определение, отличие, таблица и классификация
При выборе бетонной смеси каждый сталкивается с вопросом, какие именно виды лучше подходят для применения в определенном проекте. Каждый отличается индивидуальными свойствами, сферами использования. Собственно, они предназначены для обозначения бетонных смесей согласно уникальным свойствам, это главные показатели качества, связанные с прочностью. Для того, чтобы ориентироваться в классах, марках материала, существуют таблицы с описанием всех параметров конкретного вида.
Определения класса
Прочность смеси зависит от правильно подобранного соотношения составляющих, влияние оказывают другие факторы. К таким относят качество воды, песка, незначительные изменения технологии в процессе приготовления, особенности застывания, условия укладки. Именно поэтому похожие маркировки могут иметь неодинаковую прочность.
Уровень прочности, учитывая перечисленные факторы, называют классом. Это параметр, означающий допустимое значение возможного ухудшения качества при условии, что прочность равна указанной. В проектных документах строительства указывают класс. Важно правильно соотносить характеристики – для этого существуют специальные таблицы.
Вернуться к оглавлению
Определение марки
Определение марки по мокрому пятну.
Марка главным образом зависит от количества цемента в бетонной смеси. Бетон с высшим числом более сложен в использовании – чем выше значение, тем меньше период застывания. При выборе важно подобрать правильное соответствие качества-цены. Проверить прочность можно в лабораторных условиях неразрушающим методом – предполагается сжатие образцов сильным прессом.
Главный критерий, согласно которому определяются с необходимой маркой – вид предполагаемого сооружения. Для подготовительных работ при заливке фундамента, дорожных работах используют М-100, М-150. Наиболее известным считается М-200, сфера использования которого довольно широка – сооружение лестниц, опорных стен, заливка фундамента.
Для заливки монолитных фундаментов преимущественно используют М-350 – такой бетон способен выдержать существенные нагрузки. М-250, М-300 постепенно уходят с рынка строительных материалов, являются промежуточными, используются достаточно редко. Высшие маркировки бетона используют для постройки гидротехнических объектов, плотин, дамб – иными словами, конструкций, подвергающихся постоянному большому давлению, к которым выдвигают особые требования.
Вернуться к оглавлению
Обозначение
Классы обозначают латинской буквой «В», цифра рядом показывает нагрузку в мегапаскалях, которую бетон выдержит в 95% случаев. Полный спектр классов находится в диапазоне 3,5 – 80 МПа. Марки обозначают буквой «М», цифра показывает, сколько цемента в готовой бетонной смеси. Обозначение марки расшифровывает границу прочности, который измеряют в кгс/см2.
Высокая прочность – главная определяющая качества, поэтому чем выше значение – тем смесь дороже.
Вернуться к оглавлению
Отличие между классами и марками
На первый взгляд, к марке и классу применяют одинаковый критерий определения, но между ними есть существенные отличия. Первая показывает средние технические свойства материала, второй определяет уровень прочности материала при эксплуатации. Фактически, маркирование говорит о том, какое количество цемента присутствует в данной смеси, классовое же число показывает, какую максимальную нагрузку выдержит конструкция в 90-95% случаев. Указанные параметры взаимозависимы, их соответствие можно определить с помощью специальной таблицы.
Вернуться к оглавлению
Класс бетона по прочности
Испытание прочности бетона на сжатие и на соответствие требуемой марке.
В первую очередь, определяет предел прочности на сжатие. Показатель гарантирует, что в процессе эксплуатации материал выдержит определенную нагрузку, которая указана рядом с буквой «В» в мегапаскалях в возможной погрешностью в 13,5% (коэффициент вариации). На прочность влияют следующие факторы:
- Количество цемента – чем больше цемента содержится в смеси, тем быстрее она застывает и прочнее становится.
- Водоцементное соотношение – большое количество воды приводит к образованию пор, что значительно уменьшает прочность.
- Активность цемента – надежные сооружения производят из цемента высокой прочности.
- Степень уплотнения бетонной смеси – правильная технология смешивания, использование виброимпульсов и метода турбосмешивания значительно повышают степень прочности готового бетона.
- Качество заполнителей – добавление примесей (глины, мелкозернистых добавок) приводит к снижению прочности состава.
Вернуться к оглавлению
Классификация по маркам
Маркировка зависит от плотности, качества используемых составляющих и водоцементного соотношения. Допустимые границы последнего параметра – от 0,3 до 0,5. Увеличение показателя означает снижение характеристик прочности материала. Различают несколько видов марок – по прочности, морозостойкости, водонепроницаемости.
Вернуться к оглавлению
По прочности
Находятся в диапазоне от М-50 до М-1000, показывает среднее значение прочности на сжатие, означает конкретный вид цемента, который использовали при приготовлении бетонной смеси, соотношение всех составляющих раствора и примерное время застывания. Соответствие определенного числа перечисленным параметрам можно узнать из таблиц.
Вернуться к оглавлению
По морозостойкости
Разрушения бетона из-за низкой морозостойкости.
Еще один важный параметр, который напрямую влияет на качество материала. Особенное внимание ему уделяют при разработке проектов в холодных регионах. Низкие температуры губительно влияют на бетон, разрушая структуру. Влага, попадая на поверхность, просачивается в поры материала, после замерзания увеличивается в объеме. Процесс постоянного замерзания-оттаивания приводит к появлению мелких трещин, которые со временем расширяются.
Морозостойкий материал получают с помощью специальных химических добавок, которые досыпают в раствор в количестве, указанном в инструкции. Данные материалы имеют свою маркировку, существуют в диапазоне от F-50 до F-1000. Показатель возле буквы показывает, сколько циклов оттаивания-замерзания может перенести материал без ухудшения исходных свойств.
Вернуться к оглавлению
По водонепроницаемости
Характеризует способность материала сопротивляться негативному влиянию влаги. Показатель выводят из значения прочности после нескольких циклов увлажнения-высыхания, составляя соотношение прочности до и после испытания. Показатель находится в диапазоне от W-2 до W-200, где цифра – допустимый уровень давления воды. Чем выше данный параметр, тем качественнее смесь, дороже ее стоимость.
Вернуться к оглавлению
Рекомендации по выбору
Наглядная таблица класса бетона и марки бетона.
В первую очередь, выбор зависит от особенностей задуманного проекта, его размеров и погодных условий – в этом случае, стоит обратить внимание на дополнительные возможности, способность противостоять негативным воздействиям. Ориентируясь на значение прочности, оставляйте небольшой запас, нарушение технологии раствора несколько снижает указанное число.
Соблюдая следующие рекомендации, можно упростить проблему выбора нужного материала:
- Для предварительных работ, стяжек, заливки фундамента под одноэтажные сооружения используйте менее прочные бетоны – до М-150 включительно.
- М-200 – одна из наиболее часто используемых, подходит для тех же работ, используется при сооружении лестниц, перегородок.
- М-300 – самый оптимальный вариант из соображений соотношения качества-цены. Сфера применения очень широка – перекрытия, ленточные фундаменты, стены, заборы.
- M-350 подходит для строительства опор, искусственных водоемов, при производстве железобетона. Из данного материала получается очень надежный фундамент, он отлично подходит при свайном методе заливки.
- М-400 незаменим при строительстве на проблемных участках, строительстве зданий с подвальными помещениями, сооружении погребов. В промышленной деятельности используют для стройки хранилищ, мостов.
Вернуться к оглавлению
Вывод
Маркирование – показатель приблизительных, средних технических характеристик материала, в то время как классификация на 90-95% гарантирует соответствие требуемым параметрам. Свойства первого выделяют по трем характеристикам – прочность, морозостойкость, водонепроницаемость, которые обозначают буквами M, F, W соответственно.
Выбор конкретной бетонной смеси зависит от особенностей проекта, размеров предполагаемой конструкции, назначения, внешних условий.
Прочность бетона на сжатие, класс, таблица в мпа
Прочность бетона на сжатие традиционно считается одним из основных показателей, характеризующих свойства бетона. Данный параметр выражается в двух понятиях – классе и марке бетона, которые учитываются при выборе смеси для реализации тех или иных работ, выступают главными из технических характеристик, чрезвычайно важны для гарантии способности застывшего монолита выдерживать определенные нагрузки, что сказывается на прочности, надежности, долговечности.
Определенный класс бетона по прочности на сжатие маркируется буквой В и определенной цифрой, демонстрирует так называемую кубиковую прочность (когда образец в форме куба сжимают под прессом и фиксируют отметку, на которой он разрушается). Считается давление в МПа, предполагает вероятность разрушения при указанном показателе максимум 5 единиц из 100 испытуемых. Регламентируется СНиП 2.03.01-84.
Прочность бетона (МПа) может быть разной – классы дифференцируются в пределах 3.5-80 (всего существует 21 вид). Самыми популярными стали около десятка смесей с классами В15 и В20, В25 и В39, В40. Любой класс приравнивается к соответствующей ему марке (аналогичным образом правило работает наоборот). Значение прочности бетона в МПа (класс) чаще всего указывается в проектной документации, а вот поставщики реализуют смеси с указанием марки.
Марка бетона обозначается буквой М и цифровым индексом в диапазоне 50-1000. Регламентируется ГОСТом 26633-91, соответствует определенным классам, допустимым считается отклонение прочности максимум на 13. 5%. Для марки бетона основными требованиями являются объем/качество цемента в составе. В свою очередь, марка обозначается в кгс/см2, определение марки возможно после полного застывания и затвердевания смеси (то есть, минимум через 28 суток после заливки).
Чем выше цифра в индексах класса и марки, тем более прочным будет бетон и тем выше его стоимость (как при покупке уже готового раствора, так и при самостоятельном замесе за счет большего объема цемента и более высокой его марки).
С учетом вышеизложенных фактов основная задача мастера – определить идеальные характеристики для раствора с учетом сферы использования и предполагаемых нагрузок. Ведь приготовление слишком прочного бетона приведет к неоправданным расходам, недостаточно прочного – к разрушению конструкции. Обычно средняя прочность бетона для тех или иных работ, конструкций указывается в ГОСТах, СНиПах – эти значения и берут за ориентир.
Виды материала по прочности на сжатие:
- Теплоизоляционные смеси – от В0. 5 до В2.
- Конструкционно-теплоизоляционный раствор – от В2.5 до В10.
- Смеси конструкционные – от В12.5 до В40.
- Особые бетоны для усиленных конструкций – выше В45.
Методы и испытания бетона на прочность
Для определения марки и класса бетона используют разнообразные методы – все они относятся к категориям разрушающих и неразрушающих. Первая группа предполагает проведение испытаний в условиях лаборатории посредством механического воздействия на образцы, которые были залиты из контрольной смеси и полностью выстояны в указанные сроки.
Для проведения исследований используют специальный пресс, который сжимает опытные образцы и демонстрирует предел прочности при сжатии. Разрушение – наиболее верный и точный метод исследования бетона на прочность таких видов, как сжатие, изгиб, растяжение и т. д.
Основные неразрушающие методы исследований:
- Воздействие ударом.
- Разрушение частичное.
- Исследование с использованием ультразвука.
Ударное воздействие может быть разным – самым примитивным считается ударный импульс, который фиксирует динамическое воздействие в энергетическом эквиваленте. Упругий отскок определяет параметры твердости монолита в момент отскока бойка ударной установки.
Также используется метод пластической деформации, который предполагает обработку исследуемого участка особой аппаратурой, которая оставляет на монолите отпечатки определенной глубины (по ним и определяют степень прочности).
Частичное разрушение также может быть разным – скол, отрыв и комбинация данных способов. Если для испытаний используется метод скола, то ребро изделия подвергают особому скользящему воздействию для откалывания части и определения прочности. Отрыв предполагает использование специального клеящего состава, которым на поверхности крепят металлический диск и потом отрывают. При комбинировании данных способов анкерное устройство крепят на монолит, а потом отрывают.
Когда используется ультразвуковое исследование, применяют специальный прибор, способный измерить скорость прохождения ультразвуковых волн, проникающих в монолит. Основное преимущество данной технологии – она позволяет изучать не только поверхность, но и внутреннюю структуру бетона. Правда, в процессе исследований велика вероятность погрешности.
