будет использование трехвыводного интегрального стабилизатора 78L05

Стабилизатор напряжения на 220 вольт

В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.

Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)

Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.

На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема

Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16
поступает на вход микроконтроллера через конденсатор C10
.
Питание реле и микросхемы осуществляется через диод D3
и микросхему U1
. Кнопка SB1
совместно с резистором R1
служат для калибровки стабилизатора. Транзисторы Q1-Q4
– усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422
и обмотки реле шунтированы диодами 1N4007
и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676
.
Блок программы zero
ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U
измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on
, R2off
, R1on
и R1off
.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50
200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1
, а вспомогательные LIMING JZC — 22F
.
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).

Прибор повешен на стене и закрыт кожухом из жести

Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР»а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой

🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165

Здравствуй, читатель!
Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель.
Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи — помоги мне!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Содержание:


В электрических цепях постоянно возникает необходимость в стабилизации тех или иных параметров. С этой целью применяются специальные схемы управления и слежения за ними. Точность стабилизирующих действий зависит от так называемого эталона, с которым и сравнивается конкретный параметр, например, напряжение. То есть, когда значение параметра будет ниже эталона, схема стабилизатора напряжения включит управление и отдаст команду на его увеличение. В случае необходимости выполняется обратное действие — на уменьшение.

Данный принцип работы лежит в основе автоматического управления всеми известными устройствами и системами. Точно так же действуют и стабилизаторы напряжения, несмотря на разнообразие схем и элементов, используемых для их создания.

Схема стабилизатора напряжения 220в своими руками

При идеальной работе электрических сетей, значение напряжения должно изменяться не более чем на 10% от номинала в сторону увеличения или уменьшения. Однако на практике перепады напряжения достигают гораздо больших значений, что крайне отрицательно сказывается на электрооборудовании, вплоть до его выхода из строя.

Защититься от подобных неприятностей поможет специальное стабилизирующее оборудование. Однако из-за высокой стоимости, его применение в бытовых условиях во многих случаях экономически невыгодно. Наилучшим выходом из положения становится самодельный стабилизатор напряжения 220в, схема которого достаточно простая и недорогая.

За основу можно взять промышленную конструкцию, чтобы выяснить, из каких деталей она состоит. В состав каждого стабилизатора входят трансформатор, резисторы, конденсаторы, соединительные и подключающие кабели. Самым простым считается стабилизатор переменного напряжения, схема которого действует по принципу реостата, повышая или понижая сопротивление в соответствии с силой тока. В современных моделях дополнительно присутствует множество других функций, обеспечивающих защиту бытовой техники от скачков напряжения.

Среди самодельных конструкций наиболее эффективными считаются симисторные устройства, поэтому в качестве примера будет рассматриваться именно эта модель. Выравнивание тока этим прибором будет возможно при входном напряжении в диапазоне 130-270 вольт. Перед началом сборки необходимо приобрести определенный набор элементов и комплектующих. Он состоит из блока питания, выпрямителя, контроллера, компаратора, усилителей, светодиодов, автотрансформатора, узла задержки включения нагрузки, оптронных ключей, выключателя-предохранителя. Основными рабочими инструментами служат пинцет и паяльник.

Для сборки стабилизатора на 220 вольт
в первую очередь потребуется печатная плата размером 11,5х9,0 см, которую нужно заранее подготовить. В качестве материала рекомендуется использовать фольгированный стеклотекстолит. Схема размещения деталей распечатывается на принтере и переносится на плату с помощью утюга.

Трансформаторы для схемы можно взять уже готовые или собрать самостоятельно. Готовые трансформаторы должны иметь марку ТПК-2-2 12В и соединяться последовательно между собой. Для создания первого трансформатора своими руками потребуется магнитопровод сечением 1,87 см2 и 3 кабеля ПЭВ-2. Первый кабель применяется в одной обмотке. Его диаметр составит 0,064 мм, а количество витков — 8669. Оставшиеся провода используются в других обмотках. Их диаметр будет уже 0,185 мм, а число витков составит 522.

Второй трансформатор изготавливается на основе тороидального магнитопровода. Его обмотка выполняется из такого же провода, как и в первом случае, но количество витков будет другим и составит 455. Во втором устройстве делаются отводы в количестве семи. Первые три изготавливаются из провода диаметром 3 мм, а остальные из шин, сечением 18 мм2. За счет этого предотвращается нагрев трансформатора во время работы.

Все остальные комплектующие рекомендуется приобретать в готовом виде, в специализированных магазинах. Основой сборки является принципиальная схема стабилизатора напряжения, заводского изготовления. Вначале устанавливается микросхема, выполняющая функцию контроллера для теплоотвода. Для ее изготовления используется алюминиевая пластина площадью свыше 15 см2. На эту же плату производится монтаж симисторов. Теплоотвод, предназначенный для монтажа, должен быть с охлаждающей поверхностью. После этого сюда же устанавливаются светодиоды в соответствии со схемой или со стороны печатных проводников. Собранная таким образом конструкция, не может сравниваться с заводскими моделями ни по надежности, ни по качеству работы. Такие стабилизаторы используются с бытовыми приборами, не требующими точных параметров тока и напряжения.

Схемы стабилизаторов напряжения на транзисторах

Качественные трансформаторы, применяемые в электрической цепи, эффективно справляются даже с большими помехами. Они надежно защищают бытовую технику и оборудование, установленные в доме. Настроенная система фильтрации позволяет бороться с любыми скачками напряжения. За счет контроля над напряжением происходят изменения величины тока. Предельная частота на входе увеличивается, а на выходе — уменьшается. Таким образом, ток в цепи преобразуется в течение двух этапов.

В начале на входе задействуют транзистор с фильтром. Далее происходит включение в работу . Для завершения преобразования тока в схеме применяется усилитель, чаще всего устанавливаемый между резисторами. За счет этого в устройстве поддерживается необходимый уровень температуры.

Схема выпрямления действует следующим образом. Выпрямление переменного напряжения с вторичной обмотки трансформатора происходит с помощью диодного моста (VD1-VD4). Сглаживание напряжения выполняет конденсатор С1, после чего оно попадает в систему компенсационного стабилизатора. Действие резистора R1 задает стабилизирующий ток на стабилитроне VD5. Резистор R2 является нагрузочным. При участии конденсаторов С2 и С3 происходит фильтрация питающего напряжения.

Значение выходного напряжения стабилизатора будет зависеть от элементов VD5 и R1 для выбора которых существует специальная таблица. VT1 устанавливается на радиаторе, у которого площадь охлаждающей поверхности должна быть не менее 50 см2. Отечественный транзистор КТ829А может быть заменен зарубежным аналогом BDX53 от компании Моторола. Остальные элементы имеют маркировку: конденсаторы — К50-35, резисторы — МЛТ-0,5.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому — КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами — стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) — полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 — 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Схема симисторного стабилизатора напряжения 220в

Симисторные стабилизаторы работают по аналогии с релейными устройствами. Существенным отличием является наличие узла, переключающего обмотки трансформатора. Вместо реле используются мощные симисторы, работающие под управлением контроллеров.

Управление обмотками с помощью симисторов — бесконтактное, поэтому при переключениях нет характерных щелчков. Для намотки автотрансформатора используется медный провод. Симисторные стабилизаторы могут работать при пониженном напряжении от 90 вольт и высоком — до 300 вольт. Регулировка напряжения осуществляется с точностью до 2%, отчего лампы совершенно не моргают. Однако во время переключений возникает ЭДС самоиндукции, как и в релейных устройствах.

Симисторные ключи обладают повышенной чувствительностью к перегрузкам, в связи с чем они должны иметь запас по мощности. Данный тип стабилизаторов отличается очень сложным температурным режимом. Поэтому установка симисторов осуществляется на радиаторы с принудительным вентиляторным охлаждением. Точно так же работает схема тиристорного стабилизатора напряжения 220В своими руками.

Существуют устройства с повышенной точностью, работающие по двухступенчатой системе. На первой ступени выполняется грубая регулировка выходного напряжения, а на второй ступени этот процесс осуществляется значительно точнее. Таким образом, управление двумя ступенями выполняется с помощью одного контроллера, что фактически означает наличие двух стабилизаторов в едином корпусе. Обе ступени имеют обмотки, намотанные в общем трансформаторе. При наличии 12 ключей, эти две ступени позволяют регулировать выходное напряжение в 36 уровнях, чем и обеспечивается его высокая точность.

Стабилизатор напряжения с защитой по току схема

Данные устройства обеспечивают питание преимущественно для низковольтных устройств. Такой стабилизатор тока и напряжения схема отличается простотой конструкции, доступной элементной базой, возможностью плавных регулировок не только выходного напряжения, но и тока, при котором срабатывает защита.
Основой схемы является параллельный стабилизатор или регулируемый стабилитрон, а также с высокой мощностью. С помощью так называемого измерительного резистора контролируется ток, потребляемый нагрузкой.

Иногда на выходе стабилизатора возникает короткое замыкание или ток нагрузки превышает установленное значение. В этом случае на резисторе R2 падает напряжение, а транзистор VT2 открывается. Происходит и одновременное открытие транзистора VT3, шунтирующего источник опорного напряжения. В результате, значение выходного напряжения снижается практически до нулевого уровня, и регулирующий транзистор оказывается защищенным от перегрузок по току. Для того чтобы установить точный порог срабатывания токовой защиты, применяется подстроечный резистор R3, включаемый параллельно с резистором R2. Красный цвет светодиода LED1 указывает на срабатывание защиты, а зеленый LED2 — на выходное напряжение.

После правильно выполненной сборки схемы мощных стабилизаторов напряжения сразу же включаются в работу, достаточно всего лишь выставить необходимое значение выходного напряжения. После загрузки устройства реостатом выставляется ток, при котором срабатывает защита. Если защита должна срабатывать при меньшем токе, для этого необходимо увеличить номинал резистора R2. Например, при R2 равном 0,1 Ом, минимальный ток срабатывания защиты будет составлять около 8А. Если же нужно, наоборот, увеличить ток нагрузки, следует параллельно включить два и более транзисторов, в эмиттерах которых имеются выравнивающие резисторы.

Схема релейного стабилизатора напряжения 220

С помощью релейного стабилизатора обеспечивается надежная защита приборов и других электронных устройств, для которых стандартный уровень напряжения составляет 220В. Данный стабилизатор напряжения 220В, схема которого всем известна. Пользуется широкой популярностью, благодаря простоте своей конструкции.

Для того чтобы правильно эксплуатировать это устройство, необходимо изучить его устройство и принцип действия. Каждый релейный стабилизатор состоит из автоматического трансформатора и электронной схемы, управляющей его работой. Кроме того, имеется реле, помещенное в надежный корпус. Данный прибор относится к категории вольтодобавочных, то есть с его помощью лишь добавляется ток в случае низкого напряжения.

Добавление необходимого количества вольт осуществляется путем подключения обмотки трансформатора. Обычно для работы используется 4 обмотки. В случае слишком высокого тока в электрической сети, трансформатор автоматически уменьшает напряжение до нужного значения. Конструкция может быть дополнена и другими элементами, например, дисплеем.

Таким образом, релейный стабилизатор напряжения имеет очень простой принцип работы. Ток измеряется электронной схемой, затем, после получения результатов, он сравнивается с выходным током. Полученная разница в напряжении регулируется самостоятельно путем подбора необходимой обмотки. Далее, подключается реле и напряжение выходит на необходимый уровень.

Стабилизатор напряжения и тока на LM2576

Напряжение домашней электросети часто бывает пониженным, никогда не достигая нормальных 220 В. В такой ситуации и холодильник плохо запускается, и освещение слабое, и вода в электрочайнике долгое время не закипает. Мощность устаревшего стабилизатора напряжения, предназначенного для питания черно-белого (лампового) телевизора, обычно недостаточна для всех других бытовых приборов, да и напряжение в сети зачастую падает ниже допустимого для такого стабилизатора.

Известен простой способ повысить напряжение в сети, используя трансформатор мощностью значительно меньше мощности нагрузки. Первичную обмотку трансформатора включают непосредственно в сеть, а нагрузку соединив последовательно со вторичной (понижающей) обмоткой трансформатора. При соответствующей фазировке напряжение на нагрузке будет равно сумме сетевого и снимаемого с трансформатора.

Схема стабилизатора сетевого напряжения
, действующего по этому принципу, изображена на рис. 1. Когда включенный в диагональ диодного моста VD2 полевой транзистор VT2 закрыт, обмотка I (первичная) трансформатора Т1 отключена от сети. Напряжение на нагрузке практически равно сетевому за вычетом небольшого падения напряжения на обмотке II (вторичной) трансформатора Т1. Если же открыть полевой транзистор, цепь питания первичной обмотки трансформатора будет замкнута, а к нагрузке приложена сумма напряжения его вторичной обмотки и сетевого.

Рис. 1 Схема стабилизатора напряжения

Напряжение на нагрузке, пониженное трансформатором Т2 и выпрямленное диодным мостом VD1, поступает на базу транзистора VT1. Движок подстроечного резистора R1 должен быть установлен в положение, при котором транзистор VT1 открыт, a VT2 закрыт, если напряжение на нагрузке больше номинального (220 В). При напряжении меньше номинального транзистор VT1 будет закрыт, a VT2 — открыт. Организованная таким образом отрицательная I обратная связь поддерживает напряжение на нагрузке приблизительно равным номинальному

Выпрямленное мостом VD1 напряжение использовано и для питания коллекторной цепи транзистора VT1 (через интегральный стабилизатор DA1). Цепь C5R6 подавляет нежелательные выбросы напряжения сток-исток транзистора VT2. Конденсатор С1 снижает помехи, проникающие в сеть при работе стабилизатора. Резисторы R3 и R5 подбирают, добиваясь наилучшей и устойчивой стабилизации напряжения. Выключателем SA1 включают и выключают стабилизатор вместе с нагрузкой. Замкнув выключатель SA2, отключают автоматику, поддерживающую напряжение на нагрузке неизменным. Оно в этом случае становится максимально возможным при данном напряжении в сети.

Большинство деталей стабилизатора смонтированы на печатной плате, изображенной на рис. 2. Остальные соединяются с ней в точках А-Г.