Контроль прочности бетона
Для того, чтобы бетонный раствор точно соответствовал указанным параметрам и выдерживал нагрузки, за его качеством следят еще на этапе приготовления. Прежде, чем готовить смесь, обязательно изучают рецепт, требования к компонентам и их пропорциям.
Основные критерии для контроля и проверки бетона:
- Соответствие используемого цемента указанным в рецепте маркам – так, для приготовления бетона М300 точно не подойдет цемент М100, даже при условии его большого объема. Чем выше число рядом с буквой М в маркировке цемента, тем более прочным получится раствор.
- Объем жидкости в растворе – чем больше воды в смеси, тем активнее влага испаряется в процессе высыхания и может провоцировать появление пустот, когда идет затвердевание.
- Качество и фракция наполнителей – шероховатые частицы неправильной формы обеспечивают наиболее крепкое сцепление ингредиентов в составе бетона, что в процессе твердения дает требуемый результат в виде высокой прочности. Грязный наполнитель может понизить характеристики бетона по прочности на растяжение и сжатие.
- Тщательность смешивания компонентов на всех стадиях приготовления раствора – по технологии раствор замешивается в исправной бетономешалке или на производстве в течение длительного времени.
- Квалификация работников – также играет важную роль, так как даже при условии применения качественной смеси В20, к примеру, прочность может быть снижена из-за неправильной укладки, отсутствия уплотнения (вибрация обеспечивает повышение прочности бетона на 30%).
- Условия застывания и эксплуатации – лучше всего, когда бетон застывает и приобретает твердость при температуре воздуха +15-25 градусов и высокой влажности. В таком случае можно говорить о точном соответствии монолита его марке – если был залит бетон В15, то и демонстрировать будет его технические характеристики.
Прочность бетона: таблица
Бетон по прочности на растяжение, при изгибе, воздействии других нагрузок демонстрирует определенные значения. Далеко не всегда они соответствуют указанным в ГОСТе и проектной документации, часто есть погрешность, которая может быть губительной для монолита и всей конструкции или же не оказывать никакого воздействия.
Виды прочности бетона (на сжатие, изгиб, растяжение и т.д.):
- Проектная – та, что указывается в документах и предполагает значения при полной нагрузке на бетонную конструкцию. Считается в затвердевшем монолите, по истечении 28 дней после заливки.
- Нормированная – значение, которое определяется по техническим условиям или ГОСТу (идеальное).
- Фактическая – это среднее значение, полученное в результате выполненных испытаний.
- Требуемая – минимально подходящий показатель для эксплуатации, который устанавливается в лаборатории производств и предприятий.
- Отпускная – когда изделие уже можно отгружать потребителю.
- Распалубочная – наблюдается в момент, когда бетонное изделие можно доставать из форм.
Виды прочности, касающиеся марки бетона и его качества: на сжатие и изгиб, осевое растяжение, а также передаточная прочность. Бетон напоминает камень – прочность на сжатие бетона обычно намного выше, чем на растяжение. Поэтому основной критерий прочности монолита – его способность выдерживать определенную нагрузку при сжатии. Это самый значимый и важный показатель.
Так, к примеру, показатели бетона В25 (класс прочности) и марки М350: средняя стойкость к сжатию до 350 кгс/м2 или до 25 МПа. Реальные значения обычно чуть ниже, так как на прочность оказывают влияние множество факторов. У бетона В30 будут соответствующие показатели и т.д.
Чтобы определить данные показатели, создают специальные кубы-образцы, дают им застыть, а затем отправляют под лабораторный пресс специальной конструкции. Давление постепенно увеличивают и фиксируют в момент, когда образец треснул или рассыпался.
Определяющее условие для присвоения марки и класса бетону – расчетная прочность на сжатие, которая определяется после полного схватывания и застывания монолита (28 суток занимает процесс).
Именно по прошествии 28 суток бетон достигает показателя расчетной/проектной прочности по марке. Прочность на сжатие – самый точный показатель механических свойств монолита, его стойкости к нагрузкам. Это своеобразная граница уже затвердевшего бетона к воздействующему на него механическому усилию в кгс/м2. Самая большая прочность у бетона М800/М900, самая низкая – у М15.
Прочность на изгиб повышается при увеличении индекса марки. Обычно показатели изгиба/растяжения ниже, чем нагрузочная способность. Молодой бетон демонстрирует значение в районе 1/20, старый – 1/8. Данный параметр учитывается на проектном этапе строительства. Способ определения: из бетона заливают брус 120х15х15 сантиметров, дают затвердеть, потом устанавливают на подпорки (расстояние между ними 1 метр), в центре помещают нагрузку, увеличивая ее постепенно, пока образец на разрушится.
Прочность высчитывается по формуле Rизг = 0,1PL/bh3, тут:
- L – расстояние между подпорками;
- Р – маса нагрузки и образца;
- Н, b, h – ширина/высота сечения бруса.
Прочность считается в Btb и обозначается цифрой в диапазоне 0.4-8.
Осевое растяжение в процессе проектирования учитывают редко. Этот параметр важен для определения способности монолита не покрываться трещинами при ощутимых перепадах влажности воздуха, температуры. Растяжение представляет собой некоторую составляющую, взятую от прочности на изгиб. Определяется сложно, часто образцы балок растягивают на специальном оборудовании. Актуально значение для бетона, который используется в сферах, исключающих возможность появления трещин.
Передаточная прочность – это нормируемое значение прочности бетонного монолита напряженных элементов при передаче на него силы натяжения армирующих элементов. Данный показатель предусматривается нормативными документами, ТУ для разных видов изделий. Обычно назначают минимум 70% проектной марки, многое зависит от свойств арматуры.
Прочность бетона на 7 и 28 сутки: ГОСТ, таблица
Бетоны бывают разными. Как правило, все виды по маркам и классам делят на легкие, обычные и тяжелые (часто последние две группы объединяют, так как все обычные бетоны считаются тяжелыми).
Основные группы бетонов по прочности:
- Легкие – марки от М5 до М35 подходят для заливки ненесущих конструкций, от М50 до М75 идут на подготовительные работы до заливки, М100 и М150 актуальны для перемычек, конструктива, малоэтажного строительства.
- Обычные бетоны – самые распространенные и часто применяемые в ремонтно-строительных работах: М200/М300 используют для выполнения фундаментов, отмосток, полов, стяжек, бордюров, подпорок, лестниц и т. д. М250 В20 демонстрирует прочность 262 кгс/м2 и давление 20 МПа. М350 и М400 применяют для монолитных, несущих конструкций многоэтажных зданий, чаш бассейнов.
- М450 и выше – тяжелые бетоны, обладающие высокой прочностью и плотностью, используют для особых конструкций, разного типа военных объектов.
Таблица в МПа
Прочность бетона – самый важный показатель, который напрямую влияет на все остальные технические характеристики материала, сферу применения, способность выдерживать предполагаемые нагрузки. Поэтому в процессе выбора марки и класса стоит учитывать СНиП и ГОСТы, а при проверке материала на соответствие уделять внимание результатам исследования и соответствующим документам.
Классы бетона и марка по прочночти, таблицы характеристик
Бетон это каменный строительный материал, получаемый в результате твердения залитой в форму и уплотненной полужидкой смеси. Его приготавливают путем перемешивания сухого вяжущего вещества, фракционных заполнителей и воды. В качестве вяжущего элемента наиболее часто применяется цемент, заполнители – щебень, гравий, керамзит, галька измельченный шлак.
Главный технико-эксплуатационный показатель таких материалов, это предел прочности при испытании на сжатие, который позволяет определить марку и класс бетона. При этом данная марка указывает среднее эксплуатационное значение прочности затвердевшего материала, а класс предельно допустимый показатель с возможностью небольшой погрешности.
Кроме этого физические характеристики бетонных материалов предусматривают маркировку по водопроницаемости и морозостойкости. Первый показатель очень важен при строительстве гидротехнических и подземных сооружений, а второй в значительной мере определяет долговечность строительных конструкций, построенных в холодных и умеренных климатических зонах.
Класс и марка бетона по прочности, влагостойкости и морозостойкости
Числовое обозначение класса бетона выражает измеренную прочность образца в мегапаскалях (МПа) и обозначается буквой «B». В диапазон возможных значений входят показатели от 3,5 до 40. Наиболее широко применяемые марки имеют значения от B10 до B40. Например, маркировка B30 означает, что данный строительный материал гарантированно выдержит испытательное давление до 30 МПа.
Марка обозначается буквой «M» и измеряется в кг/см2. В диапазон применяемых марок входят бетонные смеси M50-M1000, что означает среднюю прочность в диапазоне от 50 до 1000 кг/см2.
Таблица соотношения марки и класса
Класс бетона | Средняя прочность (кг/см2) | Марка бетона |
В5 | 65 | М75 |
В7,5 | 98 | М100 |
В10 | 131 | М150 |
В12,5 | 164 | М150 |
В15 | 196 | М200 |
В20 | 262 | М250 |
В25 | 327 | М350 |
В30 | 393 | М400 |
В35 | 458 | М450 |
В40 | 524 | М550 |
В45 | 589 | М600 |
В50 | 655 | М600 |
В55 | 720 | М700 |
В60 | 786 | М800 |
Соответствие класса, морозостойкости и водонепроницаемости
Водонепроницаемость бетона обозначается буквой «W» и показывает давление воды, которое способна удерживать поверхность конструкции, не пропуская ее через имеющиеся поры. Величина этого показателя находится в пределах W2-W20. Для обычных зданий и сооружений водонепроницаемость обычно не превышает W4.
Морозостойкость определяет возможное количество последовательных циклов замораживания и оттаивания у бетонов во влажном состоянии. Допустимое нарушение прочности при таких испытаниях не должно превышать 5%. Обозначается буквой «F» и цифровым значением от 50 до 300 циклов. При наличии специальных добавок максимальное значение «F» может быть увеличено, но такие бетонные смеси в массовом строительстве не применяются.
Марка бетона | Класс бетона | Морозостойкость F | Водонепроницаемость W |
м100 | В-7,5 | F50 | W2 |
м150 | В-12,5 | F50 | W2 |
м200 | В-15 | F100 | W4 |
м250 | В-20 | F100 | W4 |
м300 | В-22,5 | F200 | W6 |
м350 | В-25 | F200 | W8 |
м400 | В-30 | F300 | W10 |
м450 | В-35 | F200-F300 | W8-W14 |
м550 | В-40 | F200-F300 | W10-W16 |
м600 | В-45 | F100-F300 | W12-W18 |
Факторы, влияющие на повышение класса бетона
На прочность застывшей бетонной смеси оказывают влияние следующие факторы:
- марка и количество используемого цемента;
- чистота, качество и размер фракции наполнителей;
- объемное соотношение воды и цемента в приготавливаемой смеси;
- качество перемешивания составляющих компонентов и плотность укладки при формировании конструкций;
- температура окружающего воздуха во время приготовления и использования бетона.
Как видно из перечисления основных факторов, качество бетона напрямую зависит от точного соблюдения принятых в строительстве технологий. Достижение нормативной прочности и соответствие классу на 90% бетонная смесь достигает через 72 часа после заливки в форму.
Определение прочности на сжатие
На заводах, где изготавливаются бетон и железобетонные изделия, прочность на сжатие определяется в лабораторных условиях при исследовании затвердевших контрольных образцов, размеры которых соответствую Государственным стандартам 10180-2012 и 28570-90.
Для определения показателей прочности бетона на сжатие в условиях строительной площадки необходимо:
- изготовить 12 кубических форм с размером грани 100 мм;
- залить отобранную пробу бетонной смеси в подготовленные формы;
- уплотнить состав на вибрационном столе, или хорошо простучав поверхность форм, если их прочность позволяет сделать это;
- установить формы с бетоном для твердения при температуре не ниже 20˚C и влажности не менее 85%;
- выполнить промежуточные испытания бетонных кубических образцов прессовым давлением на 3-й, 7-й и 14-й день, для предварительного заключения о качестве материала;
- окончательные испытания проводятся на 28-й день после помещения бетона в форму.
При отсутствии пресса на строительной площадке, образцы передаются в лабораторию, оснащенную необходимым оборудованием.
Проведение данных мероприятий позволяет определить реальную прочность бетона, используемого для монтажа монолитных конструкций, во время строительства. При этом передача бетонных образцов в испытательную лабораторию позволяет получить данные не только о классе материала, но и другие технико-физические показатели.
Другие способы испытания бетона на прочность
Развитие современных технологий позволило создать приборы для быстрого определения прочности бетона без использования лабораторного прессового оборудования. Для этого используется специальный прибор – склерометр или молоток Шмидта.
Требования к технологии подобных неразрушающих измерений определены в ГОСТ 22690. Способ измерения основан на определении прочности бетона с использованием метода упругого отскока. Металлический боек молотка с определенным поперечным сечением ударяет с заданной силой в бетонную поверхность и отскакивает от нее вверх. Высота отскока фиксируется склерометром. В ходе испытаний производится несколько ударов, и результат вычисляется по среднеарифметическому показателю.
Данный результат менее точный, чем лабораторные испытания. На точность измерений влияет шероховатость поверхности, толщина испытуемого образца плотность бетонной массы. Однако молоток Шмидта позволяет получать оперативные данные, не задерживая производства строительных работ. У исправного прибора погрешность показателей прочности обычно не превышает 5%.
Прочность бетона на сжатие – важнейший показатель качества материала
Точное соблюдение технологии приготовления бетонной смеси и ее правильная укладка в опалубку обеспечат высокое качество строительных конструкций. Однако контроль прочности материалов и соответствие необходимого класса и марки должен проводиться в обязательном порядке определенном стандартами и нормативными требованиями. Обеспечить такой контроль, можно только определяя показатели прочности на сжатие или используя неразрушающие методы проверки.
Применение различных классов бетонных смесей
Применение этого материала в строительстве строго регламентировано стандартами, которые мы уже упоминали выше. Но, что бы не вникать в эти нормативы, можно выделить следующие положения, в зависимости от места бетонирования и класса применяемого для этого бетона.
Фундамент в сухих грунтах | В7,5 |
Фундамент во влажных грунтах | В10 |
Фундамент в водонасыщенных грунтах | В15 |
Подготовительный слой под полы | В12,5 |
Наружная лестница и лестница в подвал | В7,5 |
Выгребная яма туалета, отстойник и др. | В15 |
Балки и плиты перекрытий | В20 |
Балки и плиты перекрытий с густым армированием, а также тонкостенные конструкции, например бассейны | В22.5 |
Видеообзор классов и марок
различия, таблица соответствия по ГОСТ, критерии выбора
Правильный выбор материалов гарантирует качество и долговечность ваших построек. Вы, конечно, видели трещины в фундаментах новых или старых домов, одна из причин этого явления — низкая прочность. Если вы не знаете, какая марка бетона подойдет вам, читайте дальше. Мы не будет затрагивать сложные строительные понятия и формулы, только необходимую информацию для покупки.
Оглавление:
- Соответствие класса и марки
- Маркировка цемента
- Что влияет на область применения смеси?
- Сфера использования и расценки
- Полезные рекомендации
Что такое марка и класс?
Важно сразу уяснить, что эти понятия неразрывно связаны. Высокая марка не может иметь низкий класс. Единственная разница — марка является показателем среднего давления, которое выдержит строение, а класс — гарантированного. Эти параметры определяются по пределу прочности на сжатие, то есть, если давление на него будет выше, конструкция разрушится.
Чаще всего в проектах и других нормативных документах указывают именно класс прочности бетона. Эту величину обозначают латинской буквой B, а измеряют в мегапаскалях (МПа). Например, B15 выдерживает давление до 15 МПа, а B25 — 25 МПа соответственно. В ГОСТе прописано, что в 5 % случаях бетон может не достигнуть заявленной прочности. Поэтому для стройки в проблемных условиях, не пытайтесь сэкономить на материалах.
Производители и поставщики обозначают свой товар марками (подробнее о маркировке бетонных смесей читайте здесь). Число после буквы М — округленный показатель средней прочности. Чтобы разобраться, приведем соотношения в таблице для часто используемых марок.
Таблица соответствия класса и марки бетона:
Класс | Марка |
B7,5 | М100 |
B10; B 12,5 | М150 |
B15 | М200 |
B20 | М250 |
B22,5 | М300 |
B25 | М350 |
Соотношение классов и марок при сжатии для тяжелого бетона такое же, как и для легкого. Но строители редко используют керамзитобетон, пено- и газобетон выше М250. Категорически нельзя возводить фундамент из легких видов, так как они предназначены для других целей.
Смесь изготавливают из цемента, воды, песка, щебня и специальных добавок, чтобы повысить свойства материала. Больше всего на марку влияют количество и качество цемента в составе.
Марка цемента
Если вы решили делать раствор самостоятельно, важно помнить, что марка бетона и цемента — это разные характеристики. Например, для изготовления М200 используют цемент М300‒М400. Чтобы сделать качественную смесь, нужно точно соблюсти все пропорции.
К сожалению, некоторые компании обманывают покупателя, продавая товар ниже заявленной марки. Если вы вынуждены заказывать бетон у непроверенного и подозрительного поставщика, проведите экспертизу в лаборатории. Для подготовки материала к проверке его заливают в квадратный деревянный ящик размером 10 или 15 см, тщательно перемешивают и оставляют в темном нежарком помещении.
Чтобы бетон набрал заявленную плотность, нужно подождать 28 дней. Если проведете экспертизу раньше, получите неверный результат. Обязательно проверяйте всю документацию товара перед покупкой и выгрузкой на объект. Недобросовестные работники могут разбавить смесь водой. Визуально материала становится больше, но теряется заявленная прочность.
Основные характеристики
Мы уже разобрались, что такое марка и класс бетона. Теперь перейдем к другим параметрам, которые влияют на область применения.
1. П — подвижность, осадка конуса или удобоукладываемость. Определяет способность заполнить форму. Для узких опалубок и колонн используют материал с подвижностью П4‒П5, а для монолитного фундамента и широких конструкций — П2‒П3. Чтобы бетон с низкой подвижностью заполнил форму, строители дополнительно вибрируют его.
2. W — водонепроницаемость. Эта характеристика варьируется от W2 до W20. Для фундамента подходит W4‒W6, а при высоком уровне грунтовых вод ‒ от W8.
3. F — морозостойкость. Этот параметр показывает, сколько раз бетон заморозится, а затем оттает, не потеряв свою прочность. Обычно в строительстве применяют F100‒F200. За прочность при низких температурах отвечают специальные добавки.
Чем выше класс, тем лучше бетон будет сопротивляется негативным воздействиям окружающей среды. Но его цена также будет расти. Вы можете повысить водонепроницаемость, используя материалы для гидроизоляции.
Популярные бетонные смеси
Бетон может иметь марку от М50 до М1000, а класс — от B7,5 до B80. Но М50 редко применяется в строительстве из-за его низкой прочности, из марок выше М500 строят мосты, гидротехнические и другие сооружения с высокими нагрузками.
- М100 используют для заливки бетонной подготовки перед возведением фундамента дома и отмостки, защитной полосы вокруг здания. У этой марки минимальная водонепроницаемость и морозостойкость, поэтому она не подходит для других работ.
- М150 — для оснований заборов, беседок, гаражей из железных листов или для заливки бетонного пола. Другие свойства этого материала минимальны.
- М200 подойдет для фундамента дома на сухой или каменистой почве или для заливки дорожек. Остальные параметры — W4, F100.
- М250 занимает промежуточное звено между популярными соседними марками.
- М300 — одна из самых используемых марок бетона для фундамента частного дома. Еще из нее делают лестницы, дорожки.
- М350 иногда применяется для оснований больших коттеджей на проблемной почве, намного чаще — для строительства многоэтажных домов.
Марка | Цена за 1 м3 | |
На гранитном щебне | На гравийном щебне | |
М100 | 2600 | 2 500 |
М150 | 2 700 | 2 600 |
М200 | 3 150 | 3 000 |
М250 | 3 400 | 3 250 |
М300 | 3 650 | 3 450 |
М350 | 3 800 | 3 650 |
М400 | 4 000 | 3 850 |
Чем выше марка товарного бетона, тем выше будет цена. Гранитный щебень обладает лучшими характеристиками, чем гравийный, но прочность застывшей смеси в первую очередь определяет марка бетона. Некоторые специалисты говорят о повышенном радиоактивном фоне гранита. К слову, производители редко выпускают материал на гравии выше класса B25.
Что еще важно знать при покупке?
1. Не все производители указывают тип щебня. Не стесняйтесь, звоните и спрашивайте. Состав на гравии всегда будет стоить дешевле.
2. Не забудьте прибавить к стоимости доставку на объект.
3. Смеси с большей подвижностью стоят дороже, как и с большей водонепроницаемостью и морозостойкостью. Хотя чаще всего эти показатели зафиксированы за конкретным классом бетона.
4. Товарный бетон — это именно тот, который вам нужен.
5. Некоторые производители предлагают бетон с известняковым щебнем. У него маленькая прочность, поэтому хороший фундамент не построишь.
6. Противоморозные добавки необходимы, если вы решили строить зимой. Чем ниже температура, тем дороже они будут стоить.
7. На некоторых сайтах цена указана с доставкой, а на других нет, поэтому конечная стоимость сильно варьируется.
8. Многие компании предлагают бесплатно посчитать, сколько будет стоить материал конкретного класса и его транспортировка.
9. Перед покупкой обязательно проверьте сертификаты качества товара.
10. БГС расшифровывается как бетонная смесь готовая.
11. Пескобетон — это сухой состав, который используют для заделки трещин и других строительных работ.
12. Товар можно увезти и самому, но для этого вам в любом случае нужно нанять бетононасос.
13. ПДМ — это погрузочно-доставочная машина.
Теперь вы знаете все необходимое для того, чтобы купить бетон. Выбирайте качественный материал, тогда природные явления не разрушат ваши постройки. Так вы сможете сэкономить время, деньги, а самое главное — нервы, которые неизбежно будут потрачены, если с только что построенным домом что-то пойдет не так.
youtube.com/embed/FaVO93feayc» frameborder=»0″ allowfullscreen=»allowfullscreen»/>
Обзор марок и класса бетона
Компания «Промщебень» производит все марки бетона с доставкой на строительные объекты в Воскресенске и Воскресенском районе Московской области, Коломне, Егорьевске, Раменском. Возможен самовывоз. Работаем со строительными компаниями с круглосуточной поставкой раствора юридическим лицам и гражданами.
Прочностные свойства готовых строительных конструкций закладываются составом раствора: пропорцией цемента, воды, добавок. Класс (марка) товарного бетона имеет определяющее значение при выборе материала с привязкой к определенным работам на строительной площадке.
Класс и марка бетона по прочности, влагостойкости, морозостойкости
При производстве смесей на основе цемента с оптимальными свойствами учитывается прочность, присущая конкретному классу, марке бетона. Наряду с ними выбор раствора предопределяют пара других технических параметров:
- соответствие марки бетона необходимым характеристикам по морозостойкости. Важность их значения обусловлена географическим расположением региона, температурой в момент проведения укладки раствора: в помещении (в гараже, мастерской, на кухне при устройстве стяжки пола), на улице (при заливке фундамента, возведении стен дома, строительстве подъездного пути, садовых дорожек, др.),
- соответствие марки бетона по степени водонепроницаемости. При сооружении подземных конструкций, гидротехнических объектов, застройке участков с близко лежащими к поверхности грунтовыми водами, болотистых и глинистых территорий.
По мере роста класса (марки) бетона, продукт демонстрирует увеличение стойкости к влаге, равно как и к морозам. Сумма всех названных характеристик – реальный показатель качественных преимуществ и долговечности высококлассных смесей.