Подбирая замену диодному мосту КЦ405А
(VD2), следует иметь в виду, что он должен быть рассчитан на напряжение не менее 600 В и ток, равный максимальному току нагрузки, деленному на коэффициент трансформации трансформатора Т1. Требования к мосту VD1 скромнее: напряжение и ток — не менее соответственно 50 В и 50 мА

Рис. 2 Монтаж печатной платы

Транзистор КТ972А
можно заменить на КТ815Б
, a IRF840
— на IRF740
. Полевой транзистор имеет теплоотвод размерами 50×40 мм.

«Вольтодобавочный» трансформатор Т1 изготовлен из трансформатора СТ-320, применявшегося в блоках питания БП-1 телевизоров УЛПЦТ-59. Трансформатор разбирают, и аккуратно сматывают вторичные обмотки, оставив первичные в сохранности. Новые вторичные обмотки (одинаковые на обеих катушках) наматывают эмалированным медным проводом (ПЭЛ или ПЭВ) в соответствии с данными, приведенными в таблице. Чем сильнее падает напряжение в сети, тем больше потребуется витков и тем меньше допустимая мощность нагрузки.

После перемотки и сборки трансформатора выводы 2 и 2″ половин первичной обмотки, находящихся на разных стержнях магнитопровода, соединены перемычкой. Половины вторичной обмотки нужно соединить последовательно таким образом, чтобы их суммарное напряжение было максимальным (при неправильном соединении оно окажется близким к нулю). По максимуму суммарного напряжения вторичной обмотки и сети нужно определить, какой из оставшихся свободными выводов этой обмотки следует соединить с выводом 1 первичной, а какой — с нагрузкой.

Трансформатор Т2 — любой сетевой с напряжением на вторичной обмотке, близким к указанному на схеме при потребляемом от этой обмотки токе 5О…1ООмА.

Таблица
1

Добавочное напряжение, В

70

60

50

40

30

20

Максимальная мощность нагрузки, кВт

1

1.2

1.4

1,8

2,3

3,5

Число витков обмотки II

60+60

54+54

48+48

41+41

32+32

23+23

Диаметр провода, мм

1.5

1,6

1,8

2

2,2

2,8

Включив собранный стабилизатор в сеть, подстроечным резистором R1 установите напряжение на нагрузке равным 220 В. Следует учитывать, что описанное устройство не устраняет колебания сетевого напряжения, если оно превышает 220 В или опускается ниже минимального, принятого при расчете трансформатора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Примечание: в тяжелых режимах работы стабилизатора, мощность, рассеиваемая транзистором VT2, бывает весьма увеличенной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем теплоотводе транзистора.

Электронный стабилизатор напряжения 220 своими руками. Виды и схемы стабилизаторов напряжения

Исследовав источники и ряд сайтов в Интернете, я упростил стабилизатор переменного напряжения, описанный в статье . Число микросхем удалось сократить до четырёх, число оптосимисторных ключей — до шести. Принцип действия стабилизатора такой же, как у прототипа .

Основные технические характеристики стабилизатора напряжения:

  • Входное напряжение, В …..135…270
  • Выходное напряжение, В. . . .197…242
  • Максимальная мощность нагрузки, кВт ………………5
  • Время переключения или отключения нагрузки,мс …….10

Схема предлагаемого стабилизатора показана на рисунке. Устройство состоит из силового модуля и блока управления. Силовой модуль содержит мощный автотрансформатор Т2 и шесть ключей переменного тока, обведённых на схеме штрихпунктирной линией.

Остальные детали образуют блок управления. Он содержит семь пороговых устройств: I — DA2.1 R5 R11 R17, II -DA2.2 R6 R12 R18, III — DA2.3 R7 R13 R19, IV — DA2.4 R8 R14 R20, V — DA3.1 R9 R15 R21, VI — DA3.2 R10 R16 R22, VII -DA3.3 R23. На одном из выходов дешифратора DD2 присутствует напряжение высокого уровня, которое вызывает включение соответствующего светодиода (одного из HL1 — HL8).

Мощный автотрансформатор Т2 включён иначе, чем в прототипе. Напряжение сети подаётся на один из отводов обмотки или на обмотку целиком через один из симисторов VS1—VS6, а нагрузка подключена к одному и тому же отводу. При таком включении расходуется меньше провода на обмотку автотрансформатора.

Напряжение обмотки II трансформатора Т1 выпрямляют диоды VD1, VD2 и сглаживает конденсатор С1. Выпрямленное напряжение пропорционально входному. Оно используется как для питания блока управления, так и для измерения входного напряжения сети. С этой целью оно подаётся на делитель R1—R3. С движка подстроечного резистора R2 поступает на неинвертирующие входы операционных усилителей DA2.1 —DA2.4, DA3.1—DA3.3. Эти ОУ используются в качестве компараторов напряжения. Резисторы R17—R23 создают гистерезис переключения компараторов.

В таблице ниже показаны пределы изменения выходного напряжения Uвых и логические уровни напряжения на выходах операционных усилителей и входах дешифратора DD2, а также включённые светодиоды в зависимости от входного напряжения Uвх без учёта гистерезиса.

Микросхема DA1 вырабатывает стабильное напряжение 12 В для питания остальных микросхем. Стабилитрон VD3 вырабатывает образцовое напряжение 9 В. Оно подаётся на инвертирующий вход ОУ DA3.3. На инвертирующие входы других ОУ оно поступает через делители на резисторах R5—R16.

При сетевом напряжении ниже 135 В напряжение на движке резистора R2, а значит, и на неинвертирующих входах ОУ меньше, чем на инвертирующих. Поэтому на выходах всех ОУ низкий уровень. На всех выходах микросхемы DD1 также низкий уровень. В этом случае появляется высокий уровень на выходе О (вывод 3) дешифратора DD2. Включён светодиод HL1, показывая слишком низкое напряжение сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

При напряжении сети от 135 до 155 В напряжение на движке резистора R2 больше, чем на инвертирующем входе DA2.1, поэтому на его выходе высокий уровень. На выходе элемента DD1.1 также высокий уровень. В этом случае появляется высокий уровень на выходе 1 (вывод 14) дешифратора DD2 (см. таблицу). Светодиод HL1 гаснет. Включается светодиод HL2, течёт ток через излучающий диод оптрона U6, вследствие чего оптосимистор этого оптрона открывается. Через открытый симистор VS6 напряжение сети подаётся на нижний по схеме отвод (вывод 6) относительно начала обмотки (вывода 7) автотрансформатора Т2. Напряжение на нагрузке больше напряжения сети на 64…71 В.

При дальнейшем повышении напряжения сети оно будет переключаться на следующий вверх по схеме вывод автотрансформатора Т2. В частности, напряжение сети от 205 до 235 В непосредственно поступает на нагрузку через открытый симистор VS2, а также на выводы 1—7 автотрансформатора Т2.

При напряжении сети от 235 до 270 В на выходах всех ОУ, кроме DA3.3, высокий уровень, ток течёт через светодиод HL7 и излучающий диод U1.2. Напряжение сети через открытый симистор VS1 подключено ко всей обмотке автотрансформатора Т2. Напряжение на нагрузке меньше напряжения сети на 24…28 В.

При напряжении сети более 270 В на выходах всех ОУ высокий уровень, а ток течёт через светодиод HL8, который сигнализирует о чрезмерно высоком напряжении сети. Все оптосимисторы и симисторы закрыты. Напряжение на нагрузку не подаётся.

Маломощный трансформатор Т1 аналогичен применённому в прототипе, за исключением того, что его вторичная обмотка содержит 1400 витков с отводом от середины. Мощный автотрансформатор Т2 — готовый от промышленного стабилизатора VOTO 5000 Вт. Отмотав вторичную обмотку и часть первичной, я сделал новые отводы, считая от начала обмотки (вывода 7): вывод 6 от 215-го витка (150 В), вывод 5 от 236-го витка (165 В), вывод4 от 257-го витка (180 В), вывод 3 от 286-го витка (200 В), вывод 2 от 314-го витка (220 В). Вся обмотка (выводы 1—7) имеет 350 витков (245 В).

Постоянные резисторы — С2-23 и ОМЛТ, подстроечный резистор R2 — С5-2ВБ. Конденсаторы С1 —СЗ— К50-35, К50-20. Диоды (VD1, VD2) можно заменить на — , КД243Б— КД243Ж.

Микросхему можно заменить отечественными аналогами КР1157ЕН12А, КР1157ЕН12Б.

Налаживание выполняют с помощью ЛАТРа. Вначале устанавливают пороги переключения. Для достижения более высокой точности установки резисторы R17—R23, создающие гистерезис, не устанавливают. Мощный автотрансформатор Т2 не подключают. Устройство подключают к сети через ЛАТР. На выходе ЛАТРа устанавливают напряжение 270 В. Перемещают движок подстроечного резистора R2 снизу вверх по схеме до включения светодиода HL8. Далее на выходе ЛАТРа устанавливают напряжение 135 В. Подбирают резистор R5 так, чтобы напряжение на инвертирующем входе (вывод 2) ОУ DA2.1 было равно напряжению на его неинвертирующем входе (вывод 3). Затем последовательно подбирают резисторы R6…R10, устанавливая пороги переключения 155 В, 170 В, 185 В, 205 В, 235 В, сверяя логические уровни с таблицей. После этого устанавливают резисторы R17— R23. В случае необходимости подбирают их сопротивления, устанавливая необходимую ширину петли гистерезиса. Чем больше сопротивление, тем меньше ширина петли. Установив пороги переключения, подключают мощный автотрансформатор Т2, а к нему нагрузку, например, лампу накаливания мощностью 100…200 Вт. Проверяют пороги переключения и измеряют напряжение на нагрузке. После налаживания светодиоды HL2—HL7 можно удалить, заменив их перемычками.

ЛИТЕРАТУРА:

1. Годин А. Стабилизатор переменного напряжения. — Радио, 2005, № 8.
2. Озолин М. Усовершенствованный блок управления стабилизатора переменного напряжения. — Радио, 2006, № 7.

В статье рассматривается возможность безразрывного переключения цепей переменного тока с помощью электромеханических реле. Показана возможность уменьшения эрозии контактов реле и, как следствие повышение долговечности и уменьшение помех от работы на примере стабилизатора напряжения сети для квартиры.

Идея

Встретил в интернете рекламу на сайте ООО «Прибор», г. Челябинск:
Стабилизаторы напряжения марки Селен, выпускаемые нашим предприятием, основаны на принципе ступенчатого регулирования напряжения путем безразрывного переключения обмоток автотрансформатора (патент на изобретение № 2356082). В качестве ключей используются мощные быстродействующие реле.

Приведены картинки переключений (слева «Селен», справа — с обычными характеристиками)

Меня эта информация заинтересовала, я вспомнил, что в кинопередвижке «Украина» тоже было безразрывное переключение напряжения – там, на время переключения между смежными контактами переключателя подключался проволочный резистор. Я стал искать в интернете, что-либо полезное по этому поводу. Ознакомиться с изобретением №2356082 я не смог.

Мне удалось найти статью «Типы стабилизаторов напряжения», где рассказывалось о возможности подключения диода к контактам реле в момент переключения. Идея заключается в том, чтобы в переменном напряжении произвести переключение во время положительного полупериода. При этом можно подключить диод параллельно контактам реле на время переключения.

Что дает такой способ? Переключение 220В меняется на переключение всего 20В, и так как нет разрыва тока нагрузки, то и практически нет дуги. Кроме того, при малых напряжениях дуга практически не возникает. Нет дуги – контакты не подгорают и не изнашиваются, надежность увеличивается в 10 и более раз. Долговечность контактов будет определяться только механическим износом, а он составляет 10 миллионов переключений.

На базе этой статьи были взяты самые обычные реле и измерены время отключения, время нахождения в разорванном состоянии и время включения. Во время измерений увидел на осциллографе дребезг контактов, который вызывал большое искрение и эрозию контактов, что резко уменьшает ресурс работы реле.

Для реализации и проверки этой идеи был собран релейный стабилизатор переменного тока мощностью 2 кВт, для питания квартиры. Вспомогательные реле подключают диод только на время переключения основного реле во время положительного полупериода. Оказалось, что реле имеют значительные времена задержки и дребезга, но, тем не менее операцию переключения удалось умесить в один полупериод.

Принципиальная схема

Состоит из автотрансформатора переключаемого как по входу, так и по выходу при помощи реле.
В схеме применено прямое измерение переменного напряжения микроконтроллером. Выходное напряжение через делитель R13, R14, R15, R16
поступает на вход микроконтроллера через конденсатор C10
.
Питание реле и микросхемы осуществляется через диод D3
и микросхему U1
. Кнопка SB1
совместно с резистором R1
служат для калибровки стабилизатора. Транзисторы Q1-Q4
– усилители для реле.
Реле Р1 и Р2 – основные, а реле Р1а и Р2а совместно с диодами D1 и D5 и замыкают цепь во время переключения основных реле. Для уменьшения времени отключения реле в усилителях реле, применены транзисторы BF422
и обмотки реле шунтированы диодами 1N4007
и диодами Зенера на 150 Вольт, включенными встречно.
Для уменьшения импульсных помех, попадающих из сети, на входе и выходе стабилизатора стоят конденсаторы C1 и C11.
Трехцветный светодиод индицирует уровни напряжения на входе стабилизатора: красный – низкое, зеленый – норма, синий – высокое.

Программа

Программа написана на языке СИ (mikroC PRO for PIC), разбита на блоки и снабжена комментариями. В программе применено прямое измерение переменного напряжения микроконтроллером, что позволило упростить схему. Микропроцессор применен PIC16F676
.
Блок программы zero
ожидает появление спадающего перехода через ноль
По этому перепаду происходит либо измерение величины переменного напряжения, либо начинается переключение реле.
Блок программы izm_U
измеряет амплитуды отрицательного и положительного полупериодов

В основной программе производиться обработка результатов измерений и если необходимо дается команда на переключение реле.
Для каждой группы реле написаны отдельные программы включения и выключения с учетом необходимых задержек R2on
, R2off
, R1on
и R1off
.
5-й бит порта C задействован в программе для подачи импульса синхронизации на осциллограф, чтобы можно было посмотреть на результаты эксперимента.

Технические характеристики

При изменении входного напряжения в пределах 195-245 Вольт выходное напряжение поддерживается с точностью 7%. При изменении входного напряжения в пределах 185-255 Вольт выходное напряжение поддерживается с точностью 10%
Выходной ток в длительном режиме 9 А.