Таблица соотношения марки и класса
Класс и марки бетона в таблице прочно взаимосвязаны: по одному показателю профессионалы легко определяют второй. По обоим можно судить о главной эксплуатационной характеристике раствора — пределе прочности застывшего бетона на сжатие. Определяют ее в ходе лабораторного тестирования, используя специальное оборудование. Марки бетона, приведенные в таблице внизу, соответствует ГОСТу 26633-91 и сообщают среднее значение прочности затвердевшего раствора с учетом допустимой погрешности.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Выбирая марку (М) (бетон марки 400 либо М200, проч.), вы одновременно определяетесь с классом бетона (В), — соответственно В30 и В15, как видно из таблицы. Раствору бетона класса В25 соответствует марка М350. ГОСТ не распространяется на те марки готового к употреблению бетона, которые используются в строительстве дорог и взлетных полос.
Соответствие класса, морозостойкости и водонепроницаемости
При расшифровке маркировки видов бетона непременно обратите внимание на такие свойственные им физические характеристики, как ««W» (водостойкость) и «F» (морозостойкость):
- водонепроницаемость бетона означает давление воды, которое удерживает бетонная поверхность строительной конструкция, не пропуская сквозь поры. Показатель зависит от класса материала, поэтому колеблется от 2 до 20. W4 – стандартная водостойкость для обычных объектов гражданского строительства (жилья, торговых, спортивных, культурных, медицинских, образовательных, промышленных зданий и сооружений). Марка бетона, походящая по водонепроницаемости, исключает в дальнейшем быстрое разрушение, образование плесени на стенах, сырость в помещении,
- морозостойкость бетона соответствует количеству замораживаний/ размораживаний материала на основе цемента во влажном состоянии. Самый ходовой диапазон показателя этих циклов– 50-300. F50 применяют в теплых внутренних помещениях. F150 – при строительстве объектов разного назначения в регионах с теплым (умеренным) климатом. 150-300 в районах с суровыми зимними температурами. Точное попадание в марку бетона по морозостойкости и по прочности увеличивает срок эксплуатации стройобъектов до 100 лет.
Интересно: за счет спецдобавок в цементную смесь F-характеристику по желанию заказчика можно увеличить. Однако, бетон со сверхморозостойкостью применяется крайне редко.
При полном соответствии марки бетона условиям эксплуатации будущей конструкции, исключены любые риски.
Таблица морозо- и водостойкости бетона различных марок и классов
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Факторы, влияющие на повышение класса бетона
Существуют обстоятельства, влияющие на прочность окончательно затвердевшей бетонной смеси. Чем выше класс применяемого на объекте бетона, и марка, тем он прочнее, тем продолжительнее время службы постройки. Чем это обусловлено? Тем, что класс продукта четко соотносится:
- С составом всех содержащихся в смеси ингредиентов. Марка бетона зависит от пропорции образующих раствор компонентов.
- С объемом массы цемента и воды.
- С маркой использованного в продукте цемента и количеством.
- С чистотой, размером наполнителя (фракцией), качеством гранита, гравия, керамзита, отсева, песка.
- Со степенью перемешивания компонентов.
На класс и марку бетона в контексте прочности влияют, как уже сказано, и внешние факторы:
- чем плотнее и технологичнее (то есть, профессиональнее) укладка раствора в конструкции, тем она прочнее и долговечнее по мере возрастания класса бетона, соответствия оптимальным условий эксплуатации строения,
- чем теплее воздух в момент смешивания составляющих, приготовления товарного бетона на РБУ, работы с ним, тем выше характеристики материала.
Совет профессионала: кто в точности соблюдает технологию, для кого применение бетона строго по назначению – правило, тот не имеет претензий к классу либо марке бетона в части заявленной прочности. Помните: нормативная прочность бетонной конструкции вне зависимости от площади, толщины, достигается через 72 часа после заливки. Максимальную же прочность раствор набирает только спустя 28 суток.
Определение прочности на сжатие
Морозо- вместе с водостойкостью – не единственные критерии оценки качества строительного раствора. В зависимости от марки стрйматериал отличается еще по прочности на сжатие. Что это за характеристика? – Она указывает на нагрузку, которую выдерживает застывший бетон конкретной марки. Единицы измерения прочности:
— кгс/см
2 с точки зрения марки (М) бетона, диапазон 50-1000,
— мегапиксели с точки зрения класса (В) продукта, диапазон 3,5 – 80. В этом случае прочность на сжатие — показатель давления, который материал выдерживает в 95% построек.
Естественно, чем прочнее получается бетонная конструкция, тем дороже стоимость использованного бетонного раствора. Чтобы установить соответствие марки бетона предусмотренному для нее параметру прочности на сжатие, применяется метод проверки — ГОСТ 10180-2012 – по контрольным образцам.
Сущность в том, что изготовленные образцы постепенно нагружаются с постоянной скоростью, затем вычисляется напряжение в испытуемом образце.
Другие способы испытания бетона на прочность
- Проверка бетонного куба или цилиндра путем раскалывания на прочность на сжатие и растяжение.
- Тестирование прочности бетона по образцу цилиндрической или призменной с квадратом в сечении формы на осевое растяжение.
- Испытание прочности призмы из бетона на растяжение при изгибе, раскалывании.
Прочность бетона на сжатие – важнейший показатель качества материала
Марка бетона предопределяет такую характеристику, как прочность на сжатие. Именно она отвечает за степень устойчивости готовых построек к разного рода нагрузкам. При правильном соотношении марки и класса бетона с прочностью на сжатие получается строительный материал, отвечающий национальному стандарту. Нацстандарт распространяется так же на готовые железобетонные плиты.
Применение различных классов бетонных смесей
Класс
|
Назначение
|
|
|
|
|
|
|
|
|
|
|
|
|
Используйте возможность приобрести качественный бетон нужной марки, класса по ценам производителя. Оптимизируйте расходы, экономьте на строительстве!
Заказывайте бетон нужной марки в необходимом объеме в ООО «Промщебень» с доставкой.
Марка бетона и класс бетона таблица
Для понимания назначения бетона в тех или иных строительных конструкциях используются такие термины, как марка и класс бетона. Что они отражают? Марка отражает усредненные технические характеристики бетона, класс показывает степень прочности бетонных конструкций во время их эксплуатации.
Марка отражает параметры прочности бетона по сжатию или его крепость после затвердевания и набора начальной прочности. Прочность проверяется лабораторными исследованиями на бетонном образце (кубе) сечением 15 см. Перед испытанием куб из бетона должен затвердевать четыре недели (28 суток). Затем образец испытывают на сжатие под прессом. Марка имеет символьное обозначение «M», после него пишутся числа от 50 до 1000, обозначающие предельную прочность по сжатию, измеряемую в кг/см². Более высокие марка и класс бетона означают более высокую прочность и долговечность.
Показатели бетонов
Класс – термин профессиональный, и от марки класс отличается гарантией прочности по марке. По СНиП 2.03.01-84 класс означает, что прилагаемые усилия разрушения будут выдерживать 95% бетонных элементов. Стандартно класс бетона по прочности имеет символьное обозначение «B», после которого указываются числа, обозначающие гарантированную прочность, измеряемую в МПа. Так, бетон B25 может выдержать давление в 25 МПа. Полный диапазон классов: 3,5-80 МПа.
Таблица зависимости прочности, марки и класса по прочности при сжатии:
Марка | Класс | Условная марка* | |||
Любой непористый бетон | Разница по марке, % | Пористые бетоны | Разница по марке, % | ||
M 15 | В 1 | – | – | 14,47 | – 3,5 |
M 25 | В 1,5 | – | – | 21,7 | – 13,2 |
M 25 | В 2 | – | – | 28,94 | 15,7 |
M 35 | В 2,5 | 32,74 | – 6,5 | 36,17 | 3,3 |
M 50 | В 3,5 | 45,84 | – 8,1 | 50,64 | 1,3 |
M 75 | В 5 | 65,48 | – 12,7 | 72,34 | *3,5 |
M 100 | В 7,5 | 98,23 | – 1,8 | 108,51 | 8,5 |
M 150 | В 10 | 130,97 | – 12,7 | 144,68 | – 3,55 |
M 150 | В 12,5 | 163,71 | 9,1 | 180,85 | – |
M 200 | В 15 | 196,45 | – 1,8 | 217,02 | – |
M 250 | В 20 | 261,93 | 4,8 | – | – |
M 300 | В 22,5 | 294,68 | – 1,8 | – | – |
M 300 | В 25 | 327,42 | 9,1 | – | – |
M 350 | В 25 | 327,42 | – 6,45 | – | – |
M 350 | В 27,5 | 360,18 | 2,9 | – | – |
M 400 | В 30 | 392,9 | *1,8 | – | – |
M 450 | В 35 | 458,39 | 1,9 | – | – |
M 500 | B 40 | 523,87 | 4,8 | – | – |
M 600 | В 45 | 589,35 | 1,8 | – | – |
M 700 | В 20 | 654,84 | – 6,45 | – | – |
M 700 | В 21 | 720,32 | 2,9 | – | – |
M 800 | В 22 | 785,81 | – 1,8 | – | – |
В бетон может добавляться не только песок и портландцемент, но и керамзит, известь, гипс или алебастр, а также другие синтетические модификаторы, улучшающие его конкретные свойства. Существующие ГОСТ и СНиП определяют множество других свойств стройматериала – прочность, пластичность, морозостойкость, влагонепроницаемость.
Добавки для бетонов
Прочность бетонов
Класс и марка связаны друг с другом, поэтому соотношение класса и марки бетона помогает узнать любые характеристики материала. Рассмотрим класс бетона по прочности на сжатие согласно ГОСТ 26633-91:
Класс | Прочность в кгс/см2 | Марка |
B 3,5 | 45,8 | M 50 |
B 5 | 65,5 | M 75 |
B 7,5 | 98,2 | M 100 |
B 10 | 131,0 | M 150 |
B 12,5 | 163,7 | M 150 |
B 15 | 196,5 | M 200 |
B 20 | 261,9 | M 250 |
B 22,5 | 294,7 | M 300 |
B 25 | 327,4 | M 350 |
B 27,5 | 360,2 | M 350 |
B З0 | 392,9 | M 400 |
B 35 | 458,4 | M 450 |
B 40 | 523,9 | M 550 |
B 45 | 589,4 | M 600 |
B 50 | 654,8 | M 700 |
B 55 | 720,3 | M 700 |
B 60 | 785,8 | M 800 |
B 65 | 851,3 | M 900 |
B70 | 916,8 | M 900 |
B 75 | 982,3 | M 1000 |
B 80 | 1047,7 | M 1000 |
Согласно этой таблице определяется класс бетона по прочности на сжатие и его марка. Самым популярным считается бетон M 400, так как из него получаются прочные и долговечные фундаменты.
Как рассчитать прочность бетона
Подробно о марках бетонов
M 50-100
Бетон марки M 50 – наиболее слабый, «худой», поэтому им рекомендуется заполнять пустоты в бетонных конструкциях без нагрузки, подушек, стяжек для дорожных покрытий. Это утверждение относится и к маркам M 75, M 100.
M 150
M 150 – легкий бетон, применяемый в малоэтажных объектах для заливки фундамента, стяжки пола, террас, садовых дорожек и тротуаров.
M 200-250
Этот материал пригоден для возведения колонн и строительства подпорок, лестниц и лестничных площадок, садовых дорожек, бордюров, тротуаров и отмосток. На прочном грунте бетон рекомендуется для заливки фундамента малоэтажных объектов с невысокой нагрузкой по массе.
M 300
Пригоден для возведения монолитных оснований, бетонных площадей для наружных и внутренних лестниц. Такой бетон имеет высокую влагостойкость.
M 350
Подойдет для возведения любых конструкций – монолитных, потолочных перекрытий, плит, строительства фундаментов, бассейнов, колонн, дорожных покрытий.
M 400
Эта марка по классу B 30 используется в промышленности. Индивидуальные застройщики предпочитают марки дешевле. Но бетон M 400 быстро затвердевает, поэтому для строительства крупных зданий он незаменим. Также марка бетона и класс позволяют использовать его в строительстве мостовых и подводных сооружений, высокопрочных опор, гидротехнических объектов.