Детали и конструкция

При сборке использован трансформатор ТПП 320-220-50
200 Вт. Обмотки его соединены на 240 Вольт, что позволило уменьшить ток холостого хода. Основные реле TIANBO HJQ-15F-1
, а вспомогательные LIMING JZC — 22F
.
Все детали установлены на печатной плате, закрепленной на трансформаторе. Диоды D1 и D5 должны выдерживать ток 30-50А в течение времени переключения (5-10 мсек).

Прибор повешен на стене и закрыт кожухом из жести

Настройка

Налаживание устройства заключается в проверке безобрывного переключения и установке номинального напряжения 220 Вольт с помощью построечного резистора R15 и кнопки SB1.
Необходимо подать на вход напряжение от ЛАТР»а через лампу накаливания мощностью 100 – 150 Вт, установить напряжение 220 Вольт и удерживая кнопку добиться зеленого свечения, вращая построечный резистор.
После этого кнопку отпустить, вольтметр подключить к выходу устройства и вращая ЛАТР проверить пороги переключения: нижний 207 Вольт и верхний 232 вольта. При этом лампа накаливания при переключениях не должна вспыхивать или светиться, что свидетельствует о правильной работе. Также работу безобрывного переключения можно увидеть на осциллографе, для этого надо подключить внешний запуск к порту RC5 и наблюдать выходное напряжение стабилизатора в, изменяя входное напряжение. В моменты переключений синусоида на выходе не должна разрываться.
При напряжении на выходе меньше 187V горит красный диод, а зеленый мигает.
При напряжении на выходе больше 242V горит синий диод, а зеленый мигает.

Стабилизатор работает у меня 3-й месяц и показал себя очень хорошо. До этого у меня работал стабилизатор предыдущей разработки . Он работал хорошо, но иногда в момент его переключения срабатывал источник бесперебойного питания компьютера. С новым стабилизатором эта проблема исчезла безвозвратно.

Учитывая, что в реле резко уменьшилась эрозия контактов (практически нет искрения), можно было бы в качестве основных использовать менее мощные реле (LIMING JZC — 22F).

Замеченные недостатки

Довольно сложно было подобрать в программе время задержки реле.
Для такого включения желательно применять более быстродействующие реле.

Выводы

a) Безобрывное переключение цепей переменного тока с помощью реле – вполне реальная и разрешимая задача.
b) Можно в качестве вспомогательного реле применить тиристор или симистор, тогда на реле не будет падения напряжения, а симистор за 10 мсек не успеет нагреться.
c) В таком режиме искрение контактов резко уменьшается, а долговечность возрастает, и уменьшаются помехи от переключений реле

Использованы источники

1. на сайте “Энергосбережение в Украине”
2. Официальный web-сайт предприятия ООО «Прибор», г. Челябинск
3. Даташиты на детали

Файлы

Схема, чертеж печатной платы и программа с прошивкой

🕗 12/08/12 ⚖️ 211,09 Kb ⇣ 165

Здравствуй, читатель!
Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель.
Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи — помоги мне!

Стабилизатор напряжения для дома | Заметки электрика

Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.

Тема сегодняшней статьи относится к таким неотъемлемым в настоящее время устройствам, как стабилизаторы напряжения для дома. Сейчас я Вам поясню почему неотъемлемые. Энергоснабжающая организация не уделяет должного внимания на качество поставляемой электроэнергии потребителям. Причиной этому может являться отсутствие законов и наложение санкций при несоответствующем качестве. К тому же не стоит забывать, что энергоснабжающая организация является монополистом по поставке электрической энергии.

Поставляемая электроэнергия является товаром. И если этот «товар» будет не надлежащего качества, то это может привести к выходу из строя электрооборудования. Поэтому каждый потребитель должен позаботиться о себе сам, применив стабилизаторы напряжения для дома, которые предназначены для поддержания стабильного напряжения питания нагрузок бытового и промышленного назначения.

Что же такое «качество» электрической энергии?

Для этого обратимся к следующим нормативным документам, где регламентируются параметры электрической сети от источника питания до потребителя.

В этих ГОСТах представлена расшифровка параметров и цифровые показатели качества электрической энергии, методы их измерения, причины и вероятности появления того или иного отклонения качества.

Кстати, скачать ПУЭ 7 издание Вы можете с моего сайта.

Теперь давайте рассмотрим основные показатели качества электрической энергии, согласно ГОСТ 13109-97.

Основные показатели электрической энергии

1. Отклонение напряжения

Существуют следующие нормы отклонений:

  • нормально-допустимые (±5%)
  • предельно-допустимые (±10%)

Согласно ГОСТа 21128-83, номинальное действующее напряжение однофазной бытовой сети должно составлять 220 (В). Отсюда следует, что предел напряжений от 209 — 231 (В) является нормально-допустимым отклонением, а предел напряжений от 198 — 242 (В) — предельно-допустимым отклонением.

2. Провал напряжения

Провал напряжения — это падение напряжения ниже, чем 198 (В) длительностью более 30 секунд. Глубина провала напряжения может достигать до 100%.

3. Перенапряжение

Перенапряжение — это превышение амплитудного значения напряжения больше 339 (В).

Напоминаю, что амплитудное значение 310 (В) соответствует действующему значению 220 (В).

Более подробно о причинах возникновения перенапряжений читайте в моей статье: виды перенапряжений и их опасность.

Так что же такое стабилизатор напряжения для дома?

Стабилизатор напряжения — это автоматическое устройство, которое при изменении входного напряжения, на выход выдает стабильное заданное напряжение 220 (В). Схематично можно изобразить так:

Рассмотрим проблемы, которые могут возникнуть с питающим напряжением в своих домах, коттеджах и садах.

Наружная электропроводка для большинства дачных поселков была построена и рассчитана еще в прошлом веке, когда нормы потребления на каждый дом принимались около 2 (кВт). В настоящее время только один электрический чайник потребляет около 1 (кВт), стиральная машинка около 2 (кВт), не говоря уже об электрических плитах, мощность которых достигает 10 (кВт) и больше.

По причине долгого срока эксплуатации состояние питающих линий с каждым годом ухудшается. Обслуживающие электрики приезжают на линию только по аварийным заявкам и вызовам. Периодические проверки и обслуживание линий ведется по минимуму.

От воздействий атмосферных осадков происходит окисление проводов, что уменьшает их сечение, в местах соединений проводов ухудшается электрический контакт, что приводит к дополнительным потерям. Также увеличивается число потребителей на одну и ту же линию. Хотя в последнее время в технических условиях на подключение дома энергоснабжающая организация обязывает установку ограничителей мощности.

Что в итоге мы имеем?

Когда линия не нагружена, то величина питающего напряжения не выходит за рамки норм. Как только нагрузка на линии начинает постепенно расти (люди приходят с работы), питающее напряжение начинает уменьшаться. По личному примеру скажу, что в одной из деревень величина напряжения в вечернее время достигала 150 (В). При таком напряжении холодильники выходят из строя, лампочки светят тускло, электрические печи не греют до номинальной температуры и т.д.

Как выходит из данной ситуации энергоснабжающая организация?

Очень просто.

Они выставляют на питающем трансформаторе с помощью привода ПБВ или РПН изначально повышенный уровень напряжения, чтобы в часы максимальной нагрузки напряжение было в норме, ну или почти в норме. Но ведь изначально выставленный повышенный уровень напряжения на питающем трансформаторе приводит к скорому перегоранию лампочек, а также к выходу из строя бытовой аппаратуры и техники.

Что же получается? Палка о «двух концах»?

Кто в данном тексте увидел свою проблему, то рекомендую Вам позаботиться о себе самостоятельно, вооружившись стабилизатором напряжения для дома. Ниже я познакомлю Вас с типами стабилизаторов.

Типы стабилизаторов напряжения для дома

Рассмотрим классификацию стабилизаторов напряжения для дома.

1. Феррорезонансные или магниторезонансные стабилизаторы напряжения

Это самые «древние» стабилизаторы напряжения для дома, которые применялись для питания первых цветных телевизоров. Помните, такую «коробку»?

Стабилизатор напряжения для дома «Украина-2″ мощностью всего то 315 (Вт).

А это еще один феррорезонансный стабилизатор напряжения.

Принцип их работы основывается на явлении магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей.

У этих стабилизаторов напряжения недостатков пожалуй гораздо больше, чем достоинств. Во-первых, они выпускались небольшой мощности (до 600 Вт). Во-вторых, они очень сильно искажают синусоидальную форму выходного напряжения. В-третьих, они очень сильно гудят, а также у них узкий диапазон стабилизации и они частенько выходят из строя при повышенном напряжении в сети.

2. Дискретные (ступенчатые) стабилизаторы напряжения

Следующий тип стабилизаторов напряжения для дома, который мы рассмотрим, называются дискретными или ступенчатыми.

Принцип их работы основывается на ступенчатой коррекции напряжения, осуществляемой переключением отводов обмотки автотрансформатора с помощью ключей.

Ключи бывают либо релейными, либо полупроводниковыми (симисторы).

Ниже на рисунке приведена упрощенная схема дискретного стабилизатора для дома с прямым включением 5 ключей. Обычно такая схема применяется у самых дешевых моделей. Каждый ключ (реле или симистор) настроен на определенный порог срабатывания по уровню входного напряжения сети. При достижении этого значения ключ замыкает часть обмотки автотрансформатора.

Про достоинства таких типов стабилизаторов напряжения для дома могу сказать то, что они обладают высокой скоростью реакции на изменение входного напряжения, что необходимо для двигательных нагрузок, таких как холодильник, стиральная машина, глубинный насос и др.

Время реакции на изменение входного напряжения зависит от количества обмоток и скорости работы ключей.

Также у них небольшой вес и габариты, отсутствуют движущиеся части, в отличие от электромеханических стабилизаторов, а также широкий диапазон входных напряжений.

Из недостатков можно отметить то, что напряжение на выходе меняется ступенчато и во время процесса регулирования происходит прерывание выходного напряжения.

Сейчас мы рассмотрим электромеханические стабилизаторы напряжения для дома. Их принцип работы основан на регулировании напряжения за счет перемещения щетки по обмотке автотрансформатора.

Непрерывность фазы выходного напряжения обеспечивается конструкцией токосъемника, т.е. щеткой. Ширина щетки приблизительно равна 2,2 диаметра провода обмотки автотрансформатора, чтобы при переходе с одного витка на другой электрический контакт не терялся.

Достоинства электромеханического стабилизатора напряжения:

  • плавное регулирование
  • отсутствие помех при работе
  • отсутствие искаженной формы напряжения
  • отсутствие электронных ключей, коммутирующих рабочий ток
  • высокая точность удержания выходного напряжения — 220 ± 3% (в отличие от дискретных — 220 ± 7%)

Недостатки электромеханического стабилизатора напряжения:

  • необходимо следить за износом щетки
  • искрение во время перемещения щетки по обмотке автотрансформатора
  • во время работы двигателя сервопривода слышно гудение
Выводы

Про необходимость установки стабилизаторов напряжения для дома я Вам пояснил. Далее решать только Вам. С типами стабилизаторов я Вас познакомил. Рекомендую Вам приобретать только дискретные или электромеханические стабилизаторы (сам лично склоняюсь к последним), про феррорезонансный вообще забудьте.

P.S. В следующей статье мы научимся выбирать стабилизатор напряжения по мощности. Покажу Вам пример расчета мощности стабилизатора для своей квартиры. А также поговорим о месте их установки и креплении. Чтобы не пропустить выход новых статей — пройдите процедуру подписки. Форма находится в конце каждой статьи и в правой колонке сайта.

zametkielectrika.ru

стабилизатор напряжения 220в своими руками — Меандр — занимательная электроника

Цифровой вольтметр сетевого напряжения на микроконтроллере ATTINY26, содержит 10-разрядный АЦП, трехразрядный светодиодный индикатор с динамической индикацией, линейный стабилизатор 7805, ну еще несколько токоограничительных резисторов. Конечно, большая часть рассыпухи используется для работы безтрансформаторного БП. Ниже приведена схема вольтметра. Детали: все диоды в схеме использованы типа 1N4007, но подойдут и любые другие с прямым током от 0,5А …

В статье приведено описание устройства, которое позволяет наглядно с помощью двух светодиодных линеек отображать текущее значение напряжения сети ~220 В и тока потребления в контролируемой линии, а также осуществлять звуковую сигнализацию при выходе уровней напряжения и тока за установленные границы. Идея контролировать состояние домашней питающей сети возникает, думаю, у многих, особенно после очередной оплаты за …

R1, R2, R3 — делители напряжения в диапазонах 0-1,2В, 0-12В и 0-120В. Вольтметр индикатор собран на микросхеме LM3914. Ток протекающий через каждый светодиод может достигать 30мА. R4 — регулирует яркость светодиодов. Каждый светодиод имеет шаг 1,2В (в диапазоне 12В). Изменив значения делителей напряжения R1 R2 R3 Вы можете самостоятельно подобрать необходимый Вам диапазон измерения напряжения.

Технические характеристики: Напряжение питания – 10-17 В Шаг индикации напряжения – 0.5 В Диапазон измерения напряжения – 10.5-16 В Количество точек индикации – 12 Максимальный ток потребления – 40 мА Устройство представляет собой универсальный линейный индикатор напряжения на базе КР1003ПП1. Сигнал индицируется шкалой из 12 светодиодов, загорающихся последовательно в зависимости от входного напряжения. При использовании …

meandr.org

Подключение стабилизатора напряжения пошаговая инструкция

В зависимости от того, какой стабилизатор напряжения вы выбрали, стоит рассмотреть несколько вариантов подключения. (Меню кликабельно)

Кроме того, важно определиться с местом расположения стабилизатора

Зачастую бывает так, что в квартире (доме, офисе) есть необходимость подключить только одно-два устройства под стабилизатор, а остальные в таком не нуждаются.

Это случается тогда, когда входящее напряжение в сети незначительно отличается от номинальных 220 вольт и его перепады незначительны (+/- 15 вольт).

В таких случаях, действительно нет необходимости подключать полностью весь дом и достаточно защитить плазменный телевизор, спутниковый тюнер или компьютер.

Для подключения по такой схеме необходимо, тем не менее, позаботиться о том, чтобы высокоточная техника (аудио, видеосистемы, ПК) были дополнительно подключены через сетевой фильтр. Это необходимо для того, чтобы эти источники не давали помехи друг на друга, а также, чтобы отфильтровать скачки напряжения от работы сварки во дворе, например.