M 500
Это узкоспециализированные бетоны, дорогостоящий материал, и в частном строительстве его использовать не рекомендуется из-за дороговизны. M 500 отлично подходит для строительства прочных хранилищ, дамб, объектов стратегического назначения и гидротехнических сооружений – плотин, мостов и т.д.
Пропорции бетонных смесей
Влагонепроницаемость
ГОСТ 12730.5-84 определяет марку по водонепроницаемости с символьным обозначением «W» и числами в диапазоне от 2 до 20. Влагонепроницаемость выражается в МПа – это предельное давление, которое выдерживает конструкция из бетона конкретной марки и класса.
Проницаемость | Марка по водонепроницаемости |
Нормальная (Н) | W4 |
Пониженная (П) | W6 |
Низкая (О) | W8 |
Водопроницаемость – формула расчета коэффициента фильтрации
Если классифицировать бетон по марке, отталкиваясь от влагонепроницаемости, то отличия будут такими:
Марка | Водонепроницаемость |
M 100 | W 2 |
M 150 | W 2 |
M 200 | W 2 |
M 250 | W 4 |
M 300 | W 4 |
M 350 | W 6 |
M 400 | W 8 |
- W2 – высокий коэффициент проницаемости, для гидроизоляционных работ непригоден.
- W4 – коэффициент проницаемости ниже, но для гидроизоляции также не рекомендован.
- W6 – проницаемость еще ниже, степень влагопоглощения средняя, рекомендован в жилищном строительстве.
- W8 – бетон впитывает ≤ 4,2% влаги.
Формула расчета морозостойкости
Числитель и знаменатель – пределы прочности по сжатию после испытания на морозоустойчивость и бетона с повышенной влажностью до заморозки (МПа).
Морозостойкость
Параметр имеет символьное обозначение «F», после которого указываются цифры от 50 до 300, которые показывают число циклов замораживания и разморозки с 5-процентной потерей прочности.
Класс морозоустойчивости | Марка | Где применяется |
Низкий | ≤ F 50 | Используется редко |
Нормальный | F 50-F 150 | Применяется во всех климатических регионах, срок эксплуатации – 100 лет |
Повышенный | F 150-F 300 | Вечная мерзлота |
Высокий | F 300-F 500 | Для грунтов повышенной влажности с послойным промерзанием |
Очень высокий | F 500-F 100 | Для любых долговечных объектов |
Важно! Для увеличения коэффициента морозостойкости бетонов рекомендуется уменьшить объемное количество воды в смеси и добавить в нее модификаторы.
Класс бетона по морозостойкости:
- M 100-150 – F 50.
- M 200-250 – F 100.
- M 300-350 – F 200.
- M 400 – F 300-F 500.
Но не только существующие марки бетона и их характеристики, таблица которых приведена выше, определяют его технические параметры. Есть такое понятие, как удобоукладываемость.
Классификация бетонов по удобоукладываемости
Удобоукладываемость
Существуют специально разработанные ГОСТ, определяющие класс по удобоукладываемости. По плотности смеси разделяют на жесткие и подвижные. Последние определяются по усадке конуса с жидким бетонным раствором, жесткие растворы испытывают на вибростенде. Критерием жесткости служит время продавливания состава. ГОСТ 7473-94 регулирует стройматериал по удобоукладываемости.
Марка | Усадка конуса в см | Исследования на жесткость в секундах |
Бетон СЖ-З – сверхжесткий | ≥ 100 | |
Сверхжесткий бетон СЖ-2 | 51-100 | |
Сверхжесткий бетон СЖ-1 | 41-50 | |
Бетон жесткий Ж-4 | 31-40 | |
Бетон жесткий Ж-З | 21-30 | |
Бетон жесткий Ж-2 | 11-20 | |
Бетон жесткий Ж-1 | 5-10 | |
П-1 – подвижный бетон | 1-4 | |
П-2 – подвижный бетон | 5-9 | |
П-З – подвижный бетон | 10-15 | |
П-4 – подвижный бетон | 16-20 | |
П-5 – подвижный бетон | 21-25 |
Расчеты и испытания по удобоукладываемости
Таблица выбора бетона согласно его жесткости:
Сооружение | Марка по удобоукладываемости |
Основание и пол | Ж-1, П-1 |
Дорожные фундаменты или основания для аэродромов | |
Пол | П-1 |
Дорожные покрытия или покрытия для аэродромов | |
Мощные или слабо армированные | |
Мощные армированные | П-1, П-2 |
Плитные конструкции | |
Балочные конструкции | |
Мощные колонны | П-2 |
Горизонтальные сильно армированные | П-2, П-З |
Вертикальные сильно армированные | П-З, П-4 |
Конструкции с применением скользящей опалубки | П-2, П-З |
Бетонные или слабо армированные ж/б сооружения, плиты перекрытий, трубопроводы, облицовки, основания | П-5, Р1-Р6 |
Бетонные или слабо армированные ж/б сооружения, плиты перекрытий, трубопроводы, облицовки, основания, но без трамбовки бетона | СУ-1 |
Мощные сильно армированные сооружения, плиты, перекрытия, колонны | Р4-Р6 |
Мощные сильно армированные сооружения, плиты, перекрытия, колонны, но без трамбовки бетона | СУ-2 |
Сильно армированные сооружения (без трамбовки бетона) | СУ-З |
Подача бетононасосами или пневмонагнетателями | ≥ П-З, П-4 |
Сооружения с качеством поверхности после демонтажа опалубки | СУ-1, СУ-2 |
Марки и параметры бетонов
- Разработанный ГОСТ 23732 требует соблюдать нормативы по воде, которой затворяется сухая бетонная смесь.
- Для изменения эксплуатационных характеристик бетона в состав добавляют модификаторы – стабилизаторы и пластификаторы. Добавки делают готовый бетон более морозостойким, влагонепроницаемым, прочным, пластичным и т.д. Но при добавлении модификаторов необходимо принимать во внимание, что характеристики удобоукладываемости не должны ухудшаться.
Составляющие бетонной смеси
Классификация бетонов по составу связующих определяет следующие его категории:
- Наиболее распространенный компонент – портландцементный.
- Асфальт.
- Известь.
- Гипс или алебастр.
- Силикатные добавки.
- Глина.
Состав компонентов определяет бетоны как:
- Особо легкие (ноздреватые) с объемной массой ≤ 500 кг/м2.
- Легкие с объемной массой ≤ 1 800 кг/м2. В них добавляют арболитовые шламы, шлаковые бетоны, пемзобетонную крошку и другие легкие пористые стройматериалы с невысоким коэффициентом теплопроводности. Легкий бетон оптимально подходит для строительства ограждений и слабопрочных покрытий.
- Обычные или тяжелые бетоны с объемной массой ≥ 1 800 кг/м2. Заполнители – гравий, щебень, другие твердые породы.
- Особо тяжелые бетоны с объемной массой ≥ 2 700 кг/м2. В состав таких бетонов входят: баритовые и железные руды, прочие металлы. Бетон применяется в строительстве АЭС, стратегических или военных сооружений.
Информация в статье поможет вам правильно выбрать бетон нужной марки и купить стройматериал, который наиболее оптимально подойдет для ваших нужд.
Измерение прочности и марки бетона
Прочность бетона – определение класса и марки слоя бетона[]
Измерение прочности бетона[]
Прочность бетона, класс бетона, марка бетона, бетон на сжатие, прочность конструкций[]
Экспертом произведены измерения скорости распространения ультразвука в сборных железобетонных конструкциях перекрытий с целью определения средней прочности на сжатие, класса и марки бетона.
Измерения производились ультразвуковым тестером УК1401 (Сертификат об утверждении типа средств измерений RU.C.34.002.А № 10778), согласно ГОСТ 17624-87 «Бетоны. Ультразвуковой метод определения прочности» . Число и расположение контролируемых участков на конструкциях установлены с учетом требований ГОСТ 18105-86 «Бетоны. Правила контроля прочности».
По выполненным измерениям произведен расчет средней прочности бетона, определена марка и класс по прочности бетона. Результаты занесены в таблицу №1.
Таблица №1
№ участка замеров | Скорость распространения ультразвука на участках конструкций | Ближайший класс бетона по прочности на сжатие | Марка бетона по прочности на сжатие |
Перекрытия | |||
3980 м/с | В27,5 | М350 | |
4030 м/с | В27,5 | М350 | |
3660 м/с | В25 | М350 | |
4020 м/с | В27,5 | М350 | |
3965 м/с | В27,5 | М350 | |
3970 м/с | В27,5 | М350 | |
4015 м/с | В27,5 | М350 | |
3650 м/с | В25 | М350 |
Экспертом зафиксирована прочность бетона класса по прочности на сжатие от В25 до В27,5 марки М350.
Согласно Техническим условиям БЕТОНЫ ТЯЖЕЛЫЕ И МЕЛКОЗЕРНИСТЫЕ
Приложение 1
Соотношение между классами бетона по прочности на сжатие и растяжение и марками
Таблица 6
Класс бетона по прочности | Средняя прочность бетона | Ближайшая марка бетона по прочности, М | Отклонение ближайшей марки бетона от средней прочности класса, % |
__________________ * Средняя прочность бетона рассчитана при коэффициенте вариации V, равном 13,5%, и обеспеченности 95% для всех видов бетонов, а для массивных гидротехнических конструкций при коэффициенте вариации V, равном 17%, и обеспеченности 90%. | |||
Сжатие | |||
В3,5 | 45,8 | M50 | +9,2 |
B5 | 65,5 | M75 | +14,5 |
B7,5 | 98,2 | M100 | +1,8 |
B10 | 131,0 | M150 | +14,5 |
B12,5 | 163,7 | M150 | -8,4 |
B15 | 196,5 | M200 | +1,8 |
B20 | 261,9 | M250 | -4,5 |
B22,5 | 294,7 | M300 | +1,8 |
B25 | 327,4 | M350 | +6,9 |
B27,5 | 360,2 | M350 | -2,8 |
B30 | 392,9 | M400 | +1,8 |
B35 | 458,4 | M450 | -1,8 |
B40 | 523,9 | M550 | +5,0 |
B45 | 589,4 | M600 | +1,8 |
B50 | 654,8 | M700 | +6,9 |
B55 | 720,3 | M700 | -2,8 |
B60 | 785,8 | M800 | +1,8 |
B65 | 851,3 | M900 | +5,7 |
B70 | 916,8 | M900 | -1,8 |
B75 | 982,3 | M1000 | +1,8 |
B80 | 1047,7 | M1000 | -4,6 |
Несущая способность железобетонных перекрытий выполняется.
Обнажения арматуры ультразвуковым тестером УК1401 не выявлено, защитный слой бетона 27 – 32 мм обеспечивается.
Согласно ГОСТ 11024-84 «Государственный Стандарт Союза ССР»:
Номинальную толщину защитного слоя бетона до арматуры, устанавливаемой в проектной документации, следует принимать не менее значений, указанных в табл.:
Для определения технического состояния кирпичной кладки экспертом выполнены вскрытия штукатурного слоя внутренней поверхности межкомнатных перегородок и несущих стен. При вскрытии определено: незаполнения растворных швов, растрескивания кирпича, сколов не зафиксировано. Толщина штукатурного слоя в местах вскрытия соответствует 25-27 мм. Несущая способность обеспечивается.
Протечек, нарушений в сопряжении трубопроводов инженерных сетей, не выявлено, запорная арматура находится в исправном состоянии.
Диагностика внутренней электропроводки зафиксировала ее исправность и выполнение в соответствии с Правилами устройства электроустановок (ПУЭ). Электропроводки (Издание седьмое).
Асфальтовая отмостка выполнена, что не дает возможности атмосферной влаге беспрепятственно проникать к конструкциям цокольного этажа и фундамента.
Таблица проектных свойств бетона (fcd, fctm, Ecm, fctd)
Расчетные значения свойств бетонного материала согласно EN 1992-1-1
Масса устройства
γ
Удельный вес бетона γ указан в EN1991-1-1, приложение A.
Для простого неармированного бетона γ = 24 кН / м 3 .
Для бетона с нормальным процентным содержанием арматуры или предварительно напряженной стали γ = 25 кН / м 3 .