Стоит отметить, что в случае подключения газового котла, необходимо также включить в схему ИБП – источник бесперебойного питания, который обеспечит корректную работу оборудования даже при отключении электричества.

Непосредственно к самому выпрямителю можно подключать мощные токоприемники, такие, как насос, холодильник, микроволновая печь, электродуховка, пылесос, пароварка, утюг. Эти потребители не требуют особой точности в стабилизации и мало зависят от перепадов напряжения.

Схема подключения всей квартиры через стабилизатор напряжения

Этот способ подключения стабилизатора напряжения наиболее приемлем для современных квартир и домов.

Выпрямитель в этом случае является самым первым прибором после электросчетчика и обеспечивает стабильным и ровным напряжением все токоприемники квартиры, дачи или дома.

При таком подключении наиболее правильным считается проведение отдельных линий под разные типы электроприборов. Каждая из линий должна оборудоваться своими пакетниками (освещение, насос, телевизор+аудиосистема, компьютер и т.д.)

Но очень редко на этапе строительства учитывается, какие электроустановки будут включаться в ту или иную розетку, поэтому возникают ситуации, когда с помощью удлинителя удобно подключить маломощную, но точную технику (телевизор, спутниковая антенна) в одну розетку с «грубой» (холодильник, стиральная машина, насос, утюг).

При этом «грубая» техника при включении будет создавать помехи, которую стабилизатор, расположенный на входе в дом, отфильтровать не в состоянии. Поэтому старайтесь избегать такого соседства и подключать такие электроприборы как можно дальше друг от друга.

Если же это невозможно, то перед «точной» техникой должен обязательно стоять сетевой фильтр.

Три фазы

Нередко в помещение заходит не одна, а три фазы. В этом случае нужно подключать один трехфазный стабилизатор напряжения или три однофазных.

Первый из них используется только в том случае, если будут применяться электроприборы, рассчитанные на 380 вольт, например мощные электродвигатели, но такие устройства в быту обычно не используются.

Подключение стабилизаторов к трем фазам

Если же в дом поступает три фазы (380 вольт), то лучше использовать схему из трех стабилизаторов, которая обеспечит качественным, ровным 220 В электричеством всю элетрику в доме.

Более того, даже в промышленных масштабах рекомендуется использовать схему из трех однофазных, т.к. в случае выхода из строя или попросту отключения одного из них, в сети остается 220 вольт, что невозможно при использовании трехфазного – тот попросту отключает электричество полностью.

Поэтому, если в сети преобладают потребители по 220 вольт, а не по 380 – следует использовать схему из трех стабилизаторов.

Схема подключения показана на рисунке.

Трехфазный вход имеет четыре провода – один из которых – ноль, является общим для всех трех стабилизаторов в системе, а каждая отдельная фаза пропускается через отдельный выпрямитель.

Перепады напряжения негативно сказываются на любой бытовой технике. Особенно это касается высокоточной электроники, регулирующей работу отопительных приборов.


Для того, чтобы выровнять ток в домашних условиях используют стабилизатор напряжения. В самом простом варианте он работает по принципу реостата, повышая и понижая сопротивление в зависимости от силы тока. Но есть и более современные приборы, которые в полной мере защищают технику от скачков напряжения. О том, как их сделать и поговорим.

Стабилизатор напряжения и принцип его действия

Для более детального понимания работы прибора рассмотрим составляющие электрического тока:

  • сила тока,
  • напряжение,
  • частота.

Сила тока – это количество заряда, который прошел через проводник за определенный промежуток времени. Напряжение, если объяснять очень просто, эквивалентно понятию работы, которое совершает электрическое поле. Частота – это скорость, с которой поток электронов меняет свое направление. Данная величина характерна исключительно для переменного тока, который циркулирует в электросети. Большинство бытовых приборов рассчитано на напряжение в 220 Вольт, при этом сила тока должна быть 5 Ампер, а частота 50 Герц.

В большинстве случаев бытовая техника имеет допустимую вилку по каждому из параметров, но любая защита рассчитана на то, что условия работы приборов длительное время будут неизменными. В нашей же сети колебания тока происходят практически постоянно. Амплитуда составляет до 2 А по силе тока и до 40-50 В, по напряжению. Частота тока, также отлична от 50 Гц и составляет от 40 Гц до 60 Гц.

Данная проблема связана со многими факторами, но главный среди них, — удаленность конечного потребителя от источника электричества. В результате достаточно длительной транспортировки и многократной трансформации, ток теряет стабильность. Данный дефект электросетей присутствует не только у нас, но и в любых других странах, которые пользуются электричеством. Поэтому был придуман специальный прибор, позволяющий стабилизировать выходной ток.

Виды стабилизаторов напряжения

Так как ток – это направленное движение частиц, для его регулировки используются:

  • механический метод,
  • импульсный метод.

Механический основан на законе Ома. Такой стабилизатор называется линейным. Он состоит из двух колен, соединенных между собой реостатом. Напряжение подается на одно колено, проходит по реостату и попадает на второе колено, с которого уже и раздается далее. Преимущества данного метода заключается в том, что он позволяет достаточно точно установить параметры выходного тока. В зависимости от предназначения, линейный стабилизатор модернизируют дополнительными запчастями. Стоит отметить, что прибор эффективно справляется со своей задачей только в том случае, если разница между входным и выходным током невелика. В противном случае стабилизатор будет иметь низкий КПД. Но даже этого достаточно, чтобы защитить бытовую технику и обезопасить себя от короткого замыкания в случае перенагрузки сети.

Импульсный стабилизатор напряжения основан на принципе амплитудной модуляции тока. Схема стабилизатора напряжения устроена таким образом, что в цепи есть выключатель, который автоматически разрывает цепь через равные промежутки времени. Это позволяет подавать ток частями и равномерно накапливать его в конденсаторе. После того, как он зарядится, уже выровненный ток подается на приборы. Недостаток этого метода в том, что он не позволяет задать определенную величину. Тем не менее, достаточно часто встречаются импульсные повышающе-понижающие стабилизаторы, которые оптимально подходят для бытового использования. Они выравнивают ток в пределах чуть ниже или чуть выше нормы. В обоих случаях все параметры тока не выходят за допустимую вилку.

Важно отметить и разделение приборов на:

  • стабилизатор напряжения однофазный,
  • стабилизатор напряжения трехфазный.

После перераспределения в трансформаторе, выходит трехфазная линия, она как правило идет до распределительного щитка на отдельно взятый дом. Далее от щитка в квартиру идут уже стандартные фаза и ноль. Таким образом большинство бытовых приборов рассчитано именно на однофазную сеть. Поэтому в типовых квартирах целесообразно использовать однофазный стабилизатор. К тому же, стоит он в 10 раз дешевле трехфазного, даже если собрать его своими руками.

Стабилизаторы напряжения для дачи могут быть и трехфазными. Особенно актуально это для мощных насосов, культиваторов и тяжелой строительной техники. В таком случае необходимо сделать стабилизатор, рассчитанный на трансформацию тока под конкретный прибор. На практике сделать это достаточно сложно. Поэтому проще взять его в аренду. Использование указанных выше приборов носит временный характер, поэтому смысла тратить время и деньги на трехфазный стабилизатор напряжения нет.

Основные элементы стабилизатора напряжения

Для того, чтобы собрать простой выравниватель тока не понадобится ни особых навыков, ни специфических деталей. Стабилизаторы напряжения для дома состоят из:

  • трансформатора,
  • конденсаторов,
  • резисторов,
  • диодов,
  • провода для соединения микросхемы.

Идеально, если есть старый сварочный аппарат. Переделать его в стабилизатор напряжения очень легко, к том же не понадобится покупать дополнительные запчасти и конструировать корпус для микросхем. Этому вопросу посвящено видео в конце статьи. Но, ненужная сварка – это большая редкость, поэтому рассмотрим процедуру создания стабилизатора напряжения с нуля. Так как импульсный стабилизатор не позволяет провести точную настройку параметров, рассматривать будем линейный стабилизатор напряжения.

Изготовление самодельного стабилизатора напряжения

Его основа – это трансформатор. На практике трансформаторы намного меньше, чем массивные будки для выравнивания высокого напряжения, приходящего с электростанции. Они представляют собой две катушки, образующие индуктивную электромагнитную связь. Проще говоря, ток подается на одну катушку, заряжает ее, затем возникает электромагнитное поле, которое заряжает вторую катушку, с которой ток идет далее. Эта взаимосвязь выражена формулой:

U 2
=
N 2
=
I 1
U 1
N 1
I 2
  • U 1 – напряжение на первичной обмотке,
  • U 2 – напряжение на вторичной обмотке,
  • N 1 – число витков на первичной обмотке,
  • N 2 – число витков на вторичной обмотке,
  • I 1 – сила тока на первичной обмотке,
  • I 2 – сила тока на вторичной обмотке.

Формула не идеальна, так как позволяет либо понижать напряжение, либо его повышать. В 90% случаев к потребителю доходит ток с низким напряжением. Поэтому имеет смысл сразу же сделать повышающий трансформатор. Индуктивные катушки к нему продаются в магазинах электротехники либо на любом блошином рынке. Важно отметить, что число витков должно быть не менее 2000 тысяч, так как иначе трансформатор будет очень сильно греться и вскоре сгорит. Для того, чтобы выбрать мощность трансформатора, необходимо замерять напряжение в сети. Для расчетов возьмем значение 196 В. Формула приобретает такой вид:

Как видно из формулы, сила напряжения на выходе будет 220х4/196=4,4 А. Большинство электроприборов допускает вилку в 1 А. Поэтому полученная величина достаточна для нормальной работы техники.

Стабилизатор напряжения, энергия в котором увеличивается на заданную величину готов. Но, если в сети произойдет скачек мощности, то формула примет следующие значения:

Это приведет к поломке большинства электроприборов.

Для устранения данного дефекта воспользуемся законом Ома:

  • U– напряжение,
  • I– сила тока,
  • R– сопротивление.

264=4,47хR, R=264/4,47=60. Данная формула говорит о том, что в идеале сопротивление всех элементов в системе будет составлять 60 Ом. Если понизить сопротивление, то напряжение уменьшиться:

220=4,47хR, R=220/4,47=50.

Для изменения сопротивления сети используется прибор, под названием реостат. Естественно, регулировать его вручную достаточно неудобно. Поэтому понадобится микросхема-стабилизатор напряжения, на которой будет отмечен путь следования электрического тока после выхода из трансформатора.

Наиболее простой способ – это вывести ток с трансформатора на конденсатор. Желательно использовать 12-16 конденсаторов одинаковой емкости. Это позволит накопить ток и сделать его более однородным. Далее все конденсаторы подсоединяются к реостату. Сила тока в сети после трансформатора будет в пределах 4,5-5 А, а желаемое напряжение должно составлять 220 В. Следовательно, имеем формулу R=220/4,75=46. При усредненных показателях сопротивление должно составлять 46 Ом.

Для достижения более плавного выравнивания, желательно установить несколько параллельных реостатов. Таким образом соединяясь в один поток после конденсаторов, цепь необходимо распределить на 4,6,8 отдельных веток, подключенных к реостатам. При этом следует использовать формулу R/число реостатов. Если делать цепь из 6 реостатов, то согласно представленным данным, каждый из них должен иметь сопротивление в 8 Ом.

После прохождения реостатов, цепь снова собирается в один поток и выводится на диод. Диод подключается к обычной розетке.

Все указанные манипуляции относятся к проводу на котором находится фаза, ноль просто пропускаем напрямую к розетке.

Указанный с реостатами способ является достаточно архаичным. Намного более эффективно использовать вместо них обычное устройство защитного отключения. Ток от трансформатора подается на УЗО, ноль также подключается к УЗО. Далее от него идет выход напрямую к розетке.

В том случае, если напряжение или сила тока возрастут в следствии скачка напряжения, УЗО разомкнет цепь, и бытовая техника не пострадает. В остальное время трансформатор будет качественно выравнивать ток.

При повышенном напряжении понадобится понижающий трансформатор. Собирается он по аналогии, за тем исключением, что обмотка на второй катушке должна быть сделана из более толстой проволоки, иначе трансформатор сгорит.

Наиболее эффективно собрать оба трансформатора. Тем более, что есть конструкции понижающе-повышающего типа. В первом случае понадобится ручное переключение провода, во втором — процесс поддается автоматизации. Как видно, сделать стабилизатор напряжения не сложно, но работа с электричеством предполагает предельный уровень осторожности.

Советы по работе с самодельным стабилизатором напряжения

Важно

: описанная схема идеально подходит для постоянных условий, но в электросети достаточно часто случаются перебои и скачки, как вверх, так и вниз.

Поэтому при сборке стабилизатора напряжения рекомендуем отталкиваться от параметров конкретной техники, т.е.:

  • продумать разводку по квартире,
  • если ремонта не предполагается, установить удлинители под определенные группы электроприборов со схожими параметрами,
  • подключить каждую группу к отдельному стабилизатору.

Любая бытовая техника либо на тыльной стороне, либо в паспорте содержит ведомости о требованиях к электропитанию. Отталкиваясь от конкретных цифр значительно проще создать эффективный стабилизатор, так как нет необходимости подстраиваться под сеть. Еще один полезный гаджет – это электронный вольтметр. Желательно подключить его в схему стабилизатора для визуального контроля за его работой.

Для корпуса подойдет любой материал кроме дерева. Достаточно часто самодельные стабилизаторы помещают в пластиковые контейнеры для еды.

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.

Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают , автоматика которого требует подключения к электропитанию, насосного оборудования, сплит систем и подобных потребителей.

Промышленная конструкция стабилизатора сетевого напряжения, которую несложно приобрести на рынке. Ассортимент подобного оборудования огромен, но всегда остаётся возможность сделать собственную конструкцию

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Примерно так может выглядеть оборудование стабилизации, изготовленное своими руками из доступных и недорогих радиодеталей. Шасси и корпус можно подобрать от старого промышленного оборудования (например, от осциллографа)

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Структурная схема простого стабилизатора, выполненного на основе дросселей: 1 – первый дроссельный элемент; 2 – второй дроссельный элемент; 3 – конденсатор; 4 – сторона входного напряжения; 5 – сторона выходного напряжения

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Принципиальная схема сервоприводного аппарата, сборка которой позволит создать мощный стабилизатор напряжения для дома или на дачу. Однако этот вариант считается технологически устаревшим

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема модуля электронной стабилизации: 1 – входные клеммы устройства; 2 – симисторный блок управления трансформаторными обмотками; 3 – микропроцессорный блок; 4 – выходные клеммы на подключение нагрузки

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше . В этом деле без опыта и знаний в сфере электротехники не обойтись.

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Подробные инструкции по сборке

Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор в данном случае применяется из числа тех, что устанавливались в телевизорах старых моделей.

Вот такой примерно силовой трансформатор потребуется под изготовление самодельной конструкции стабилизатора. Однако не исключается подбор других вариантов или же намотка своими руками

Правда в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется как минимум ТС-320 чтобы обеспечить выходную нагрузку до 2 кВт.

Шаг #1 – изготовление корпуса стабилизатора

Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

Допустимо подобрать корпус от любой электроники, подходящий под размещение всех рабочих компонентов схемы самодельного стабилизатора. Также корпус можно собрать своими руками, к примеру, из листов стеклотекстолита

Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

Шаг #2 – изготовление печатной платы

Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора. Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

Изготовить печатную плату стабилизатора вполне доступными способами можно непосредственно в домашних условиях. Для этого нужно приготовить трафарет и набор средств для травления на фольгированном текстолите

Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

Шаг #3 – сборка стабилизатора напряжения

Укомплектованная радиодеталями плата подготавливается для внешней обвязки. В частности, от платы выводятся линии внешней связи (проводники) с другими элементами – трансформатором, выключателем, интерфейсами и т.д.

На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

Пример самодельного стабилизатора напряжения релейного типа, изготовленного в домашней обстановке, помещённого в корпус от пришедшего в негодность промышленного измерительного прибора

Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов. Можно приступать к настройке с дальнейшими испытаниями.

Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840. Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.

Схема принципиальная стабилизирующего блока высокой мощности (до 2 кВт), на основе которой были собраны и успешно используются несколько аппаратов. Схема показала оптимальный уровень стабилизации при указанной нагрузке, но не выше

Часть схемы, в которую включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа. Соответственно, на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Если процесс изготовления стабилизатора показался вам слишком сложным и нерациональным с практической точки зрения, без особых проблем можно найти и приобрести устройство заводского исполнения. Правила и критерии приведены в рекомендуемой нами статье.

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самоделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, публикуйте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как собрали стабилизатор напряжения собственными руками. Поделитесь полезной информацией, которая может пригодиться посещающим сайт начинающим электротехникам.

Схема стабилизатора напряжения сети | Мастер Винтик. Всё своими руками!

Стабилизатор представ­ляет собой сетевой авто­трансформатор, отводы обмотки которого пере­ключаются автоматичес­ки в зависимости от величины напряжения в электросети.

Стабилизатор позво­ляет поддерживать вы­ходное напряжение на уровне 220V при измене­нии входного от 180 до 270 V. Точность стабили­зации 10V.

Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схе­му автотрансформатора).

Схема управления пока­зана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

 

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого    трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отво­дом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряже­ние с конденсатора С1 поступает на цепь пита­ния микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений мини­мальной и максимальной отметки шкалы. Для их получения используется параметрический стабилизатор на УЗ и Р1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором RЗ -нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напря­жения от номинального значения. В процессе налаживания резистор R5 пред­варительно устанавливают в среднее положе­ние, а резистор RЗ в нижнее по схеме.

 Затем, на первичную обмотку Т1 от автотрансфор­матора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные свето-диоды). Затем входное переменное напря­жение уменьшают до 190V и резистором RЗ выводят шкалу на значение когда горит свето­диод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последова­тельных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микро­схемы А1.

Всего получается девять пороговых значе­ний, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V.

 Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР. Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных изме­рений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9. Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансфор­матора. И наоборот, — увеличение пока­заний микросхемы А1 приводит к пере­ключению на понижающий отвод авто­трансформатора. Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симис-торные ключи переключаются уверенно. Схема на транзисторах VТ1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переход­ных процессов в схеме после включе­ния. Эта схема задерживает подключе­ние светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вто­ричных по 12V (12-0-12V) и ток 300mА. Можно использовать и другой аналогич­ный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно.

Симисторы можно использовать другие, — все зависит от мощности нагрузки. Можно даже использовать в качестве элементов коммутации элекромагнитные реле.

Сделав другие настройки резисторами R2, RЗ, R5 (рис. 1) и, соответственно, другие отводы Т2 (рис. 2) можно изме­нить шаг переключения напряжения.

Кривошеим Н. Радиоконструктор. 2006г. №6.

Литература:

  1. Андреев С. Универсальный логичес­кий пробник, ж. Радиоконструктор 09-2005.
  2. Годин А. Стабилизатор переменного напряжения, ж. Радио, №8, 2005  

P.S. В нашем «Магазине Мастера» вы можете приобрести готовые модули стабилизаторов, усилителей, индикаторов напряжения и тока, а также различные радиолюбительские наборы для самостоятельной сборки.

 Наш «Магазин Мастера


«

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

  • ИСТОЧНИК ПИТАНИЯ С ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКОЙ на LT1070.
  • Существуют схемы усилителей НЧ, пере­датчиков, других устройств, которые требуют питания не только от двуполярного источника, но и от двух гальванически развязанных источ­ников, не имеющих соединения с «землей» или общих связанных цепей. Организовать питание такого устройства в стационарных условиях весьма просто, так как источником питания служит электросеть, а значит будет силовой или импульсный трансформатор. Достаточно сделать две вторичные обмотки, не соединен­ные с другими цепями, и переменные напряже­ния с них подать на отдельные независимые выпрямители. Подробнее…

  • Запитываем сверхяркий светодиод от одной батарейки 1.5 вольта!
  • Давно хотел сделать себе миниатюрный и яркий фонарик питающийся от одного элемента АА или ААА. Для таких целей есть даже спец. микросхемы, но их дефицит у нас + жаба заставили меня пораскинуть мозгами. В результате было сделано это чудо: Подробнее…

  • Высоковольтный источник с батарейным питанием.
  • В радиолюбительской практике, а так же, при ремонте аппаратуры, может пригодиться портативный высоковольтный источник тока, с батарейным питанием. Такой прибор может быть полезным при проверке обратного напряжения диода, напряжения стабилиза­ции высоковольтного стабилитрона, напря­жения зажигания неоновых ламп, а так же, для испытания высоковольтных транзисторов. Подробнее…

Популярность: 46 527 просм.

⚡️Самодельный стабилизатор напряжения 220в | radiochipi.ru


На чтение 3 мин. Опубликовано
Обновлено

Электронный стабилизатор напряжения — это промежуточное устройство между бытовой электросети и электропотребителем (нагрузкой). Такое устройство предназначено для поддержания напряжения на определенном уровне, а в частности 220В.

Нередко случается в квартирах, а часто в своих домах, напряжения в розетке далеко от идеала 220В, оно или сильно занижено, либо завышено, а порой просто резко скачет. В таких ситуациях включенные бытовые приборы в розетку ведут себя как-то странно, освещение тускло горит, холодильник начинает гудеть, вода в электрочайнике медленно закипает. На помощь нам приходит стабилизатор сетевого напряжения.

[info]Стабилизаторы бывают промышленные и бытовые. Промышленные стабилизаторы напряжения работают от трех фазного напряжения 380В, бытовые от однофазного и делятся на электронные, феррорезонансные, релейные, электромеханические, инверторные.[/info]

Рассмотрим принципиальную схему упрощенного электронного стабилизатора напряжения. В диодном мосту VD2 по диагонали расположен полевой транзистор VT2, когда он закрыт, то первичная обмотка вольтодобавочного трансформатора Т1 отключена от сети. Выходное U на холостом ходу, равно сетевому за исключением, малого падения напряжения на вторичной обмотке трансформатора Т1.

По схеме начало первичной обмотки L1-1 трансформатора Т1 соединен непосредственно к сети 220В. Для того чтобы подключить второй конец первичной обмотки L2-1’ трансформатора Т1 к сети 220В, необходимо открыть полевой транзистор VT2 (IRF840), после чего к нагрузке приложится сумма напряжений на вторичной обмотке L1 1-2, L2 2’-1’ и напряжения сети.

На биполярный транзистор VT1 структуры n-p-n перехода подается напряжение, через нагрузку, трансформатор Т2 и диодный мост VD1. Потенциометром R1 выставляется выходное U=220В порог срабатывания устройства на нагрузке, биполярный транзистор VT1 открывается, при этом транзистор VT2 закрывается. Если напряжение в сети упадет и станет ниже 220В, то закроется транзистор VT1, откроется транзистор VT2.

Диодный мост VD1 КЦ405В выпрямляет переменное U=12В на вторичной обмотке трансформатора Т2, после постоянное напряжение подается на стабилизатор DA1 КР142ЕН8А и запитывает коллекторную цепь транзистора VT1 КТ972А. Конденсатор С5 и резистор R6 соединены параллельно истоку стоку транзистора VT2 и образуют гасящую цепочку от нежелательных скачков напряжения. С1 выполняет роль фильтрующего конденсатора от сетевых помех, тем самым улучшает процесс работы устройства.

Подбирая номиналы сопротивлений резисторов R3, R5 добиваются наилучшей и устойчивой работы стабилизации напряжения. Включение/выключение устройства и нагрузки осуществляется выключателем SA1. В стабилизаторе напряжения предусмотрено отключение стабилизирующего напряжения на нагрузке выключателем SA2. Собранный по схеме стабилизатор включают в сеть 220В и переменным резистором R1 выставляют U=220В на нагрузке.

С каталогом масляных трансформаторов можно ознакомиться по ссылке.

Вольтодобавочный трансформатор Т1 собран на основе готового трансформатора марки СТ-320, ранее использовавшегося в БП-1 блоках питания телевизоров УЛПЦТ-59. Трансформатор необходимо разобрать полностью, снять магнитосердечник, после чего смотать все вторичные обмотки, необходимо оставить только сетевую (первичную обмотку). Заново намотать поровну вторичные обмотки эмалированным медным проводом ПЭВ, ПЭЛ.

Одинаковые две катушки имеют следующие намоточные данные:

Полевой транзистор VT2 необходимо закрепить на радиаторе!

Мощный линейный стабилизатор напряжения

Для питания различных электронных устройств и схем, сделанных своими руками нужен такой источник питания, напряжение на выходе которого можно регулировать в широких пределах. С его помощью можно наблюдать, как ведёт себя схема при том или ином напряжении питания. При этом он должен иметь возможность выдавать большой ток, чтобы питать мощную нагрузку, и минимальные пульсации на выходе. На роль такого источника питания отлично подойдёт линейный стабилизатор напряжения – микросхема LM338, она обеспечивает ток до 5 А, имеет защиту от перегрева и короткого замыкания на выходе. Схема её включения достаточно проста, она представлена ниже.

Схема

Микросхема LM338 имеет три вывода – вход (in), выход (out) и регулирующий (adj). На вход подаём постоянное напряжение определённой величины, а с выхода снимаем стабилизированное напряжение, величина которого задаётся переменным резистором Р2. Напряжение на выходе регулируется от 1,25 вольт до величины входного, с вычетом 1,5 вольт. Проще говоря, если на входе, например, 24 вольта, то на выходе напряжение будет меняться в пределах от 1,25 до 22,5 вольт. Подавать на вход более 30 вольт не следует, микросхема может уйти в защиту. Чем больше ёмкость конденсаторов на входе, тем лучше, ведь они сглаживают пульсации. Ёмкость конденсаторов на выходе микросхемы должна быть небольшой, иначе они будут долго сохранять заряд и напряжение на выходе будет регулироваться неверно. При этом каждый электролитический конденсатор должен быть зашунтирован плёночным или керамическим с малой ёмкостью (на схеме это С2 и С4). При использовании схемы с большими токами микросхему обязательно нужно установить на радиатор, ведь она будет рассеивать на себе всё падение напряжения. Если токи небольшие – до 100 мА, радиатор не потребуется.

Сборка стабилизатора

Вся схема собирается на небольшой печатной плате размерами 35 х 20 мм, изготовить которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. Ниже представлены несколько фотографий процесса.

Дорожки желательно залудить, это уменьшит их сопротивление и защитит от окисления. Когда печатная плата готова – начинаем запаивать детали. Микросхема запаиваться прямо на плату, спинкой в сторону края. Такое расположение позволяет закрепить на радиаторе всю плату с микросхемой. Переменный резистор выводится от платы на двух проводках. Можно использовать любой переменный резистор с линейной характеристикой. При этом средний его вывод соединяется с любым из крайних, полученные два контакта идут на плату, как видно на фото. Для подключения проводов входа и выхода удобнее всего использовать клеммник. После сборки необходимо проверить правильность монтажа.

Запуск и испытания

Когда плата собрана, можно переходить к испытаниям. Подключаем на выход маломощную нагрузку, например, светодиод с резистором и вольтметр для контроля напряжения. Подаём напряжение на вход и следим за показаниями вольтметра, напряжение должно меняться при вращении ручки от минимума до максимума. Светодиод при этом будет менять яркость. Если напряжение регулируется, значит схема собрана правильно, можно ставить микросхему на радиатор и тестировать с более мощной нагрузкой. Такой регулируемый стабилизатор идеально подойдёт для использовании в качестве лабораторного блока питания. Особое внимание стоит уделить выбору микросхемы, ведь её очень часто подделывают. Поддельные микросхемы стоят дёшево, но легко сгорают при токе уже 1 – 1,5 Ампера. Оригинальные стоят дороже, но зато честно обеспечивают заявленный ток до 5 Ампер. Удачной сборки.

Смотрите видео

На видео наглядно показана работа стабилизатора. При вращении переменного резистора напряжение плавно меняется от минимума к максимуму и наоборот, светодиод при этом меняет яркость.

электронных, релейных, электромеханических и инверторных

Любое электрооборудование проектируется с расчётом на стабильные параметры сетевого напряжения. Это необходимо по двум причинам:

  1. Подключённое к сети устройство должно обеспечивать стабильные параметры тока на выходе в соответствии со своим целевым предназначением;
  2. Электрическая схема оборудования нуждается в защите от аномалий входного тока, которые являются основной причиной сбоев в работе и выходе из строя потребителей электроэнергии вследствие перегорания их токопроводящих контактов и элементов.