Нормативная прочность на сжатие
f ck
Характеристическая прочность на сжатие f ck является первым значением в обозначении класса бетона, например 30 МПа для бетона C30 / 37.
Значение соответствует характеристической прочности цилиндра (5% фрактильной прочности) согласно EN 206-1.
Классы прочности согласно EN 1992-1-1 основаны на характеристических классах прочности, определенных для 28 дней.
Изменение характеристической прочности на сжатие f ck ( t ) со временем t указано в EN1992-1-1 §3.1.2 (5).
Характеристическая кубическая прочность на сжатие
f ck, куб
Характеристическая кубическая прочность на сжатие f ck, cube является вторым значением в обозначении класса бетона, например 37 МПа для бетона C30 / 37.
Значение соответствует характеристической прочности куба (5% хрупкости) согласно EN 206-1.
Средняя прочность на сжатие
f см
Средняя прочность на сжатие f см связана с характеристической прочностью на сжатие f ck следующим образом:
f см = f ck + 8 МПа
Изменение средней прочности на сжатие f см ( т ) во времени т указано в EN1992-1-1 §3.1.2 (6).
Расчетная прочность на сжатие
f cd
Расчетная прочность на сжатие f cd определяется в соответствии с EN1992-1-1 §3.1.6 (1) P:
f cd = α cc ⋅ f ck / γ C
где γ C — частный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN1992-1-1 §2.4.2.4 и Национальное приложение.
Коэффициент α cc учитывает долгосрочное влияние на прочность на сжатие и неблагоприятные эффекты, возникающие в результате приложения нагрузки. Он указан в EN1992-1-1 §3.1.6 (1) P и в национальном приложении (для мостов см. Также EN1992-2 §3.1.6 (101) P и национальное приложение).
Нормативная прочность на разрыв
Прочность на растяжение при концентрической осевой нагрузке указана в таблице 3 стандарта EN 1992-1-1.1.
Вариабельность прочности бетона на растяжение определяется следующими формулами:
Формула для средней прочности на разрыв
f ctm
f ctm [МПа] = 0,30⋅ f ck 2/3 для бетона класса ≤ C50 / 60
f ctm [МПа] = 2,12 ln [1+ ( f см /10 МПа)] для бетона класса> C50 / 60
Формула для 5% прочности на разрыв
f ctk, 0.05
f ctk, 0,05 = 0,7 f ctm
Формула для 95% прочности на разрыв
f ctk, 0,95
f ctk, 0,95 = 1,3 f ctm
Расчетная прочность на разрыв
f ctd
Расчетная прочность на разрыв f ctd определяется в соответствии с EN1992-1-1 §3.1.6 (2) P:
f ctd = α ct ⋅ f ctk, 0.05 / γ С
где γ C — частичный коэффициент безопасности для бетона для исследуемого расчетного состояния, как указано в EN1992-1-1 §2.4.2.4 и Национальном приложении.
Коэффициент α ct учитывает долгосрочное влияние на предел прочности на разрыв и неблагоприятные эффекты, возникающие в результате приложения нагрузки. Это указано в EN1992-1-1 §3.1.6 (2) P и в Национальном приложении (для мостов см. Также EN1992-2 §3.1.6 (102) P и Национальное приложение).
Модуль упругости
E см
Упруго-деформационные свойства железобетона зависят от его состава и особенно от заполнителей.
Приблизительные значения модуля упругости E см (значение секущей между σ c = 0 и 0,4 f см ) для бетонов с кварцитовыми заполнителями приведены в EN1992-1-1, таблица 3 .1 по следующей формуле:
E см [МПа] = 22000 ⋅ ( f см /10 МПа) 0,3
Согласно EN1992-1-1 §3.1.3 (2) для известняка и песчаника значение E см должно быть уменьшено на 10% и 30% соответственно.
Для базальтовых заполнителей значение E см следует увеличить на 20%.
Значения E см , приведенные в EN1992-1-1, следует рассматривать как ориентировочные для общих применений, и их следует специально оценивать, если конструкция может быть чувствительна к отклонениям от этих общих значений.
Изменение модуля упругости E см ( т ) со временем т указано в EN1992-1-1 §3.1.3 (3).
Коэффициент Пуассона
ν
Согласно EN1992-1-1 §3.1.3 (4) значение коэффициента Пуассона ν можно принять равным ν = 0,2 для бетона без трещин и ν = 0 для бетона с трещинами.
Коэффициент теплового расширения
α
Согласно EN1992-1-1 §3.1.3 (5) значение линейного коэффициента теплового расширения α можно принять равным α = 10⋅10 -6 ° K -1 , если нет более точной информации.
Минимальная продольная арматура
ρ мин. для балок и плит
Минимальное продольное растяжение арматуры для балок и основное направление плит указано в EN1992-1-1 §9.2.1.1 (1).
A с, мин = 0.26 ⋅ ( f ctm / f yk ) ⋅ b t ⋅ d
где b t — средняя ширина зоны растяжения, а d — эффективная глубина поперечного сечения, f ctm — средняя прочность бетона на растяжение, а f yk — характерный предел текучести стали.
Минимальное усиление требуется, чтобы избежать хрупкого разрушения.Обычно требуется большее количество минимальной продольной арматуры для контроля трещин в соответствии с EN1992-1-1 §7.3.2.
Секции с меньшим армированием следует рассматривать как неармированные.
В соответствии с EN1992-1-1 §9.2.1.1 (1) Примечание 2 для балок, для которых возможен риск хрупкого разрушения, A с, мин. можно принять как 1,2-кратную площадь, требуемую в ULS. проверка.
Минимальная прочность на сдвиг
ρ w, мин. для балок и плит
Минимальная поперечная арматура для балок и плит указана в EN1992-1-1 §9.2.2 (5).
ρ w, min = 0,08 ⋅ ( f ck 0,5 ) / f yk
где f ck — характеристическая прочность бетона на сжатие, а f yk — характеристический предел текучести стали.
Коэффициент усиления сдвига определен в EN1992-1-1 §3.1.3 (5) как:
ρ w = A sw / [ s ⋅ b w sin ( α )]
где b w — ширина стенки, а s — расстояние между поперечной арматурой по длине элемента.Угол α соответствует углу между поперечной арматурой и продольной осью.
Для типичной поперечной арматуры с перпендикулярными ветвями α = 90 ° и sin ( α ) = 1.
Предыдущая | Содержание | Следующий
Предыдущая | Содержание | Следующий FHWA-HRT-05-057 |
Прочность на сжатие Результат — обзор
6.17.10.3 Конструкция и эксплуатационные характеристики смесей RCC
В проекте предусматривалось включение четырех зон RCC в плотину. Объемным размещением был немодифицированный ПКК, поставленный с завода. RCC был модифицирован путем введения на месте цементно-водного раствора (RCC, обогащенного цементным раствором или GE-RCC) для улучшения прочности на сдвиг, долговечности, адгезии и гидроизоляции в выбранных областях плотины, таких как зоны контакта устоев и вокруг водных остановок, а между подъемниками в стратегических районах использовался цементный раствор для перекрытия возможных путей утечки.Дополнительная модификация RCC на месте установки , которая потенциально могла бы подвергнуться воздействию мороза и сброса из водосброса, была предусмотрена в проекте вместо конструкционного бетона с обычными дозировками. Окончательное решение об использовании этой смеси с воздухововлекающими добавками было принято по результатам полевых испытаний. ПКК изготавливалась преимущественно из дробленого сланцевого заполнителя, добытого на строительной площадке. Сланцевая порода, полученная из карьера, имела предел прочности при неограниченном сжатии по слоистости в диапазоне 20–40 МПа и предел прочности при растяжении по слою, равный 0.7–1,0 МПа. Суммарное поглощение (предел <1%) было удобной мерой степени выветривания в карьере. Сланцевый продукт имеет тенденцию к образованию чрезмерного количества илистой мелочи по сравнению с полученной фракцией песка, поэтому импортный песок Roxburgh был добавлен в смесь для достижения требуемого размера частиц. Не было источника летучей золы или другого заменителя цемента, поэтому использовался только низкотемпературный цемент с водовосстанавливающим агентом. Изначально для смеси RCC была установлена долговременная прочность на сжатие 15 МПа (средняя) на основе предполагаемого содержания цемента, но эта цифра была выше, чем необходимо для структурных требований во внутренних зонах плотины.Обычный бетон и / или воздухововлекающий раствор GE-RCC для использования в открытых зонах имел заданную 28-дневную прочность на сжатие 25 МПа.
Лабораторные испытания. Первоначальные лабораторные испытания сланцевых агрегатов, полученных из отвальных выработок, были использованы для установления определенных критериев приемлемости агрегатов, которые будут извлечены из производственного карьера на месте. Степень выветривания образцов породы была оценена для установления критериев выветривания, дробления и поглощения для производственного карьера.Лабораторные пробные смеси [7] начинались с кривой градации смеси заполнителя и песка при 30–38%, превышающей 4,75 мм, затем постепенно увеличивающейся до 52%, превышающей 4,75 мм. Наиболее подходящая пробная смесь была создана с 50% проходом 4,75 мм и 18% просеянным Roxburgh East Sand. Было исследовано содержание цемента 135, 143 и 150 кг м -3 , при этом смесь 150 кг м -3 была принята для полевых испытаний. Были исследованы соотношения вода / цемент от 0,8: 1 до 1,0: 1 (мас. / Мас.), И было принято 0,9: 1 мас. / Ц. С высокопроизводительным восстановителем воды для получения консистенции Vebe около 25 с.Аппарат Vebe был основан на методе испытаний USAC CRD C53-96a, модифицированном для работы с вибростолом с частотой 50 Гц. Прочность на сжатие в течение 91 дня этой принятой смеси была испытана при 15,5 МПа. Обогащение раствора принятой лабораторной смеси было исследовано при общем содержании цемента в диапазоне 215–285 кг · м –3 , при общем соотношении воды / цемента от 0,70: 1 до 0,80: 1 (осадка 40–180 мм).
Воздухововлечение было достигнуто путем перемешивания раствора для обогащения, но окончательное содержание воздуха в смеси оказалось нестабильным.Было обнаружено, что перемешивание раствора требует значительных затрат энергии, и наиболее эффективное распределение раствора было достигнуто за счет помещения раствора в нижнюю часть подъемника и позволяя тяжелому заполнителю вытеснять аэрированный раствор под действием вибрации. Очень высокое содержание воздуха, необходимое в растворе, снизило его плотность до такой степени, что он не сразу перешел бы в нижележащую смесь RCC. Переход от нулевой осадки к свойствам низкой осадки показан на Рис. 5 .
Рисунок 5.Обогащение раствора.
Было обнаружено, что 91-дневная прочность на сжатие лабораторных образцов GE-RCC находится в диапазоне от 17,0 до 21,5 МПа, что значительно ниже целевого значения 25 МПа. Решение об использовании GE-RCC с воздухововлекающими добавками на нижнем забое было зарезервировано в ожидании результатов полевых испытаний.
Полевые испытания. После производства заполнителей из местного карьера и ввода в эксплуатацию завода по производству мельниц 7 января 1999 года была построена пробная площадка, которая включала в себя формованный ступенчатый забой.Уплотнение с помощью самоходного однобарабанного вибрационного катка Dynapac CA151 шириной 7,5 т и шириной 1,67 м было проверено, чтобы подтвердить, что этот агрегат, который был уже и легче, чем указанная установка, подходит для данной области применения. Целевое уплотнение составляло 98% от теоретической плотности без воздуха (TAF), то есть максимум 2% воздушных пустот. Как низкочастотный, так и высокочастотный режимы оказались подходящими для 8–10 проходов на подъемниках 300 мм. Смесь RCC в это время все еще была несколько песчаной (50% проходила 4,75 мм) и сухой (Vebe 25 с).Двухзондовый измеритель ядерной плотности (NDM), как указано, не был доступен в Новой Зеландии, поэтому однозондовое устройство Troxler 3440, обычно используемое для испытаний грунта, использовалось при глубинах прямой передачи 100 мм и 250 мм. Было обнаружено, что совокупная градация RCC испытательной прокладки находится на тонкой стороне указанной оболочки: 8–10% проходят через 75 мкм и 52% проходят через 4,75 мм. Было обнаружено, что для достижения удовлетворительной обрабатываемости смеси необходимо дополнительное количество воды. Соотношение воды и воздуха нужно было поднять примерно до 1.15: 1, и были опасения, как это повлияет на силу. Результаты 7-дневной прочности на сжатие подушки составили 7,5–8,0 МПа, хотя некоторые результаты испытаний были всего лишь 5 МПа. Производство началось с увеличения содержания цемента до 162 кг · м -3 , а прочность была установлена путем дальнейших испытаний.