Чтобы питающее сетевое напряжение оставалось неизменным, используется специальное устройство – стабилизатор напряжения. Он осуществляет выравнивание характеристик входного тока и обеспечивает отключение потребителей в случае возникновения короткого замыкания или других критических сетевых аномалий.

Виды стабилизаторов напряжения

Принципиальная схема стабилизатора напряжения включает 2 основных элемента, функции которых заключаются в сравнении входных параметров тока с требуемыми и регулировкой выходных характеристик. При выборе стабилизатора необходимо учитывать его основные параметры, которые должны соответствовать свойствам электросети и особенностям питающихся от неё потребителей.

В список главных характеристик любого стабилизирующего устройства входят:

  • Точность стабилизации;
  • Скорость реакции на изменения параметров входного тока;
  • Эксплуатационная надёжность;
  • Защищённость от помех;
  • Срок эксплуатации;
  • Стоимость.

Существует несколько технических решений, позволяющих обеспечить стабильные параметры тока в сетях электропитания различного назначения. Наиболее широкое применение получили следующие виды стабилизаторов напряжения:

Сервоприводные. Обеспечивают высокую точность стабилизации и обладают неплохой устойчивостью к сетевым перегрузкам, включая короткое замыкание. Схема стабилизатора напряжения сервоприводного типа имеет существенный недостаток – низкую скорость реакции на изменения характеристик входного тока, вследствие их целесообразно использовать для защиты потребителей, питающихся от сетей, исключающих резкие скачки напряжения на входе.

Релейные. Характеризуются завидным быстродействием, однако не способны обеспечить высокую точность и качество выравнивания выходного напряжения, вследствие чего применяются для защиты электрооборудования малой мощности.

Электронные. Работают по тому же принципу, что и релейные, но вместо коммутационных реле функцию регулировки выходного напряжения выполняют электронные ключи – симисторы или тиристоры. Устройства этого типа отличаются высокой скоростью стабилизации и надёжной защитой от резких скачков входного напряжения. К недостаткам можно отнести сравнительно большую погрешность при выравнивании выходного тока и высокую стоимость.

Электромеханические. Представляют собой разновидность сервоприводных стабилизаторов. В отличии от последних, в оборудовании этого класса вместо графитовых щёток используются ролики, обеспечивающие защиту от перегрева, высокую перегрузочную способность и продолжительный срок службы системы. Главным минусом электромеханического стабилизатора является сравнительно высокая стоимость.

В продаже встречаются гибридные (с двойной релейной схемой), а также инверторные и широтно-импульсные (ШИМ) стабилизаторы. Они обеспечивают высокую скорость выравнивания выходного тока с небольшой погрешностью и могут работать с широким диапазоном входных параметров напряжения. Стабилизаторы с подмагничиванием и дискретным высокочастотным регулированием являются узкоспециализированными, вследствие чего широкого применения на практике не получили.

Сервоприводные стабилизаторы

Схема стабилизатора напряжения сервоприводного типа включает:

  • Блок защиты от перегрузки;
  • Автотрансформатор;
  • Серводвигатель с редуктором;
  • Блок управления

Сервоприводные стабилизаторы напряжения осуществляют выравнивание выходного тока посредством сервопривода, который приводит в движение коммутационные контакты – графитовые щётки. Перемещение последних в нужную позицию обмотки трансформатора осуществляется плавно без прерывания фазы и искажений синусоиды выходного напряжения. При скачках или проседаниях входного тока в пределах 10 В блок управления выдаёт команду серводвигателю, который двигает коммутационные контакты до достижения требуемых на выходе 220 В.

Схема регулируемого стабилизатора напряжения сервоприводного типа включает подвижные элементы, что снижает его надёжность и долговечность. Кроме того, устройства этого класса поддерживают достаточно узкий диапазон входного напряжения (150-260 В) и допустимой нагрузки (в пределах 250-500 Вт). В то же время, работают они практически бесшумно и обеспечивают погрешность выравнивания параметров тока не более 2-3%.

Стабилизаторы релейного типа

Принцип работы устройств стабилизации релейного типа основан на ступенчатом регулировании напряжения. Осуществляется оно посредством силовых реле, которые выполняют коммутацию секций на вторичной обмотке автотрансформатора после вычисления необходимого числа трансформации контролирующим входные и выходные параметры тока процессором.

К основным достоинствам релейных стабилизаторов относят:

  1. Компактные габариты и небольшой вес;
  2. Широкий диапазон выравнивания;
  3. Возможность применения при температурном режиме -20…+40°C;
  4. Низкую стоимость.

Главные минусы этого оборудования – малая перегрузочная способность и снижение скорости стабилизации при увеличении точности последней.

Электронные стабилизаторы напряжения

Электронные устройства стабилизации работают по принципу ступенчатого регулирования напряжения посредством автоматической коммутации участков вторичной обмотки трансформатора, которая осуществляется силовыми электронными ключами, управляемыми процессорным блоком.

Отсутствие открытой коммутации исключает возникновение искр и окисление токопроводящих контактов схемы стабилизатора при избыточном токе на входе. Кроме того, оборудование этого класса обеспечивает малую инерционность срабатывания, отличается высокой конструктивной надёжностью и полностью бесшумной работой.

Можно собрать электронный стабилизатор напряжения 220В своими руками. Стоимость такое устройство будет иметь гораздо меньшую, чем произведённое на заводе, обеспечивая простоту в обслуживании. Основным недостатком самодельных решений является их низкая надёжность.

Инверторные стабилизирующие устройства

Всё более популярными становятся устройства стабилизации, работающие по принципу двойного преобразования напряжения. Они не имеют подвижных элементов и обеспечивают куда более высокое качество выравнивания тока, чем классические сервоприводные, релейные и электронные.

Схема инверторного стабилизатора напряжения 220В включает:

  • Входной частотный фильтр;
  • Выпрямитель напряжения;
  • Корректор коэффициента мощности;
  • Накопительный конденсатор;
  • Преобразователь постоянного напряжения в переменное (инвертор) с требуемыми на выходе устройства характеристиками.
  • Микроконтроллер.

Входной ток проходит частотную фильтрацию, после чего выпрямитель превращает его в постоянный с правильной синусоидой. В результате значительно возрастает коэффициент мощности. Постоянное напряжение заряжает конденсаторы, с которых ток поступает на инвертор, где выравниваются его частота и напряжение до требуемых 50 Гц и 220 В соответственно.

Инверторные устройства стабилизации обеспечивают КПД выше 90% и практически нулевую инерционность, поддерживая широкий спектр входных параметров тока.

Схема подключения стабилизатора напряжения не представляет особой сложности. Очень важно при этом грамотно выбрать сечение кабеля:

  • Чем выше мощность устройства, тем большей должна быть площадь сечения;
  • При низком уровне входного напряжения сила тока будет большой, поэтому для сетей с преобладающими проседаниями напряжения следует выбирать сечение кабеля с запасом.

И главное: при подключении стабилизатора любого типа требуется неукоснительно соблюдать правила электробезопасности и рекомендации производителя, указанные в паспорте устройства.

Цепь автоматического регулятора напряжения (АРН)

Схема автоматического регулятора напряжения довольно хорошо используется там, где напряжение питания составляет всего 120 В переменного тока. Многие устройства могут нормально работать при 220 В переменного тока, поэтому необходима регулировка напряжения.

Автор: Mehran Manzoor

Для этого разработана соответствующая схема регулятора напряжения, которая может работать с мощностью до 1кВт и обеспечивает переменное напряжение с различными ступенями (диапазонами).

Работа цепи:

Сеть 120 В переменного тока, линия и нейтраль содержат выключатель и предохранитель до 10 А.Переключатель DPDT используется для повышения и понижения напряжения. Переключатель DPDT имеет четыре конца.

Нейтраль от сети входит непосредственно в первый конец DPDT, а линия / фаза входит в первичную обмотку трансформатора, которая имеет 220 витков в 6 слоев.

Имеет семь вторичных обмоток на 55 витков и одну обмотку на 60 витков. Эти обмотки подключены к поворотным переключателям с 1 по 8 соответственно. Поворотный переключатель имеет восемь ступеней, которые можно включать по одной.

Общие точки поворотного переключателя подключены ко второму концу переключателя DPDT.Третий вывод DPDT подключен к первой вторичной обмотке трансформатора.

Последний конец DPDT подключен к общему проводу реле. Реле в цепи используется для автоматического отключения.

Замыкающий контакт реле становится первым выходом сетевого питания переменного тока.

НО реле подключено к первой клемме красной неоновой лампы в качестве индикатора для обнаружения автоматического отключения. другой вывод красной неоновой лампы подключен к другому выводу выходного источника питания, который является общим для цепи.Он напрямую поступает от линейного / фазного провода входной сети 120 В переменного тока.

Общий вывод реле подключен к четвертому концу переключателя DPDT и второму выводу трансформатора 500 мА для измерения напряжения. реле может работать от цепи автоматического отключения, как показано на схеме.

Вольтметр подключен параллельно зеленой неоновой лампе к выходному источнику питания, который указывает наличие питания и напряжения на выходных клеммах

Цепь автоматического отключения:

Вышеупомянутая схема автоматического регулятора напряжения ясно показывает, что 12 В переменного тока поступает через трансформатор 500 мА в автоматическое отключение цепи.

Два конденсатора C1 и C2, соединенные с D1 и D2, образуют первый вывод для реле, а другой вывод может быть отрегулирован с помощью предварительной настройки, который присоединен к эмиттеру транзистора Q1.

Выход коллектора становится еще одной клеммой для реле. значение предустановки может быть изменено в соответствии с требованиями. Когда напряжение превышает установленное значение, цепь автоматически отключается.

Детали, необходимые для цепи автоматического отключения:

C1-C2: 100 мк 25 В
D1-D2: 1N4007
R1: 1.5 кОм
R2: 220 Ом
VR1: предустановка 5K
Z1: 8,2 В
Q1: BC547

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какой-либо вопрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Страница ошибки

Страница ошибки «,» tooltipToggleOffText «:» Переведите переключатель в положение «

БЕСПЛАТНАЯ доставка на следующий день»!

«,» tooltipDuration «:» 5 «,» tempUnavailableMessage «:» Скоро вернусь! «,» TempUnavailableTooltipText «:»

Мы прилагаем все усилия, чтобы снова начать работу.

  • Временно приостановлено в связи с высоким спросом.
  • Продолжайте проверять наличие.

«,» hightlightTwoDayDelivery «:» false «,» locationAlwaysElhibited «:» false «,» implicitOptin «:» false «,» highlightTwoDayDelivery «:» false «,» isTwoDayDeliveryTextEnabled «:» true «,» useTestingApi » «,» ndCookieExpirationTime «:» 30 «},» typeahead «: {» debounceTime «:» 100 «,» isHighlightTypeahead «:» true «,» shouldApplyBiggerFontSizeAndCursorWithPadding «:» true «,» isBackgroundGreyoutEnabled} «:» false » locationApi «: {» locationUrl «:» https: // www.walmart.com/account/api/location»,»hubStorePages»:»home,search,browse»,»enableHubStore»:»false»},»perimeterX»:{«isEnabled»:»true»},»oneApp «: {«drop2»: «true», «hfdrop2»: «true», «heartingCacheDuration»: «60000», «hearting»: «true»}, «feedback»: {«showFeedbackSuccessSnackbar»: «true», «feedbackSnackbarDuration» : «3000»}, «webWorker»: {«enableGetAll»: «false», «getAllTtl»: «

0″}, «search»: {«searchUrl»: «/ search /», «enabled»: «false» , «tooltipText»: «

Скажите нам, что вам нужно

«, «tooltipDuration»: 5000, «nudgeTimePeriod»: 10000}}}, «uiConfig»: {«webappPrefix»: «», «artifactId»: «верхний колонтитул -app «,» applicationVersion «:» 20.0,46 «,» applicationSha «:» 45b14e3ccfe587f4cb154a1ddd3ad68220e3e4f3 «,» applicationName «:» верхний колонтитул «,» узел «:» 9c9dc7bc-72f0-41f9-a71e-e51ae59f44c9 «,» облако » oneOpsEnv «:» prod-a «,» profile «:» PROD «,» basePath «:» / globalnav «,» origin «:» https://www.walmart.com «,» apiPath «:» / header- нижний колонтитул / электрод / api «,» loggerUrl «:» / заголовок-нижний колонтитул / электрод / api / logger «,» storeFinderApi «: {» storeFinderUrl «:» / store / ajax / preferred-flyout «},» searchTypeAheadApi «: { «searchTypeAheadUrl»: «/ search / autocomplete / v1 /», «enableUpdate»: false, «typeaheadApiUrl»: «/ typeahead / v2 / complete», «taSkipProxy»: false}, «emailSignupApi»: {«emailSignupUrl»: » / account / electro / account / api / subscribe «},» feedbackApi «: {» fixedFeedbackSubmitUrl «:» / customer-survey / submit «},» logging «: {» logInterval «: 1000,» isLoggingAPIEnabled «: true,» isQuimbyLoggingFetchEnabled «: true,» isLoggingFetchEnabled «: true,» isLoggingCacheStatsEnabled «: true},» env «:» production «},» envInfo «: {» APP_SHA «:» 45b14e3ccfe587f4ERSd3ad4ad2dION «,».0.46-45b14e «},» expoCookies «: {}}

Укажите местоположение

Введите почтовый индекс или город, штат. Ошибка: введите действительный почтовый индекс или город и штат.

Обновите местоположение

Хорошие новости — вы все равно можете получить бесплатную двухдневную доставку, бесплатный самовывоз и многое другое.

Продолжить покупкиПопробуйте другой почтовый индекс

Закажите вакцину против COVID-19. Доступно бесплатно в зависимости от права на участие.

Ой! Этот товар недоступен или заказан заранее.

Искать в этих категориях похожие результаты:

Схема регулятора напряжения

и принципиальные схемы

За прошедшие годы мы опубликовали на этом веб-сайте несколько схем регуляторов напряжения, которые служат многим целям.В этой статье я составляю краткий список лучших схем стабилизатора напряжения, которые будут полезны всем вам. Термин «регулятор напряжения» носит несколько общий характер — это может быть регулятор AC-AC или регулятор DC-DC. В основном то, что он делает, очень просто — он регулирует и поддерживает постоянный желаемый уровень напряжения на выходных клеммах. Итак, давайте начнем копать в нашем большом списке 🙂

Регулятор 6 В с использованием 7806

Это простая в сборке схема с использованием микросхемы IC 7806 (которая представляет собой трехконтактный стабилизатор положительного напряжения).Схема спроектирована таким образом, что напряжение сети 230 вольт понижается до 9 вольт с помощью трансформатора, а затем регулируется до 6 вольт на выходе. Эта ИС является стабильной с внутренним ограничением тока и тепловым отключением. При использовании надлежащего радиатора он может выдавать ток на выходе более 1 А.

Регулируемый импульсный регулятор с использованием LM317

Линейные регуляторы напряжения неэффективны, поскольку они рассеивают много энергии в виде тепла. Чтобы решить такие проблемы с энергоэффективностью, мы можем использовать импульсный стабилизатор, который может сэкономить до 85% мощности по сравнению с линейным регулятором.Здесь у нас есть схема с использованием микросхемы LM317, которая представляет собой импульсный стабилизатор напряжения и может выдавать до 3 ампер тока. Импульсный стабилизатор работает, забирая небольшие биты энергии от источника входного напряжения и затем передавая их на выход с помощью твердотельного переключателя и схемы управления.

Регулятор 9 В с использованием 7809

Итак, вот еще одна простая схема регулятора напряжения, которая использует IC 7809 для регулирования входного напряжения 16 вольт.Сетевое напряжение 230 В понижается с помощью трансформатора, затем преобразуется в 16 В постоянного тока с помощью моста, а затем регулируется с помощью ИС. Как вы знаете, 7809 — это надежная ИС с внутренним ограничением тока, тепловым отключением, безопасной рабочей зоной и т. Д.

Схема регулируемого регулятора напряжения с использованием LM317

Ну, это набор схем регулятора напряжения , использующих LM317 IC — который является регулируемым регулятором напряжения. LM317 — трехконтактный регулируемый стабилизатор от National Semiconductors, входное напряжение которого может составлять до 40 вольт.Выходное напряжение можно регулировать от 1,2 В до 37 В. Теперь эта статья представляет собой сборник из 4 схем, использующих LM317.

1. Обычный стабилизатор положительного напряжения — выходное напряжение можно регулировать, изменяя потенциометр и резистор. Для вычисления V0ut дано уравнение.

2. Схема регулируемого регулятора напряжения — выходное напряжение может выбираться цифровым способом. Эта схема представляет собой не что иное, как простую модификацию схемы обычного регулятора напряжения с использованием LM317.Здесь вместо потенциометра параллельно подключены 4 резистора, которые активируются только соответствующими транзисторами. Таким образом, каждый транзистор действует как логический уровень и включается или выключается. Выбрав транзисторы и включив их, можно отрегулировать уровень выходного напряжения.

3. 5 ампер стабилизатор постоянного тока / постоянного напряжения — Вы поняли это из названия обряда? По сравнению с вышеперечисленными схемами эта немного тяжелая и в ней больше компонентов. Он использует операционный усилитель LM310 вместе с LM317.

4. Схема силового повторителя — запуталась что это? Ни что иное, как повторитель напряжения с высокой токовой нагрузкой.

Регулируемый регулятор напряжения 10 ампер с использованием MSK5012

Это простая в изготовлении схема регулятора напряжения постоянного тока с использованием надежной микросхемы MSK5012. Выходное напряжение можно программировать с помощью двух резисторов R1 и R2. Особенностью этой ИС является низкое падение напряжения из-за использования полевого МОП-транзистора в качестве внутреннего элемента последовательного прохода. MS5012 отличается высокой точностью и подавлением пульсаций.

Регулятор 12 В с использованием 7812

Итак, вот действительно мощный 12-вольтный стабилизатор, использующий IC 7812, который может обеспечивать ток до 15 ампер. Стабилизатор 7812 используется для поддержания выходного напряжения на уровне 12 вольт, а три транзистора TIP 2599 используются для повышения тока. Это дорогостоящая схема из-за используемых компонентов высокой мощности. Так что собирайте, только если он вам нужен.

Регулятор 12 В на стабилитроне

Итак, вот и первый стабилизатор напряжения, управляемый стабилитроном.Таким образом, эта схема действительно проста и легко собирается с использованием стабилитрона и последовательного транзистора (2N3055). Он может обеспечивать выходной ток до 3 ампер. Когда вы используете стабилитрон в качестве регулятора напряжения, теоретически вы получите на выходе на 0,7 вольт меньше. В данном случае — 11,3 вольт.

от 2 до 37 вольт Регулируемый регулятор напряжения с использованием LM723

Стабилизатор напряжения на микросхеме LM723 — линейный регулятор производства National Semiconductors. Входное напряжение может быть до 40 вольт, а выходное — от 2 до 37 вольт.Без каких-либо настроек ИС может выдавать ток до 150 мА, а дальнейшее улучшение тока может быть достигнуто путем добавления транзистора с последовательным проходом — в нашем случае MJ3001 транзистор Дарлингтона.

13 вольт 5 ампер Регулируемый регулятор напряжения с использованием LM338

Микросхема

LM338 произведена в компании ST Microelectronics. ИС имеет временное ограничение тока, терморегуляцию и выпускается в корпусе с 3-выводными транзисторами. LM338 имеет диапазон выходного напряжения от 1 до 1.2 В и 30 В, и он может выдавать выходной ток более 5 ампер. R1 и R2 настраиваются для программирования желаемого выходного напряжения.

25 В Регулируемый регулятор с использованием LM117

Хм !! Это самая простая схема регулятора напряжения на нашем сайте! Только что получил IC LM117 и 4 пассивных компонента. Вы можете регулировать выходное напряжение, изменяя потенциометр. LM117 — это надежная ИС, которая может выдавать стабилизированное напряжение в диапазоне от 1,2 до 37 вольт. Этот источник питания может обеспечивать ток до 0 o.5 ампер.

Набор регуляторов переключения

Эта статья предназначена больше для образовательных целей, чем для ваших практических нужд. Принцип коммутации отличается от линейного регулирования напряжения. Главное преимущество импульсного регулятора — энергоэффективность. Эта статья достаточно хороша, и она познакомит вас с теоретическими аспектами импульсного регулирования, простыми схемами переключения, некоторыми практическими применениями импульсных регуляторов. Ближе к концу вы найдете объяснение линейного регулирования по сравнению с коммутационным регулированием.Я очень рекомендую вам эту статью для повышения ваших знаний.

Регулятор 3 А с использованием LM350

ИС

LM350K имеет такие функции, как терморегулирование, защита от короткого замыкания и т. Д. Это простая в сборке схема, которая, как было обнаружено, имеет лучшее подавление пульсаций и стабильность по сравнению с элементарным регулятором напряжения с использованием микросхемы LM350. 25 вольт, изменяя POT R2. Мы можем получить до 3 ампер тока от этой схемы.

Схема повышающего преобразователя 12 В с использованием LM2698

А вот и первая схема повышающего преобразователя на микросхеме LM2698 (от National Semiconductors). LM2698 — это повышающий преобразователь общего назначения с диапазоном выходных сигналов от 2,2 В до 17 В постоянного тока. В этой конкретной схеме вы можете получить на выходе 12 вольт постоянного тока от 4,5 до 5 вольт постоянного тока в качестве источника входного сигнала.

Схема регулируемого регулятора напряжения с использованием L200

Еще одна простая схема, использующая монолитный интегрированный регулируемый стабилизатор напряжения IC L200.Эта ИС имеет такие функции, как ограничение тока, тепловое отключение, ограничение мощности, защита от перенапряжения на входе и т. Д. Резисторы R1 и R2 должны быть отрегулированы для получения желаемого выходного напряжения. Мы можем получить выходное напряжение от 2,8 до 15 вольт при токе в 1 ампер.

Простой источник питания для регулируемого напряжения и тока

Иногда требуется простой аналоговый источник питания с регулируемым выходным напряжением и регулируемой функцией ограничения тока. В этой статье представлен простой источник питания с регулируемым стабилизатором LM350, обеспечивающий регулируемый выходной ток до 17 В и максимальный выходной ток ниже 2 А.LM350 имеет более высокую рассеиваемую мощность по сравнению с обычным регулируемым стабилизатором напряжения LM317 и, следовательно, имеет более высокий гарантированный выходной ток. Этот блок питания может быть полезен в лабораториях и для хобби-проектов.

Принципиальная схема блока питания показана на рис. 1. Он построен на мостовом выпрямителе (BR1), регулируемом стабилизаторе напряжения LM350 (IC1), транзисторах BC327 (T1) и BC337 (T2) и некоторых других компонентах.

Рис. 1: Принципиальная схема простого источника питания с регулируемым напряжением и током с LM350

Вход на разъем CON1 может быть переменным или постоянным током.Если вы используете трансформатор от 18 до 20 В с номинальным током 2 А, вы можете иметь выходное напряжение V OUT1 от 1,2 В до примерно 16,5 В, доступное на CON3, и V OUT2 от 0 до 15 В, доступное на CON2. Вход защищен предохранителем F1 на 2А. Конденсаторы C3 и C5 (2200 мкФ) являются основными фильтрующими конденсаторами.

Входное напряжение ограничено максимальным входным напряжением IC LM350. Максимальная рассеиваемая мощность LM350 составляет около 25 Вт.

Согласно паспорту, входное напряжение LM350 может составлять около 4.От 5 до 35 В, выходное напряжение можно регулировать от 1,2 до 33 В; однако нам нужно выходное напряжение ниже 17 В.

Выходное напряжение В OUT1 можно рассчитать, используя следующее соотношение:
V OUT1 = 1,25 В (1+ (VR2 + VR3) / R7))

Выходное напряжение V OUT2 примерно на 1,5 В ниже, чем V OUT1 , и, следовательно, может начинаться с 0 В.

Транзисторы T1 и T2 реализованы для регулируемой функции ограничения тока вместе с потенциометром VR3.Минимальный выходной ток составляет около 0,35 А и зависит от резисторов R2 и VR3.

Стеклоочиститель VR3 должен находиться в крайнем правом положении для получения минимального выходного тока и в крайнем левом положении для максимального выходного тока. Максимальный выходной ток составляет около 2 А. Когда VR1 настроен на максимальный выходной ток, T1 и T2 будут гореть, а светодиод LED2 будет светиться. В противном случае T1 и T2 будут выключены, и LED2 также будет выключен.

Конденсаторы C4 и C9 предотвращают колебания T1 и T2 во время переходных фаз.Выходное напряжение регулируется с помощью VR1 и VR3. VR2 используется для грубой настройки, а VR3 используется для более точной настройки выходного напряжения.

Строительство и испытания

Компоновка печатной платы для этой схемы источника питания показана на рис. 2, а компоновка ее компонентов — на рис. 3. Соберите схему на разработанной печатной плате или вертикальной плате. Подключите вход от 18 до 20 В (среднеквадр.) К CON1. Свечение светодиода LED1 указывает на наличие источника питания в цепи. LED2 светится, когда от нагрузки снимается более высокий ток.LED3 светится, когда выходы доступны на CON2 и CON3.

Рис. 2: Схема печатной платы простого источника питания с регулируемым напряжением Рис. 3: Компоновка компонентов для печатной платы

Для загрузки PDF-файлов с компоновкой печатной платы и компонентов:

щелкните здесь

Измерьте выходы CON2 и CON3 с помощью вольтметра. Вы должны иметь возможность получить выходное напряжение VOUT1 от 1,2 В до примерно 16,5 В и VOUT2 от 0 до 15 В в зависимости от положений VR2 и VR3.


Петре Цв Петров был исследователем и доцентом в Техническом университете Софии, Болгария, и экспертом-лектором в OFPPT (Касабланка), Королевство Марокко.Сейчас работает инженером-электронщиком в частном секторе Болгарии

Создайте простой блок питания постоянного тока

Обновление / исправление 8 апреля 2021 г .: Изначально эта история была опубликована 3 февраля 2010 г. Этот проект может не соответствовать действующим электротехническим нормам в месте вашего проживания и, по-видимому, не иметь некоторых средств безопасности, которые могли бы помочь предотвратить поражение электрическим током. Электричество опасно, поэтому, если вы попытаетесь построить его, убедитесь, что вы знаете и понимаете все применимые правила и вам комфортно работать с электричеством.Если у вас нет опыта работы с этим типом работы, вам не следует пытаться реализовать этот проект.

В мире существуют более эффективные и сложные блоки питания. Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку). Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока. Будет много других подобных блоков питания, но этот будет вашим.

Блок питания, как мы здесь будем называть его, преобразует переменный ток из розетки на стене в постоянный. Есть несколько способов сделать это. Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.

Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку. Способы его изменения на каждом этапе объяснены ниже. В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.

Теория:

Вход переменного тока

Напряжение переменного тока, идущего от стены, изменяется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц). Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.

На этом графике показано, как мощность переменного тока действует: поочередно. Vin Marshall

Исправление

Первая ступень этого блока питания — выпрямитель.Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя. Теперь наш сигнал выглядит так:

На этом графике показана мощность переменного тока после исправления. Vin Marshall

Сглаживание

Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду.Большой конденсатор, который можно представить себе как батарею, работающую на очень короткие периоды времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении. С помощью конденсатора кривая напряжения выглядит так:

Конденсатор может сгладить воздействие переменного тока. Вин Маршалл

Регламент

На этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня.При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, значительно превышающим регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения. Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.

Мощность постоянного тока отображается на графике в виде прямой линии. Vin Marshall

Что вам понадобится

Для создания этого конкретного блока питания вам потребуется следующее:

  • Шнур питания. Там должен быть один где-то валяется…
  • Тумблер SPST 120V
  • Монтаж на панели неоновая лампа 120V
  • 3 зажимных штыря
  • 7805 Регулятор напряжения 5V
  • 7812 Регулятор напряжения 12V
  • Трансформатор с входным напряжением 120V и выходом напряжение около 24 В, чтобы значение Vin для регулятора 7812 было выше минимального.Я использовал Radio Shack p / n 273-1512.
  • Двухполупериодный мостовой выпрямитель
  • Конденсатор 6800 мкФ
  • 2 конденсатора (100 нФ) (точное значение не имеет значения)
  • 2 конденсатора (1 мкФ) (точное значение не имеет значения)

Инструкции

Примечание редактора: Эта конструкция, похоже, не заземляет металлический корпус. Это означает, что если один из горячих проводов (под напряжением) выйдет из строя и коснется металла, любой, кто прикоснется к нему, может получить удар током.Он также не включает предохранитель, который является еще одной мерой безопасности, которая может защитить от поражения электрическим током и несчастных случаев, таких как пролитый кофе. Защитное заземление (PE) — это дополнительная часть цепи, которая также может нанести вред пользователю. Опять же, для этого типа проекта необходим опыт работы с электрикой.