Обогащение смеси, помещенной в пробную подушку, оказалось нецелесообразным в других количествах, кроме очень малых, из-за степени вибрации, необходимой для достижения эффективного перемешивания.Погружные вибраторы (электрические 50 мм) оказались недостаточно мощными, что противоречило лабораторному опыту, который показал, что риск избыточной вибрации был реальной возможностью. Было принято решение не переходить к производству полностью воздухововлекающего пластика GE-RCC, и для нижней забойной зоны был принят обычный бетон.
ПКР производство. Меры контроля качества включали мониторинг устойчивости заполнителя к раздавливанию и атмосферным воздействиям, а также абсорбции и прочности заполнителя; промывка влажной смеси; и ускоренное отверждение испытательных цилиндров, чтобы ежедневно получать информацию о производительности.Технологичность измеряли на приборе Vebe. Эффективность уплотнения контролировали с помощью NDM, чтобы подтвердить, что пустоты были ниже 2% предела. Для поддержания температуры смешения ниже 20 ° C требовалось водяное охлаждение агрегатов. Поскольку смеситель для мельницы работает в режиме непрерывной подачи, а не в периодическом режиме, возникла необходимость постоянно получать обратную связь по выходным данным. Интенсивный мониторинг первых шести подъемов привел к дальнейшим изменениям в конструкции смеси, как показано на рис. 6 .Классификация была изменена для уменьшения содержания песка за пределами указанного диапазона и увеличения содержания воды. Целевая консистенция Vebe составляла 16 с, и влажная смесь показала значительно улучшенную стойкость к расслоению в разгрузочном бункере. Было сохранено содержание цемента 162 кг м -3 , и было принято соотношение по массе 0,96: 1.
Рисунок 6. Сортировка агрегатов РКК.
Результаты уплотненной плотности были близки к 98% пороговому значению TAF, но измерения в диапазоне 97–98% не были редкостью.Результаты показаны на фиг. , фиг. 7, , при этом значения плотности TAF выше 100% указывают на небольшую изменчивость в смеси и / или методе испытаний NDM.
Рис. 7. Плотность RCC уплотненного во влажном состоянии.
Результаты 7-дневной прочности на сжатие изначально были противоречивыми и варьировались от 5 МПа до 10 МПа и выше. Разница в совокупных запасах и сложность поддержания калибровки завода считались ключевыми факторами, влияющими на стабильность работы. Смесь, принятая для основной части продукции (подъемник 8 и выше), не менялась, но управление смесительной установкой было улучшено с подъемника 24, как показано на , рис. 8, .Краткое изложение дизайна представлено в таблице ниже.
Рисунок 8. Вариация выпуска РКК.
Немодифицированный RCC | GE-RCC | ||
---|---|---|---|
Объем мелочи | 11,2% | Затирка с / с | 1,00 |
9045 904 904 904 904 200 кг · м −3 | |||
Цемент | 162 кг · м −3 | Эффективный цемент | 231 кг · м −3 |
Вода / цемент | 1.08 | Эффективный w / c | 1.05 |
Прирост прочности на сжатие для испытательных цилиндров RCC, взятых от лифта 24 и далее, показан на Рис. Средняя, 10-процентная и 90-процентная прочность на сжатие испытательных цилиндров диаметром 150 мм показана для ускоренных 18-часовых испытаний при 65 ° C вместе с лабораторными испытаниями через 7, 28 и 90 дней. Испытание ускоренного отверждения с 24-часовым циклом обработки дало разумную степень корреляции с прочностью цилиндров, отвержденных в лаборатории, как показано на Рис. 10 .
Рисунок 9. Прирост силы ПКР.
Рисунок 10. Корреляция ускоренного теста.
Обычный бетон был сохранен для забоя вниз по потоку и высокоуровневых зон забоя вверх по потоку. Обогащение цементного раствора ограничено зонами контакта с абатментом и водонепроницаемыми зонами, для которых не требуется более высокая прочность на сжатие. Для достижения требуемой эффективности перемешивания в полевых условиях использовался раствор с более высоким содержанием воды (1: 1 в / ц).
Обогащение цементного раствора (без воздухововлечения) оказалось наиболее эффективным при общем содержании цемента около 230 кг · м -3 , осадке менее 40 мм и прочности на сжатие, эквивалентной прочности основного ПКК. смешивание.
Как получить высокопрочный бетон?
Введение
Быстрый ремонт бетонных покрытий стал обычным явлением на многих загруженных автомагистралях по всей Северной Америке. Бетон с высокой ранней прочностью очень полезен для открытия бетонных тротуаров для движения транспорта раньше, чем обычные бетонные смеси. Новые покрытия, капитальный ремонт и другие заплатки могут быть завершены, а проезжая часть или взлетно-посадочная полоса может быть открыта / открыта быстрее, чем при использовании обычных или обычных смесей.
Как получить высокую раннюю прочность
Бетон с высокой ранней прочностью (сжатие 2500-3500 фунтов на квадратный дюйм в течение 24 часов) обычно выполняется с использованием высокопрочного цемента типа III (см. Таблицу 1), с высоким содержанием цемента (600-1000 фунтов / куб. Ярд) и низким содержанием воды соотношения (от 0,3 до 0,45 по весу). Также используются суперпластификаторы, чтобы бетонная смесь стала более удобоукладывающейся при укладке. Летучая зола и измельченный гранулированный доменный шлак (GGBFS) иногда используются в смеси для частичной замены цемента типа III, который может быть очень дорогим.Для получения дополнительной информации о золе-уносе и измельченном гранулированном доменном шлаке см. Публикацию Портлендской цементной ассоциации «Проектирование и контроль бетонных смесей», EB001.13T.
Таблица 1. Типы портландцемента.
Тип портландцемента | Использует | Тонкость помола по Блейну, м2 / кг |
Тип I | общестроительные | 370 |
Тип II | Бетон, подверженный умеренному воздействию сульфатов или когда требуется умеренная теплота гидратации | 370 |
Тип III | высокая прочность бетона за короткий промежуток времени | 540 |
Тип IV | подходит, когда необходима низкая теплота гидратации | 380 |
Тип V | используется, когда бетон подвергается действию высоких сульфатов | 380 |
Белый | архитектурные цели — когда требуется белый или цветной бетон / строительный раствор | 490 |
Равномерность градации заполнителя улучшит прочность, удобоукладываемость и долговечность бетона.Заполнители среднего размера заполняют пустоты, обычно занятые менее плотным цементным тестом, и тем самым оптимизируют плотность бетона (см. Рисунок 1).
Рис. 1. Схема, показывающая, как агрегаты среднего размера заполняют промежутки между крупными агрегатами большего размера.
Не рекомендуется использовать хлорид кальция для достижения высокой ранней прочности, но если он используется, не используйте более 2%.Оседание бетона может произойти при более чем 2% CaCl, а часто и при любом количестве менее 2% CaCl. В целом удобоукладываемость бетонной смеси сильно снижается при использовании CaCl.
Изоляционные одеяла (или другие изоляционные меры) также можно использовать в первые 24 часа, чтобы помочь набрать силу за счет сохранения тепла гидратации. Однако следует соблюдать осторожность, чтобы избежать теплового удара при снятии одеял. Тепловой удар может вызвать преждевременное растрескивание бетона.
Рекомендации по использованию высокопрочных смесей
Сохраняются некоторые опасения по поводу долговечности ремонта бетона при раннем открытии для движения транспорта. Этот фактор необходимо учитывать при проектировании реконструируемых бетонных покрытий, а также при ремонте бетонных покрытий. В некоторых случаях ранний износ из-за чрезмерного растрескивания при усадке или других условий окружающей среды привел к неудовлетворительному выполнению капитального ремонта и замены плиты.Эти неудобства можно свести к минимуму, если внимательно отнестись к изменениям в конструкции смеси и понять их влияние.
Для получения дополнительной информации о высокопрочных бетонах обратитесь к публикации ACPA Fast-Track Concrete Pavements, TB004.02P.
Чтобы узнать больше, следуйте …
FATQ — Какие испытания на прочность можно проводить на образцах бетона и как они соотносятся друг с другом?
Основы Fast-Track Concrete
Основы бетонных материалов
Дивизион 03 Бетон 3000 Литой бетон — Физические сооружения
1 Введение
1.1
Работа по данному разделу состоит из предоставления всех рабочих, оборудования и материалов, необходимых для смешивания, транспортировки, транспортировки, укладки и отделки всего монолитного бетона в соответствии с требованиями чертежей и спецификаций.
2 Обеспечение качества
2,1
Бетон: Разработан в соответствии с последним изданием ACI 301, ACI 318 и всеми другими Кодексами и стандартами, принятыми в штате Индиана.
2,2
Армирование: Разработано в соответствии с ACI 315, ACI 318, Руководством CRSI по стандартной практике и ACI «Руководством по стандартной практике для детализации железобетонных конструкций» и всеми другими Кодексами и стандартами, принятыми в штате Индиана.
2,3
Квалификация установщика
: Квалифицированный установщик, у которого есть персонал проекта, имеющий квалификацию ACI сертифицированного техника и отделочника по плоской работе, и супервайзер, который является сертифицированным специалистом по отделке / отделке бетонных конструкций ACI или техником по плоской бетонной конструкции ACI.
2,4
Квалификация производителя товарного бетона: Фирма, имеющая опыт производства товарных бетонных изделий и соответствующая требованиям ASTM C94 / C94M для производственных помещений и оборудования.Производитель сертифицирован в соответствии с NRMCA «Сертификация предприятий по производству товарного бетона».
2,5
Установщики бетонных анкеров после установки: Установщики клеевых анкеров, сертифицированные ACI.
2,6
Квалификация полевого агентства по контролю качества: независимое агентство, квалифицированное в соответствии с ASTM C1077 и ASTM E329 для указанных испытаний. Технические специалисты, проводящие полевые испытания, должны иметь квалификацию специалиста по испытаниям бетона ACI уровня 1 в соответствии с ACI CPP 610.1 или эквивалентную программу сертификации.
3 заявки
3,1
Все документы, относящиеся к данному разделу, должны быть доставлены зарегистрированному инженеру-строителю для рассмотрения с достаточным временем для рассмотрения.
3,2
Конструкции бетонной смеси: Представьте проект смеси для каждого класса бетона, который будет использоваться в проекте, в соответствии с Частью 6 настоящего Раздела
3,3
Армирование: Предоставьте рабочие чертежи со схемами изгиба, деформированными стержнями, гладкими стальными стержнями и проволокой, а также сварной сеткой размеров, указанных или отмеченных на чертежах.
4 Бетонные материалы
4,1
Цемент
: Цемент должен соответствовать спецификациям портландцемента (обозначение ASTM: C150), типу I и типу IA или типу III и типу IIIA.
4,2
Вода: Вода должна быть чистой и не содержать вредных количеств масла, кислоты, щелочи, органических веществ или других вредных веществ.
4,3
Общая тренировка с нормальным весом: Общая тренировка с нормальным весом должна соответствовать ASTM C33 и Таблице 1 данного Раздела.
4,4
Добавки: Использование любого материала, добавляемого в бетонную смесь, должно быть одобрено инженером-строителем из записи
.
4,5
Армирование синтетическим волокном: Армирование синтетическим волокном должно состоять на 100% из первичных полипропиленовых волокон. Волокна должны быть добавлены на заводе по производству партии, и их размер и пропорции должны быть подобраны в соответствии с инструкциями производителя для обеспечения надлежащей обрабатываемости и финишной способности. Волокна могут использоваться для улучшения характеристик бетона в отношении сопротивления пластической усадке или оседающему растрескиванию, абразивной и ударной стойкости, а также остаточной прочности, но ни в коем случае волокна не должны использоваться в качестве замены структурного армирования.
4,6
Кристаллическая гидроизоляционная смесь: Кристаллический тип, который химически контролирует и постоянно фиксирует нерастворимую кристаллическую структуру в капиллярных пустотах бетона. Добавляйте добавки в бетонные стены и верхушки туннелей, люков, сводов, ям или других бетонных конструкций ниже уровня земли, подверженных проникновению влаги.
5 Отбор проб и тестирование
5,1
Подрядчик должен предоставить все материалы и предоставить такую рабочую силу, которая может потребоваться для отбора проб бетона для образцов для испытаний.
5,2
Бетонные материалы и операции будут проверяться и инспектироваться по мере выполнения работ. Неспособность обнаружить какие-либо дефектные работы или материалы никоим образом не предотвращает последующий отказ при обнаружении такого дефекта и не обязывает архитектора / инженера к окончательной приемке.
5,3
Необходимо соблюдать процедуры отбора проб, указанные в ASTM Обозначение C 172 «Отбор проб свежего бетона».
5,4
Должны соблюдаться процедуры, изложенные в ASTM Обозначение C 31 «Стандартный метод изготовления и отверждения сжатых бетонов и образцов для испытаний на изгиб в полевых условиях».
5,5
Каждый класс бетона должен быть представлен как минимум одним испытанием на осадки, содержание воздуха и прочность на сжатие.
5,6
Испытания могут проводиться в любое время во время заливки, и должны проводиться дополнительные определения осадки и содержания воздуха всякий раз, когда наблюдается какое-либо изменение консистенции или удобоукладываемости бетона
5,7
Испытания бетона на сжатие должны проводиться в соответствии с ASTM C39. Испытания проводятся независимым испытательным агентством за счет Владельца.Для каждодневной заливки значительного размера и для каждых 50 кубических ярдов необходимо брать один комплект образцов в соответствии с последним изданием ASTM C31. Одно испытание на прочность должно состоять из пяти (5) образцов, испытанных на сжатие; два (2) через семь (7) дней, два (2) через двадцать восемь (28) дней и один (1) запасной. Образцы для испытаний должны быть отформованы в пластиковые цилиндры в соответствии с требованиями ASTM.
6 Качество бетона
6,1
Бетон для любой части конструкции или прилегающей конструкции должен быть класса, указанного на планах или в таблице 3.Общие требования для каждого класса бетона показаны в Таблице 1. В рамках этих общих указаний и указанных диапазонов Подрядчик должен установить:
Количество используемого мелкого заполнителя. Заполнители должны быть пропорциональны таким образом, чтобы использовать максимальное количество крупнозернистого заполнителя, при котором будет получена работоспособная смесь.
Спад (+/- 1 дюйм)
Количество используемой воды для смешивания. Это будет минимальное количество воды, соответствующее требуемой удобоукладываемости.
Содержание воздуха
Добавки
6,2
Настоящее Руководство указывает минимальный коэффициент цементации и максимально допустимое содержание воды в дополнение к ограничениям по размеру и градации крупного заполнителя, процентному содержанию мелкого заполнителя и т. Д.
6,3
Ни в коем случае бетон не будет приемлемым в конструкции, если прочность на сжатие в течение 28 дней, определенная с помощью испытательных цилиндров, будет меньше, чем указано в Таблице 1 настоящего Руководства или как указано Инженером-проектировщиком, имеющим регистрацию
.
6.4
Весь бетон должен быть готов и доставлен на строительную площадку. Использование бетонных смесей на стройплощадках без разрешения главного инженера-конструктора категорически запрещено.
Таблица 1: Общие требования для различных классов бетона
| Класс Бетон | |||||
---|---|---|---|---|---|---|
Описание | 2 | 4 | 4A | 4A LS | 5 | 6 |
Цементный коэффициент, мешков на кубический ярд не менее | 5.5 | 6,0 | 6,5 | 6,0 | 7,0 | 8,0 |
Обозначение крупности заполнителя согласно стандартным спецификациям INDOT, если не указано иное | 8 | 8 | 8 | 8 | 8 | 8 |
Осадка, дюймы | 3-5 | 3-5 | 3-5 | 3-5 | 3-5 | 3-5 |
Максимально допустимая влажность, гал.на мешок цемента для гравия (1) | 6,25 | 5,5 | 5,5 | НЕТ | 5,0 | 4,5 |
Максимально допустимая влажность, гал. на мешок цемента для каменного щебня (1) | 7,0 | 6,0 | 6,0 | 6.0 | 5,5 | 5,0 |
Вовлеченный воздух% по объему (2) | 2-4 | 2-4 | 4-6 | 4-6 | 2-4 | 2-4 |
Содержание мелкого заполнителя,% от общей массы заполнителя | 35-45 | 35-45 | 35-45 | 35-45 | 35-45 | 35-45 |
Минимум 28 дней Прочность на сжатие (фунт / кв. Дюйм) | 3000 | 4000 | 4000 | 4000 | 5000 | 5000 |
(1) Содержание воды в расчете на сухой заполнитель
(2) Воздухововлекающие добавки не допускаются для внутренних плит для получения гладкой поверхности шпателем.
Таблица 2: Требования к распределению совокупного размера курса
Общий процент проходных сит с квадратным отверстием | ||||||
---|---|---|---|---|---|---|
Размер No. | 1-1 / 2 | 1 « | 3/4 дюйма | 1/2 « | № 4 | No.8 |
# 8 | 100 | 85-100 | 20-60 | 0-5 | 0-2 |
Таблица 3: Класс бетона для различных частей конструкции
Структура Компонент | Класс |
---|---|
Стеновые и изолированные опоры, опоры траншей, шнековые сваи | Класс 2 (2) |
Внутренние полы на заливке | Класс 2 (2) |
Стены и верхушки туннелей, люков, котлованов или бетонных конструкций ниже уровня земли и т. Д.(1) | Класс 4 (2) |
Внутренние срезанные стены, лифтовые шахты и стены лестничных клеток | Класс 4 (2) |
Плиты перекрытия и кровли, балки, балки, балки и лестницы | Класс 4 (2) |
Наружные стены, балки и т. Д. | Класс 4A (2) |
Внешние дорожки, ступени, плиты, площадки и т. Д. | Класс 4A L.S. |
Бордюр и желоб, цоколи светильников и т. Д. | Класс 4A L.S. |
Плиты гаражные на засыпке | Класс 4A L.S. |
(1) Требуется кристаллическая гидроизоляционная добавка (Xypex или эквивалент)
(2) Минимум или в соответствии с требованиями инженера-проектировщика записи
Справочник консультанта на 2021 год
Действует с 19 января 2020 г.
Актуальную электронную копию Справочника консультанта можно получить, связавшись с Capital Program Management по телефону (765) 494-9130.
Конструкция
|
Соотношение классов и групп бетона
Виды цемента и его влияние на бетон
Чтобы лучше понять группы бетона в соответствии с CIRIA R108 (1-7), важно понимать, как различные виды цемента и добавок влияют на эту классификацию.Существует пять видов цемента (CEM I, II, III, IV и V) по стандартной прочности, которые сгруппированы в три класса: класс 32,5, класс 42,5 и класс 52,5 (сопротивление сжатию в МПа). Также существует три класса ранней прочности: N — класс с обычной ранней прочностью, R — класс с высокой ранней прочностью и L — класс с низкой ранней прочностью. Последний может применяться только к цементам CEM III. См. Дополнительную информацию в таблице ниже:
Вид цемента | Имя | Комментарии |
CEM I | Портлендский цемент | Изготовлен в соответствии с британским стандартом BS EN 197-1.Это цемент, который чаще всего используется во всем мире в гражданском строительстве и строительных работах. Тем не менее, CEM I является наименее устойчивым типом, и использование альтернатив находится на подъеме. Для бетона класса С40 / 50 и выше. |
CEM II | Портленд — композитный цемент (PCC) | Произведено путем измельчения клинкера и определенного количества гипса, летучей золы, шлака и известняка. Он рано достигает высокой прочности, а его более светлый цвет по сравнению с CEM I облегчает окрашивание.Для бетона класса C8 / 10 — C35 / 45, в основном сборных элементов. |
CEM III | Доменный цемент | Вид цемента, изготовленный из смеси обычного портландцемента и измельченного шлака доменной печи. У него более низкие свойства схватывания, чем у обычного портландцемента, но он более устойчив к сульфатам. Для бетона класса C8 / 10 — C35 / 45. |
CEM IV | Пуццолановый цемент | Смеси портландцемента и пуццоланового материала, которые могут быть натуральными или искусственными.Типичные пуццоланы включают: метакаолин, микрокремнезем, летучую золу, шлак, VCAS (остеклованный алюмосиликат кальция). По своим свойствам он похож на доменный цемент. |
CEM V | Цемент композитный | Смеси портландцемента, шлаков и пуццолановых материалов. Его характеристики: низкая начальная прочность, но очень высокая прочность в долгосрочной перспективе, очень хорошая удобоукладываемость бетонной смеси на основе CEM V и высокая устойчивость к химической агрессии. |
Буквы A, B, C (e.грамм. CEM IIIA и др.) Определяют содержание шлака (A — наименьшее, C — наибольшее). Цемент, в зависимости от его вида, класса и наличия примесей, также будет иметь различную теплоту реакций гидратации, а также устойчивость к сульфатам или щелочности. Это означает, что варианты цемента обширны, и при принятии решения, какой вид и класс цемента следует использовать при производстве бетонной смеси, необходимо учитывать следующие характеристики:
- Какой класс (прочность) бетона требуется?
- Каковы условия окружающей среды (класс воздействия)?
- Сколько времени потребуется, чтобы доставить бетонную смесь на площадку?
- Каким будет метод уплотнения бетона?
- Какие будут время и условия отверждения?
Класс бетона определяет инженер-строитель, а характеристики бетонной смеси зависят от типа конструкции, укладки, техники уплотнения и времени транспортировки.При разработке состава бетонной смеси необходимо учитывать вышесказанное, чтобы конечный результат был оптимальным как с экономической, так и с технологической точки зрения.
Тип бетона в зависимости от области применения
BS 8500-1: 2006, дополнительный британский стандарт к BS EN 206-1, определяет спецификации, производство и соответствие свежего бетона. В этом документе можно узнать о параметрах, которые должен иметь бетон при различных классах воздействия (Таблица А.8) или какой конкретный бетон (его минимальный класс прочности, максимальное соотношение воды и цемента, цемент и комбинированные типы) требуется для различных применений (Таблица A.31).
Критерии группы бетона
Глядя на таблицу с указаниями по группировке бетона для расчета давления опалубки CIRIA R108, мы видим, что группа бетона зависит от типа используемого цемента и наличия замедляющих добавок. Последний продлевает процесс реакции гидратации в начальный период и замедляет скорость тепловыделения.Замедляющие добавки увеличивают время перехода бетонной смеси из пластичного в твердое состояние. При использовании замедляющих добавок начальная прочность бетона может быть ниже по сравнению с бетоном без добавок, тогда как конечная прочность обычно выше. Замедлители обычно добавляют в процессе приготовления бетонной смеси, обычно с водой для замешивания. Однако в некоторых случаях может потребоваться добавление замедляющей добавки к готовой бетонной смеси, например в случае длительной транспортировки из-за аварии или пробки.Использование замедляющих добавок необходимо при необходимости транспортировки на большие расстояния и при работах, проводимых в условиях высоких температур окружающей среды.
Заключение
Расчет бетонной смеси зависит от многих переменных. Чтобы спроектировать его эффективно, необходимо знать требования к прочности бетона, долговечности, применению, транспортным средствам, способам уплотнения на месте и деталям железобетонных элементов. Основываясь на этой информации, укажите тип цемента, соотношение воды и цемента, тепловые требования и необходимость введения добавок и т.