Конструкция блока питания довольно проста. Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате. Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них.Однако это прекрасно работает как есть. При создании этого источника питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эту конструкцию можно довольно легко изменить для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения. Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечить регулируемые отрицательные напряжения.

Это схема этого блока питания. Это может не соответствовать действующим нормам. Vin Marshall

Готовый продукт выглядит так:

Загляните внутрь этого блока питания постоянного тока. Этот проект может не соответствовать действующим нормам. Vin Marshall

DIY LM2596 Регулируемый регулятор напряжения Импульсный блок питания Наборы понижающего преобразователя Блок питания DIY Наборы

Функция:
Он может вводить нестабильный переменный ток и выходное регулируемое напряжение.Его минимальное выходное напряжение составляет 1,23 В, а максимальный выходной ток — 3 А. LM2596 содержит генератор с фиксированной частотой (150 кГц) и стабилизатор эталонного напряжения (1,23 В), а также имеет совершенную схему защиты, ограничение тока, схему отключения тепла и т. Д. Эта схема имеет преимущества высокой эффективности и низкого нагрева. Он может в полной мере использовать различные холостые трансформаторы вокруг вас, чтобы обеспечить стабильное напряжение источника питания.

Рабочее напряжение:
LM2596 — переключатель стабилизатора напряжения и понижающей цепи.Убедитесь, что входное напряжение выше выходного. Общий входной сигнал составляет 3,2–40 В, а выход — 1,23–35 В.

Принцип схемы:
Нестационарное напряжение переменного тока на входе J1 было выпрямлено с помощью фильтров d1-d4, C1 и C2, поскольку входное напряжение LM2596 выводит стабильное постоянное напряжение с J2 через LM2596. C3, C4 — емкость выходного фильтра. R2 и LED2 составляют цепь индикатора. LED1 — это белый светодиод диаметром 8 мм. Его яркость может примерно указывать на выходное напряжение.Если яркость слишком яркая, вы можете как следует увеличить сопротивление R2. L1 — это особая индуктивность, которая действует как преобразователь энергии. D5 — диод Шоттки, который играет постоянную роль в цепи. C5 мешает цепи. Выходное напряжение R1 и W1 можно рассчитать по следующей формуле: Vo = 1,23 (1 + W1 / R1)

Принципиальная схема:

Список компонентов:

НЕТ. Название компонента Маркер для печатной платы Параметр КОЛ-ВО
1 Электролитический конденсатор C1 1000 мкФ 35 В 1
2 Электролитический конденсатор C3 220 мкФ 25 В 1
3 Керамический конденсатор C2, C4 0.1 мкФ 104 2
4 Керамический конденсатор C5 3300пф 332 1
5 Светодиод LED1 1
6 LM2596S-ADJ IC1 К-263 1
7 1N5822 D5 SS34 1
8 1N4007 D1-D4 4
9 Предохранитель BX 1
10 Металлопленочный резистор R1 510 Ом 1
11 Металлопленочный резистор R2 1
12 Индуктивность L1 30uH 1
13 Потенциометр W1 10К 1
14 Колпачок ручки 1
15 Терминал 2
16 Печатная плата 37 * 46 мм 1

И.Протестировано выдающимся партнером ICStation arduinoLab:

Подробнее читайте в видео:
(язык видео — Русский )


II. Протестировано выдающимся партнером ICStation bzoli5706:

Подробнее читайте в видео:
(язык видео — английский )

III.Протестировано выдающимся партнером ICStation Blue Matter:

Подробнее читайте в видео:
(язык видео — итальянский )

Во-первых, мы должны сказать, что ICStation не принимает никаких форм оплаты при доставке. Раньше товары отправлялись после получения информации о заказе и оплаты.

1) Paypal Оплата

PayPal — это безопасная и надежная служба обработки платежей, позволяющая делать покупки в Интернете.PayPal можно использовать на icstation.com для покупки товаров с помощью кредитной карты (Visa, MasterCard, Discover и American Express), дебетовой карты или электронного чека (т. Е. С помощью обычного банковского счета).

Мы проверены PayPal

2) Вест Юнион

Мы знаем, что у некоторых из вас нет учетной записи Paypal.

Но, пожалуйста, расслабься. Вы можете использовать способ оплаты West Union.

Для получения информации о получателе свяжитесь с нами по адресу [email protected].

3) Банковский перевод / банковский перевод / T / T

Банковский перевод / банковский перевод / способы оплаты T / T принимаются для заказов, общая стоимость которых составляет до долларов США 500 . Банк взимает около 60 долларов США за комиссию за перевод, если мы производим оплату указанными способами.

Чтобы узнать о других способах оплаты, свяжитесь с нами по адресу orders @ icstation.(с бесплатным номером отслеживания и платой за страховку доставки)

(2) Время доставки
Время доставки составляет 7-20 рабочих дней в большинство стран; Пожалуйста, просмотрите приведенную ниже таблицу, чтобы точно узнать время доставки к вам.

7-15 рабочих дней в: большинство стран Азии
10-16 рабочих дней в: США, Канаду, Австралию, Великобританию, большинство стран Европы
13-20 рабочих дней в: Германию, Россию
18-25 рабочих дней Кому: Франция, Италия, Испания, Южная Африка
20-45 рабочих дней Кому: Бразилия, большинство стран Южной Америки

2.EMS / DHL / UPS Express

(1) Стоимость доставки: Бесплатно для заказа, который соответствует следующим требованиям
Общая стоимость заказа> = 200 долларов США или Общий вес заказа> = 2,2 кг

Когда заказ соответствует одному из вышеуказанных требований, он будет отправлен БЕСПЛАТНО через EMS / DHL / UPS Express в указанную ниже страну.
Азия: Япония, Южная Корея, Монголия. Малайзия, Сингапур, Таиланд, Вьетнам, Камбоджа, Индонезия, Филиппины
Океания: Австралия, Новая Зеландия, Папуа-Новая Гвинея
Европа и Америка: Бельгия, Великобритания, Дания, Финляндия, Греция, Ирландия, Италия, Люксембург, Мальта, Норвегия, Португалия, Швейцария, Германия, Швеция, Франция, Испания, США, Австрия, Канада
Примечание. Стоимость доставки в другие страны, пожалуйста, свяжитесь с orders @ ICStation.com

(2) Время доставки
Время доставки составляет 3-5 рабочих дней (около 1 недели) в большинство стран.

Поскольку посылка будет возвращена отправителю, если она не была подписана получателем в течение 2-3 дней (DHL), 1 недели (EMS) или 2 недель (заказное электронное письмо), обратите внимание на время прибытия. пакета.

Примечание:

1) Адреса АПО и абонентских ящиков

Мы настоятельно рекомендуем вам указать физический адрес для доставки заказа.

Потому что DHL и FedEx не могут доставлять товары по адресам APO или PO BOX.

2) Контактный телефон

Контактный телефон получателя требуется агентством экспресс-доставки для доставки посылки. Пожалуйста, предоставьте нам свой последний номер телефона.


3. Примечание
1) Время доставки смешанных заказов с товарами с разным статусом доставки следует рассчитывать с использованием самого длительного из перечисленных ориентировочных сроков.
2) Напоминание о китайских праздниках: во время ежегодных китайских праздников могут быть затронуты услуги определенных поставщиков и перевозчиков, а доставка заказов, размещенных примерно в следующее время, может быть отложена на 3–7 дней: китайский Новый год; Национальный день Китая и т. Д.
3) Как только ваш заказ будет отправлен, вы получите уведомление по электронной почте от icstation.com.
4) Отследите заказ с номером отслеживания по ссылкам ниже:

Работа и применение схемы ИС регулятора напряжения 7805

Введение

В этом руководстве мы рассмотрим одну из наиболее часто используемых ИС регулятора — ИС регулятора напряжения 7805.Стабилизированный источник питания очень важен для некоторых электронных устройств, поскольку используемый в них полупроводниковый материал имеет фиксированную скорость тока, а также напряжение. Устройство может быть повреждено при отклонении от фиксированной ставки.

Одним из важных источников питания постоянного тока являются аккумуляторные батареи. Но использование батарей в чувствительных электронных схемах — не лучшая идея, поскольку батареи со временем разряжаются и теряют свой потенциал.

Кроме того, напряжение, обеспечиваемое батареями, обычно равно 1.2В, 3,7В, 9В и 12В. Это хорошо для цепей, требования к напряжению которых находятся в этом диапазоне. Но большая часть ИС TTL работает с логикой 5 В, и, следовательно, нам нужен механизм, обеспечивающий постоянное питание 5 В.

На помощь приходит микросхема стабилизатора напряжения 7805. Это ИС семейства линейных регуляторов напряжения 78XX, которые выдают на выходе стабилизированное напряжение 5 В.

A Краткое примечание по регулятору напряжения 7805

7805 — это трехконтактная ИС линейного стабилизатора напряжения с фиксированным выходным напряжением 5 В, которая полезна в широком диапазоне приложений.В настоящее время микросхема стабилизатора напряжения 7805 производится компаниями Texas Instruments, ON Semiconductor, STMicroelectronics, Diodes incorporated, Infineon Technologies и т. Д.

Они доступны в нескольких пакетах микросхем, таких как TO-220, SOT-223, TO-263 и ТО-3. Из них наиболее часто используется пакет TO-220 (он показан на изображении выше).

Вот некоторые из важных характеристик микросхемы 7805:

  • Она может обеспечивать до 1.Ток 5 А (с радиатором).
  • Имеет как внутреннее ограничение тока, так и функции теплового отключения.
  • Для полноценной работы требуется минимум внешних компонентов.

Схема выводов микросхемы регулятора напряжения 7805

Как упоминалось ранее, 7805 представляет собой трехконтактное устройство с тремя контактами: 1. ВХОД, 2. ЗАЗЕМЛЕНИЕ и 3. ВЫХОД. На следующем изображении показаны контакты типичной ИС 7805 в корпусе To-220.

Описание контактов 7805 приведено в следующей таблице:

PIN NO. PIN ОПИСАНИЕ
1 INPUT Pin 1 является INPUT Pin. На этот вывод подается положительное нерегулируемое напряжение.
2 ЗАЗЕМЛЕНИЕ Штырь 2 является Штырем ЗАЗЕМЛЕНИЯ. Это общее как для ввода, так и для вывода.
3 ВЫХОД Контакт 3 является ВЫХОДНЫМ контактом. На этот вывод микросхемы поступает регулируемый выход 5В.

Базовая схема из 7805

Как я ранее говорил о регулируемом источнике питания как об устройстве, которое работает с постоянным напряжением, и оно может постоянно поддерживать свой выход при фиксированном напряжении, даже если есть значительные изменения. во входном напряжении постоянного тока.

Согласно техническим характеристикам 7805 IC, основная схема, необходимая для работы 7805 в качестве полноценного регулятора, очень проста. Фактически, если на входе подается нерегулируемое напряжение постоянного тока, то все, что вам нужно, — это два конденсатора (даже они не являются обязательными в зависимости от реализации).

На приведенной выше схеме показаны все компоненты, необходимые для правильной работы микросхемы 7805. Конденсатор 0,22 мкФ рядом со входом требуется только в том случае, если расстояние между микросхемой стабилизатора и фильтром источника питания велико. Кроме того, конденсатор 0,1 мкФ рядом с выходом не является обязательным, и если он используется, он помогает в переходных процессах.

В этой схеме VIN — это входное напряжение для 7805 IC, а источником может быть любая батарея нерегулируемого постоянного тока. VOUT — это выход микросхемы 7805, которая является регулируемым напряжением 5 В.

Как получить постоянный источник питания постоянного тока от переменного тока?

Хотя батареи могут использоваться в качестве входа для ИС регулятора напряжения 7805, мы сталкиваемся с определенными трудностями, такими как частая разрядка батарей и снижение уровней напряжения батареи с течением времени.

Лучшая альтернатива использованию батарей — это подача нерегулируемого, но выпрямленного постоянного напряжения от источника переменного тока. Поскольку источник переменного тока легко доступен в качестве источника питания от сети, мы можем разработать схему для преобразования сети переменного тока в постоянный ток и предоставить ее в качестве входа для ИС регулятора напряжения 7805.

Принципиальная схема

На следующем изображении показана принципиальная схема получения регулируемого напряжения 5 В от сети переменного тока.

Необходимые компоненты
  • Понижающий трансформатор 230 В-12 В
  • Мостовой выпрямитель (или 4 PN диода — 1N4007)
  • Предохранитель 1 А
  • Конденсатор 1000 мкФ
  • 7805 Регулятор напряжения IC
  • Конденсатор 0,22 мкФ
  • 0,1 мкФ Конденсатор
  • 1N4007 Диод

[Также читайте: Как сделать регулируемый таймер]

Рабочий

Источник переменного тока от сети сначала преобразуется в нерегулируемый постоянный ток, а затем в постоянный регулируемый постоянный ток с помощью эта схема.Схема состоит из трансформатора, мостового выпрямителя на диодах, линейного регулятора напряжения 7805 и конденсаторов.

Если вы заметили, работу схемы можно разделить на две части. В первой части сеть переменного тока преобразуется в нерегулируемый постоянный ток, а во второй части этот нерегулируемый постоянный ток преобразуется в регулируемый 5 В постоянного тока. Итак, давайте, имея это в виду, начнем обсуждение работы.

Сначала берется понижающий трансформатор с 230 В на 12 В, и его первичная обмотка подключается к сети.Вторичная обмотка трансформатора подключена к мостовому выпрямителю (можно использовать специальную ИС или комбинацию из 4 диодов 1N4007).

Предохранитель на 1 А устанавливается между трансформатором и мостовым выпрямителем. Это ограничит ток, потребляемый схемой, до 1 А. Выпрямленный постоянный ток от мостового выпрямителя сглаживается с помощью конденсатора емкостью 1000 мкФ.

Итак, на выходе конденсатора емкостью 1000 мкФ нерегулируется 12 В постоянного тока.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *