Терморезистор обозначение на схеме: Терморезисторы.

Содержание

Терморезисторы.

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его «потроха». Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

  • Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

  • Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или «Отрицательный Коэффициент Сопротивления». Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.

Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить «плавный запуск» электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в «подогретом» состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC — Positive Temperature Coefficient, «Положительный Коэффициент Сопротивления»).

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук «бдзынь», когда включается телевизор — это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Далее на фото трёхвыводный позистор СТ-15-3.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-«таблеток», которые установлены в одном корпусе. На вид эти «таблетки» абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3 ~ 3,6 кОм, а у другой всего лишь 18 ~ 24 Ом.

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора — это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Что такое терморезистор, его обозначение на схеме разновидности и применение | Энергофиксик

В электронике практически постоянно происходит целый каскад различных измерений. Одним из параметров, подвергающихся постоянному контролю, является температура. С ее измерением превосходно справляются такие электронные компоненты, как терморезисторы – электронные компоненты, выполненные из полупроводников, в которых сопротивление изменяет свою величину с изменением температуры. В данной статье я расскажу, как обозначаются, как выглядят и какими еще особенностями обладают терморезисторы.

Изображение на схемах

Итак, если взглянуть на схемы, то вы сможете увидеть следующие обозначения:

Смотря где используется подобный элемент, изображение будет различно, кроме одного элемента, а именно «t». Именно по этой букве вы безошибочно поймете, что перед вами терморезистор.

Самой главной характеристикой любого терморезистора является — ТКС (температурный коэффициент сопротивления). Он информирует вас, на сколько меняется сопротивление резистора, если температура изменилась на 1 градус.

Где их можно встретить

Терморезисторы можно увидеть в любом современном приборе, вот например, взгляните на импульсный блок питания:

yandex.ru

yandex.ru

Можно провести простейший эксперимент, возьмите любой терморезистор и с помощью мультиметра произведите замер сопротивления в «холодном» состоянии и при нагреве. Вы должны увидеть, что с увеличением температуры величина сопротивления изменяется.

Но не думайте, что терморезисторы служат исключительно для измерения температурного режима, они так же активно используются в устройствах защиты и многих других изделиях.

Как происходит нагрев

Терморезисторы могут нагреваться двумя способами, а именно:

1. Прямой нагрев. В этом случае терморезистор подвергается нагреву напрямую протекающим через него током или же окружающей его средой. Подобные терморезисторы нашли применение в приборах, измеряющих температуру, либо для обеспечения температурной компенсации.

2. Косвенный нагрев. В данном варианте терморезистор подвергается нагреву близко размещенным нагревательным элементам. Что немаловажно, в данном случае электрическая связь отсутствует. В этом варианте сопротивление терморезистора определяется функцией тока, который проходит через нагревательный элемент, а не через резистор. Подобные терморезисторы — это в первую очередь комбинированные приборы.

NTC- термисторы и позисторы

Так же терморезисторы разделяются по зависимости изменения сопротивления от температуры на следующие два типа:

1. NTC – термисторы;

2. PTC – термисторы (иначе говоря позисторы).

Давайте познакомимся с ними поближе.

NTC – термисторы

Название подобных терморезисторов пошло от сокращения Negative Temperature Coefficient, что переводится как «Отрицательный коэффициент сопротивления». Основная «фишка» таких термисторов заключена в том, что в процессе нагрева их сопротивление начинает уменьшаться.

Обратите внимание, стрелки на изображении имеют различное направление, что как раз и указывает на то, что при росте «t» происходит снижение «R» и, соответственно, наоборот.

Такой элемент можно встретить в любом импульсном блоке питания, например в обычном БП компьютера.

Сопротивление NTC – термисторов указывается при температуре в 25 Градусов.

Давайте рассмотрим простую схему

Последовательное включение с нагрузкой указывает на то, что через этот элемент схемы протекает весь ток потребления. При этом NTC – термистор ограничивает пусковой ток, возникающий в процессе заряда конденсатора, что в свою очередь защищает диодный мост от пробоя.

При каждом запуске БП начинается процесс зарядки конденсатора, а через NTC–терморезистор проходит определенный ток. Пока NTC–терморезистор не нагрелся его «R» имеет довольно большое значение. Проходящий ток нагревает его, что снижает «R» и в дальнейшем почти не влияет на протекание тока, который потребляется прибором.

Иначе говоря, данный термистор обеспечивает плавный пуск прибора и уберегает диоды выпрямителя от повреждения.

Зачастую NTC – терморезисторы выполняют функцию дополнительного предохранителя, так как во время поломки некой детали нередко сила тока значительно вырастает, что приводит к разрушению терморезистора, тем самым обесточивая схему.

PTC – термисторы (позисторы)

Терморезисторы, у которых сопротивление возрастает с увеличением температуры, называются позисторами (Positive Temperature Coefficient – положительный коэффициент сопротивления).

На схеме такой элемент обозначается следующим образом:

Хоть такой элемент и получил гораздо меньшее распространение, но раньше цветной кинескопный телевизор не мог нормально работать без позистора, а сейчас этот элемент используется в схемах питания светодиодных ламп.

Кроме этого PTC – термисторы так же применяются в качестве защитных устройств. Например, разновидностью позистора является самовосстанавливающийся предохранитель.

SMD – терморезисторы

Повсеместное использование SMT – монтажа стало толчком для производства SMD — терморезисторов. По внешним признакам они практически идентичны SMD – конденсаторам.

Типоразмеры элементов соответствуют ряду: 0402, 0603, 0805, 1206.

yandex.ru

yandex.ru

Встраиваемые терморезисторы

Так же данные элементы активно встраиваются в изделия, например, в паяльнике с контролем температуры жала.

Заключение

Терморезисторы — это важнейший элемент любой современной аппаратуры, без которого невозможно построить полноценную защиту схемы. Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше драгоценное внимание!

Типы резисторов

Слово «резистор» произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах ( Ом ), килоомах ( кОм ) или мегаомах ( МОм ). Номинальные значения сопротивлений указываются на корпусе резисторов, однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы, они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления ( ТКС ) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С . В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е27 Ом
  • 4Е74,7 Ом
  • К680680 Ом
  • 1К51,5 кОм
  • 43К43 кОм
  • 2М42,4 МОм
  • 3 МОм

Различают два основных вида резисторов: нерегулируемые ( постоянные ) и регулируемые ( переменные и подстроечные ). Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭ
  • ПЭВ
  • ПЭВ-Р
  • ПЭВТ

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы, лакированные эмалью, теплостойкие:

  • МЛТ
  • ОМЛТ
  • МТ
  • МТЕ

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон. Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R, после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.

Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.

Сопротивление резистора ориентировочное

 

 

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка *.

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.

Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.

Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость

Регулируемый резистор с двумя дополнительными отводами

Сдвоенный переменный резистор

Двойной переменный резистор

Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.

Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении.
Температурный коэффициент сопротивления ( ТКС ) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов положительный.

Терморезисторы (термисторы)

Условное графическое обозначение варисторов

 

 

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы СН (сопротивление нелинейное) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах,
например – СН-1-2-1-100.

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.

Условное графическое обозначение фоторезисторов

 

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1.

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1.

PTC термистор термочувствительное защитное устройство — термистор

 

Термисторы PTC-типа

Термистор относится к термочувствительным защитным устройства встраиваемой тепловой защите электродвигателя. Располагаются в специально предусмотренных для этой цели гнездах в лобовых частях электродвигателя (защита от заклинивания ротора) или в обмотках электродвигателя (защита от теплового перегруза).
Термистор — полупроводниковый резистор, изменяющие свое сопротивление в зависимости от температуры.
Термисторы в основном делятся на два класса:
PTC-типа — полупроводниковые резисторы с положительным температурным коэффициентом сопротивления;
NTC-типа — полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Для защиты электродвигателей используются в основном PTC-термисторы (позисторы Positive Temperature Coefficient), обладающие свойством резко увеличивать свое сопротивление, когда достигнута некоторая характеристическая температура (см рис. 1). Применительно к двигателю это максимально допустимая температура нагрева обмоток статора для данного класса изоляции. Три (для двухобмоточных двигателей — шесть) PTC-термистора соединены последовательно и подключены к входу электронного блока защиты. Блок настроен таким образом, что при превышении суммарного сопротивления цепочки срабатывает контакт выходного реле, управляющий расцепителем автомата или катушкой магнитного пускателя. Термисторная защита предпочтительней в тех случаях, когда по току невозможно определить с достаточной точностью температуру двигателя. Это касается прежде всего двигателей с продолжительным периодом запуска, частыми операциями включения и отключения (повторно-кратковременным режимом) или двигателей с регулируемым числом оборотов (при помощи преобразователей частоты). Термисторная защита эффективна также при сильном загрязнении двигателей или выходе из строя системы принудительного охлаждения.

 

Рис.1 Зависимость сопротивления термистора PTC-типа от температуры PTC — полупроводниковый резистор

 

Недостатком данного вида защиты является то, что с датчиками выпускаются далеко не все типы двигателей. Это особенно касается двигателей отечественного производства. Датчики могут устанавливаться только в условиях стационарных мастерских. Температурная характеристика термистора достаточно инерционна и сильно зависит от температуры окружающей среды и от условий эксплуатации самого двигателя. Они требуют наличия специального электронного блока: термисторного устройства защиты двигателей, теплового или электронного реле перегрузки, в которых находятся блоки настройки и регулировки, а также выходные электромагнитные реле, служащие для отключения катушки пускателя или электромагнитного расцепителя.

 

Характеристики термистора PTC-типа по DIN44081/44082

  

 

Внешний вид термисторов

 

 

Диаграмма РТС термисторов

Вариант применения РТС термисторов

 

Пример цветовой кодировки РТС термисторов в зависимости от температуры

Условные обозначения резисторов — Условные обозначения — Резисторы — Справочник Радиокомпонентов — РадиоДом

Система условных обозначений.

В соответствии с действующей, в настоящее время системой сокращенных и полных условных обозначений (ОСТ 11.074.009-78) резисторов, сокращенное условное обозначение вида компонента состоит из следующих элементов:

ПЕРВЫЙ ЭЛЕМЕНТ — буква или сочетание букв, обозначающих подкласс резисторов (Р — резисторы постоянные; РП — резисторы переменные; HP — наборы резисторов; ВР — варистор постоянный; ВРП — варистор переменный; ТР — терморезистор с отрицательным температурным коэффициентом сопротивления /ТКС/; ТРП — терморезистор с положительным ТКС ).

ВТОРОЙ ЭЛЕМЕНТ — цифра, определяющая группу резисторов по материалу резистивного элемента (1 — непроволочные; 2 — проволочные или металлофольговые).

ТРЕТИЙ ЭЛЕМЕНТ — цифра, обозначающая регистрационный номер разработки конкретного типа резистора. Между вторым и третьим элементом ставится дефис: Р1-4, РП1-46.

Для полного условного обозначения резистора к сокращенному обозначению добавляется вариант конструктивного исполнения (при необходимости), значения основных параметров и характеристик, климатического исполнения и обозначение документа на поставку. Климатическое исполнение (В — всеклиматическое и Т — тропическое) для всех типов резисторов указывается перед обозначением документа на поставку. Буквенно-цифровая маркировка на резисторах содержит: вид, номинальную мощность, номинальное сопротивление, допускаемое отклонение сопротивления и дату изготовления.

До введения указанного выше стандарта, по классификации до 1980 года (ГОСТ 3453-68), названия отечественных постоянных резисторов (раньше называли -«сопротивления») начинались буквой «С», переменных и подстроечных с «СП» (затем следовал номер группы резистора в зависимости от токонесущей части: 1 — непроволочные тонкослойные углеродистые и бороуглеродистые; 2 — непроволочные тонкослойные металлодиэлектрические или металл окисные; 3 — непроволочные композиционные пленочные; 4 — непроволочные композиционные объемные; 5 — проволочные; 6 — непроволочные тонкослойные металлизированные). Названия нелинейных сопротивлений (варисторов) начиналось с букв «СН» (1 — карбидокремниевые), термо зависимых сопротивлений (терморезисторов) — с букв «СТ» (1 — кобальто-марганцевые, 2 — медно-марганцевые, 3 — медно-кобальто-марганцевые, 4 — никель-кобальто-марганцевые), а свето зависимых сопротивлений (фоторезисторов) начиналось с букв «СФ» (1 — сернисто-свинцовые, 2 — сернисто-кадмиевые, 3 — селенисто-кадмиевые). Далее через тире следовал регистрационный номер (номер разработки):

Система сокращенных обозначений резисторов.

Сопротивление резисторов измеряют в омах (Ом), килоомах (кОм), мегаомах (МОм) и т.д. Номинальное значение сопротивления определяет силу проходящего через него тока при заданной разности потенциалов на его выводах В зависимости от размеров резисторов применяются сокращенные (кодированные) обозначения номинальных сопротивлений и допусков, которые состоят из четырех-пяти элементов, включающих две-три цифры и две буквы

ПЕРВЫЙ ЭЛЕМЕНТ — цифры, указывающие величину сопротивления в Омах. Согласно ГОСТ 2825-67 установлено шесть рядов номинальных сопротивлений:

 

Е6, Е12, Е24, Е48, Е96, Е192. (цифра после буквы «Е» указывает число номинальных значений в данном ряде).

ВТОРОЙ ЭЛЕМЕНТ — буква русского или латинского алфавита обозначает множитель, составляющий сопротивление и определяет положение запятой десятичного знака («R(E)»=1; «К(К)»=103; «М(М)»=106; «G(Г)»=109; «Т(Т)» =1012). Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой.

ТРЕТИЙ ЭЛЕМЕНТ — буква, обозначающая величину допуска в процентах: (Е=±0.001; L=±0.002; R=±0.005; Р=±0.01; U=±0 02; В(Ж)=±0.1; С(У)=±0.25; D(Д)=±0.5; F(Р)=±1; G(Л)=±2; J(И)=±5; К(С)=±10; М(В)=±20; N(Ф)=±30. Величина допуска может быть нанесена под номиналом сопротивления во второй строке.

Цветовое кодирование миниатюрных резисторов.

На постоянных резисторах в соответствии с ГОСТ 175-72 и требованиями Публикации 62 МЭК (Международной электротехнической комиссии) маркировка наносится в виде цветных колец. Каждому цвету соответствует определенное цветовое значение:

 

Цвет знака

Номинальное сопротивление, в Ом

Множитель

Допуск,%

Первая полоса

Вторая полоса

Третья полоса

Четвертая полоса

Пятая полоса

Серебристый

 

 

 

0,01

±10

Золотистый

 

0

 

0,1

±5

Черный

 

0

 

1

 

Коричневый

1

1

1

10

±1

Красный

2

2

2

100

±2

Оранжевый

3

3

3

1000

 

Желтый

4

4

4

104

 

Зеленый

5

5

5

105

±0,5

Голубой

6

6

6

106

±0,25

Фиолетовый

7

7

7

107

±0,1

Серый

8

8

8

108

 

Белый

9

9

9

109

 

Маркировочные знаки на резисторах сдвинуты к одному из выводов и располагаются слева направо. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, ширина полосы первого знака делается примерно в два раза больше других.

Резисторы с малой величиной допуска (0.1%…10%) маркируются пятью цветовыми кольцами. Первые три — численная величина сопротивления в Омах, четвертое — множитель, пятое кольцо — допуск. Резисторы с величиной допуска ±20% маркируются четырьмя цветовыми кольцами. Первые три — численная величина сопротивления в Омах, четвертое кольцо -множитель.

Незначащий ноль в третьем разряде и величина допуска не маркируются. Поэтому такие резисторы маркируются тремя цветовыми кольцами. Первые два — численная величина сопротивления в Омах, третье кольцо — множитель. Мощность резистора определяется ориентировочно по его размерам.

Обозначение резисторов зарубежных фирм.

Единая структура условных обозначений резисторов за рубежом отсутствует. Она произвольно устанавливается фирмами-изготовителями. В основу обозначения постоянных резисторов положен буквенно-цифровой (или цифровой) код, которым обозначают тип, значения основных параметров (номинальная мощность, ТКС, номинальное сопротивление, допускаемое отклонение) и вид упаковки.

Для резисторов специального назначения (изготовляемые по стандартам MIL) условное обозначение формируется следующим образом:

ПЕРВЫЙ ЭЛЕМЕНТ — обозначает серию резистора, согласно таблицы:

Серия

Наименование резисторов

N стандарта

RL

Стандартные металлопленочные резисторы (допуск ±2, ±5)

MIL-R-22684

RN

Металлопленочные прецизионные резисторы

MIL-R-10509

RE

Мощные проволочные резисторы с алюминиевым радиатором

MIL-R-18546

RNC

Металлопленочные резисторы с уровнем надежности»S»

MIL-R-55182

RLR

Металлопленочные резисторы с уровнем надежности»Р»

MIL-R-39017

RB

Проволочные прецизионные резисторы миниатюрные и субминиатюрные

MIL-R-93

RBR

Проволочные прецизионные резисторы с уровнем надежности»R»

MIL-R-39005

RW

Проволочные мощные резисторы для поверхностного монтажа

MIL-R-26

RNRRNN

Металлопленочные прецизионные резисторы с герметичным уплотнением

MIL-R-55182

RCR

Углеродистые композиционные резисторы

MIL-R-39008

М55342

Толстопленочные кристаллы резисторов с уровнем надежности»R»

MIL-R-55342

ВТОРОЙ, ТРЕТИЙ, ЧЕТВЕРТЫЙ И ПЯТЫЙ ЭЛЕМЕНТ — цифровой код, обозначающий номинальное сопротивление

ШЕСТОЙ ЭЛЕМЕНТ — буквенный код,которым обозначается уровень надежности резисторов в течение 1000 часов-

Код

М

Р

R

S

Уровень надежности (число отказов в %)

1

0,1

0,01

0,001

Обозначение номинального сопротивления представляет собой код из четырех цифр, первые три из которых указывают величину номинала сопротивления в Омах, а последняя — число последующих нулей. Для резисторов с допуском более 10% код состоит из трех цифр, в котором значащими являются первые две. Некоторые фирмы указывают номинальное сопротивление, закодированное в соответствии с Публикацией МЭК №62, 63:

Сопротивление

код

Сопротивление

код

Сопротивление

код

Сопротивление

код

0,1 Ом

R10

47 Ом

47R

4,7 кОм

4К7

220 кОм

М22

0,15 Ом

R15

68 Ом

68R

6,8 кОм

6К8

330 кОм

МЗЗ

0,22 Ом

R22

100 Ом

100R

10 кОм

10К

470 кОм

М47

0,33 Ом

R33

150 Ом

150R

15 кОм

15К

680 кОм

М68

4,7 Ом

4R7

220 Ом

220R

22 кОм

22К

1,0 МОм

1МО

6,8 Ом

6R8

330 Ом

330R

33 кОм

ЗЗК

1,5 МОм

1М5

10 Ом

10R

1 кОм

1КО

47 кОм

47К

2,2 МОм

2М2

15 Ом

15R

1,5 кОм

1К5

68 кОм

68К

3,3 МОм

ЗМЗ

22 Ом

22R

2,2 кОм

2К2

100 кОм

М10

4,7 МОм

4М7

33 0м

33R

3,3 кОм

ЗКЗ

150 кОм

М15

6,8 МОм

6М8

Для примера рассмотрим условное обозначение постоянных резисторов фирмы Philips :

ПЕРВЫЙ ЭЛЕМЕНТ — тип (класс)резистора: AC, ACL (Cemented Wirewound’ Nonisolated) -мощные керамические проволочные, CR (Carbon Resistor) -углеродистые пленочные, EH (Power WirewoundIsolated) -мощные, опорные проволочные. MPR (Metal film precision Resistor)-металлопленочные прецизионные, MR (Vetal film Resistor) -металлопленочные, NPR(Fussible) -предохранительные металлопленочные, PR (Power metal film Resistor)-мощные металлопленочные, RC (Chip Resistor) — бескорпусные (кристаллы),SFR(Standart film Resistor) -стандартные пленочные, VR (High- ohmic VoltageResistor) -высоковольтные, WR (Enamelled Wirewound Isolated Resistor) — мощные эмалированные пленочные;

ВТОРОЙ ЭЛЕМЕНТ — максимальный диаметр корпуса (кроме класса RC): 06 — 0,6 мм; 08 — 0,8 мм; 16—1,6 мм; 21 —2,1 мм; 24 или 25 — 2,5 мм; 30—3 мм; 31 или 34 — 3,1 мм; 37 или 39 — 3,7 мм; 52 или 54 — 5,2 мм; 68 или 74 — 6,8 мм.

ПРИМЕЧАНИЕ: Для классов AC, ACLи ЕН цифры обозначают допустимую мощность рассеяния: 01 — 1 Ватт; 02 — 2 Ватт; 03-3 Ватт; 04—4 Ватт; 05—5 Ватт; 07—7 Ватт; 09-9 Вт; 10 — 10 Ватт; 15 — 15 Ватт; 17 — 17 Ватт; 20- 20 Ватт.

ТРЕТИЙ ЭЛЕМЕНТ — кодируется буквенными символами и обозначает конструктивное исполнение контактных выводов и материал покрытия контактов (см. табл.1). Обозначение номинального сопротивления, в зависимости от типа резистора, может быть представлено: кодом из четырех (или трех) цифр, в котором первые три (или две) являются значащими, а последняя обозначает число последующих нулей; — кодом в соответствии с Публикацией МЭК № 62; — цветовым кодом в соответствии с Публикацией МЭК № 63.

Таблица 1. Цветовое различие выпускаемых корпусов резисторов.

Цвет корпуса

Тип резистора

Светло-коричневый

CR16, CR25, CR37, CR52, CR68

Светло-зеленый

SFR16, SFR25, SFR30

Серый

NFR25, NFR30

Зеленый

MR16, MR25, MR30,MR52, MR24E(C), MR34E(C), MR54E(C), MR74E(C), MPR24, MPR34, AC04, AC05, AC07,AC10, AC15, AC20, ACL01, ACL02, ACL03

Светло-голубой

VR25, VR37, VR68

Красный

PR37, PR52

Коричневый

WRO167E, WRO842E,WRO825E, WRO865E

Некоторые фирмы применяют цветовое кодирование для отличия резисторов, изготавливаемых по стандартам MIL, от резисторов промышленного и бытового назначения или обозначения ТКС для отличия проволочных резисторов от постоянных.

Некоторые рекомендации по применению резисторов.

Резисторы, применяемые в колебательных контурах, усилителях высокой частоты, аттенюаторах, должны обладать только активным сопротивлением, т. е. не изменяв свое сопротивление в рабочем диапазоне частот. Граничная частота, на которой может работать резистор, зависит от его номинального сопротивления и собственной емкости :

Frp. = 1/4πRC.

Собственные емкости, например, непроволочных резисторов (ВС, МТ, ОМЛТ, С2-6, С2-13, С2-14, С2-23, С2-33) находятся в интервале 0,1… 1,1 пФ. При работе в импульсном режиме средняя мощность не должна превышать номинальную, т.к. через резистор протекают периодические импульсы тока, мгновенные значения которых могут значительно превышать значения в непрерывном режиме.

Принцип работы терморезистора и что такое термосопротивление

Термодатчик относится к числу наиболее часто используемых устройств. Его основное предназначение заключается в том, чтобы воспринимать температуру и преобразовывать ее в сигнал. Существует много разных типов датчиков. Наиболее распространенными из них являются термопара и терморезистор.

Виды термодатчиков

Виды

Обнаружение и измерение температуры – очень важная деятельность, имеет множество применений: от простого домохозяйства до промышленного. Термодатчик – это устройство, которое собирает данные о температуре и отображает их в понятном для человека формате. Рынок температурного зондирования демонстрирует непрерывный рост из-за его потребности в исследованиях и разработках в полупроводниковой и химической промышленностях.

Термодатчики в основном бывают двух типов:

  • Контактные. Это термопары, заполненные системные термометры, термодатчики и биметаллические термометры;
  • Бесконтактные датчики. Это инфракрасные устройства, имеют широкие возможности в секторе обороны из-за их способности обнаруживать тепловую мощность излучения оптических и инфракрасных лучей, излучаемых жидкостями и газами.

Термопара (биметаллическое устройство) состоит из двух разных видов проводов (или даже скрученных) вместе. Принцип действия термопары основан на том, что скорости, с которыми расширяются два металла, между собой отличаются. Один металл расширяется больше, чем другой, и начинает изгибаться вокруг металла, который не расширяется.

Терморезистор – это своего рода резистор, сопротивление которого определяется его температурой. Последний обычно используют до 100 ° C, тогда как термопара предназначена для более высоких температур и не так точна. Схемы с использованием термопар обеспечивают милливольтные выходы, в то время как термисторные схемы – высокое выходное напряжение.

Важно! Основное достоинство терморезисторов заключается в том, что они дешевле термопар. Их можно купить буквально за гроши, и они просты в использовании.

Принцип действия

Терморезисторы обычно чувствительны и имеют разное термосопротивление. В ненагретом проводнике атомы, составляющие материал, имеют тенденцию располагаться в правильном порядке, образуя длинные ряды. При нагревании полупроводника увеличивается количество активных носителей заряда. Чем больше доступных носителей заряда, тем большей проводимостью обладает материал.

Кривая сопротивления и температуры всегда показывает нелинейную характеристику. Терморезистор лучше всего работает в температурном диапазоне от -90 до 130 градусов по Цельсию.

Важно! Принцип работы терморезистора основан на базовой корреляции между металлами и температурой. Они изготавливаются из полупроводниковых соединений, таких как сульфиды, оксиды, силикаты, никель, марганец, железо, медь и т. д., могут ощущать даже небольшое температурное изменение.

Электрон, подталкиваемый приложенным электрическим полем, может перемещаться на относительно большие расстояния до столкновения с атомом. Столкновение замедляет его перемещение, поэтому электрическое «сопротивление» будет снижаться. При более высокой температуре атомы больше смещаются, и когда конкретный атом несколько отклоняется от своего обычного «припаркованного» положения, он, скорее всего, столкнется с проходящим электроном. Это «замедление» проявляется в виде увеличения электрического сопротивления.

Для информации. Когда материал охлаждается, электроны оседают на самые низкие валентные оболочки, становятся невозбужденными и, соответственно, меньше двигаются. При этом сопротивление движению электронов от одного потенциала к другому падает. По мере увеличения температуры металла сопротивление металла потоку электронов увеличивается.

Особенности конструкций

По своей природе терморезисторы являются аналоговыми и делятся на два вида:

  • металлические (позисторы),
  • полупроводниковые (термисторы).

Позисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к этим устройствам предъявляются некоторые требования. Материал для их изготовления должен обладать высоким ТКС.

Для таких требований подходят медь и платина, не считая их высокой стоимости. Практически широко применяются медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное применение, не более 180 градусов.

Позисторы PTC предназначены для ограничения тока при нагревании от более высокой рассеиваемой мощности. Поэтому их размещают последовательно в цепь переменного тока, чтобы уменьшить ток. Они (буквально любой из них) становятся горячими от слишком большого тока. Эти приспособления используют в устройстве защиты цепи, таком как предохранитель, в качестве таймера в схеме размагничивания катушек ЭЛТ-мониторов.

Для информации. Что такое позистор? Прибор, электрическое сопротивление которого растет в зависимости от его температуры, называется позистором (PTC).

Примеры позисторов

Термисторы

Устройство с отрицательным температурным коэффициентом (это когда, чем выше температура, тем ниже сопротивление) называется терморезистором NTC.

Для информации. Все полупроводники имеют меняющееся сопротивление по мере увеличения или уменьшения температуры. В этом проявляется их сверхчувствительность.

Характеристики и обозначение термистора

Термисторы NTC широко используются в качестве ограничителей пускового тока, самонастраивающихся сверхтоковых защит и саморегулируемых нагревательных элементов. Обычно эти приборы устанавливаются параллельно в цепь переменного тока.

Их можно встретить повсюду: в автомобилях, самолетах, кондиционерах, компьютерах, медицинском оборудовании, инкубаторах, фенах, электрических розетках, цифровых термостатах, переносных обогревателях, холодильниках, печах, плитах и других всевозможных приборах.

Термистор используется в мостовых цепях.

Технические характеристики

Терморезисторы используют в батареях зарядки. Их основными характеристиками являются:

  1. Высокая чувствительность, температурный коэффициент сопротивления в 10-100 раз больше, чем у металла;
  2. Широкий диапазон рабочих температур;
  3. Малый размер;
  4. Простота использования, значение сопротивления может быть выбрано между 0,1 ~ 100 кОм;
  5. Хорошая стабильность;
  6. Сильная перегрузка.

Качество прибора измеряется с точки зрения стандартных характеристик, таких как время отклика, точность, неприхотливость при изменениях других физических факторов окружающей среды. Срок службы и диапазон измерений – это еще несколько важных характеристик, которые необходимо учитывать при рассмотрении использования.

Компактные терморезисторы

Область применения

Термисторы не очень дорогостоящие и могут быть легко доступны. Они обеспечивают быстрый ответ и надежны в использовании. Ниже приведены примеры применения устройств.

Термодатчик воздуха

Автомобильный термодатчик – это и есть терморезистор NTC, который сам по себе является очень точным при правильной калибровке. Прибор обычно расположен за решеткой или бампером автомобиля и должен быть очень точным, так как используется для определения точки отключения автоматических систем климат-контроля.  Последние регулируются с шагом в 1 градус.

Температурный датчик

Автомобильный термодатчик

Терморезистор встраивается в обмотку двигателя. Обычно этот датчик подключается к реле температуры (контроллеру) для обеспечения «Автоматической температурной защиты». Когда температура двигателя превышает заданное значение, установленное в реле, двигатель автоматически выключается. Для менее критического применения он используется для срабатывания сигнализации о температурном превышении с индикацией.

Датчик пожара

Можно сделать свое собственное противопожарное устройство. Собрать схему из термистора или биметаллических полосок, позаимствованных из пускателя. Тем самым можно вызвать тревогу, основанную на действии самодельного термодатчика.

Дымовой извещатель

В электронике всегда приходится что-то измерять, например, температуру. С этой задачей лучше всего справляется  терморезистор  – электронный компонент на основе полупроводников. Прибор обнаруживает изменение физического количества и преобразуется в электрическое количество. Они являются своего рода мерой растущего сопротивления выходного сигнала. Существует две разновидности приборов: у позисторов с ростом температуры растет и сопротивление, а у термисторов оно наоборот падает. Это противоположные по действию и одинаковые по принципу работы элементы.

Видео

Оцените статью:

Обозначение радиоэлементов на схемах | Практическая электроника

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. 

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где  соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R  – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук.  Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания  в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды  – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V  – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод, стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT – транзистор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

 

Тензорезисторы

 

Варисторы

Шунт

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

Акустика

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

а) диодный мост

б) общее обозначение диода

в) стабилитрон

г) двусторонний стабилитрон

д) двунаправленный диод

е) диод Шоттки

ж) туннельный диод

з) обращенный диод

и) варикап

к) светодиод

л) фотодиод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

Измерители электрических величин

а) амперметр

б) вольтметр

в) вольтамперметр

г) омметр

д) частотомер

е) ваттметр

ж) фарадометр

з) осциллограф

Катушки индуктивности

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

в) трансформатор тока

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

а) замыкающий

б) размыкающий

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

д) переключающий

е) геркон

 

Электромагнитное реле с разными группами контактов

Предохранители

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

в) инерционный

г) быстродействующий

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

[quads id=1]

Тиристоры

Биполярный транзистор

Однопереходный транзистор

 

Полевой транзистор с управляющим PN-переходом

Моп-транзисторы

IGBT-транзисторы

Фото-радиоэлементы

Фоторезистор

Фотодиод

Фотоэлемент (солнечная панель)

Фототиристор

Фототранзистор

 

Оптоэлектронные приборы

Диодная оптопара

Резисторная оптопара

Транзисторная оптопара

Тиристорная оптопара

Симисторная оптопара

Кварцевый резонатор

Датчик Холла

 

Микросхема

Операционный усилитель (ОУ)

Семисегментый индикатор

Различные лампы

а) лампа накаливания

б) неоновая лампа

в) люминесцентная лампа

Соединение с корпусом (массой)

Земля

Если Вам проще по видео понять, вот можете посмотреть:


Схемы

> Стандартные условные обозначения

Условное обозначение однозначно идентифицирует компонент на электрической схеме или на печатной плате. Условное обозначение обычно состоит из одной или двух букв, за которыми следует цифра, например R13, C1002. За номером иногда следует буква, указывающая на то, что компоненты сгруппированы или сопоставлены друг с другом, например R17A, R17B. IEEE 315 содержит список букв обозначения класса для использования в электрических и электронных сборках.Например, буква R — это приставка для резисторов сборки, C — для конденсаторов, K — для реле.

Обозначение

Тип компонента

А

Раздельная сборка или подузел (например, сборка с печатной схемой)

AT

Аттенюатор или изолятор

BR

Аттенюатор или изолятор

К

Конденсатор

CN

Конденсатор сетевой

D

Диод (включая стабилитроны, тиристоры и светодиоды)

DL

Линия задержки

DS

Дисплей

ф

Предохранитель

FB или

FEB

Ферритовый шарик

FD

Контрольная точка

FL

Фильтр

G

Генератор или генератор

GN

Общая сеть

H

Оборудование

HY

Циркулятор или направленный ответвитель

Дж

Jack (наименее подвижный соединитель пары соединителей) | Разъем Jack (разъем может иметь штыревые контакты и / или контакты розетки)

JP

Звено (перемычка)

К

Реле или контактор

л

Индуктор или катушка или ферритовый шарик

LS

Громкоговоритель или зуммер

м

Двигатель

МК

Микрофон

MP

Механическая часть (включая винты и крепеж)

п

Штекер (наиболее подвижный разъем пары разъемов) | Штекерный разъем (разъем может иметь штыревые контакты и / или контакты розетки)

PS

Блок питания

кв.

Транзистор (все типы)

R

Резистор

РН

Резистор сетевой

РТ

Термистор

RV

Варистор

S

Переключатель (все типы, включая кнопочные)

т

Трансформатор

ТК

Термопара

TUN

Тюнер

TP

Контрольная точка

U

Неразъемная сборка (e.г., интегральная схема)

В

Вакуумная трубка

VR

Переменный резистор (потенциометр или реостат)

X

Гнездовой соединитель для другого элемента, кроме P или J, в паре с буквенным обозначением этого элемента (XV для гнезда для вакуумной трубки, XF для держателя предохранителя, XA для соединителя печатной платы, XU для соединителя для интегральной схемы, XDS для гнезда для освещения, и т.п.)

Y

Кристалл или генератор

Z

Стабилитрон

Обозначения электронных схем — Компоненты и условные обозначения на принципиальных схемах

В электронных схемах есть много электронных символов, которые используются для обозначения или идентификации основного электронного или электрического устройства.Они в основном используются для построения принципиальных схем и стандартизированы на международном уровне стандартом IEEE (IEEE Std 315) и британским стандартом (BS 3939). Пользователь не может вносить изменения в любой электронный символ, но пользователь может вносить любые изменения в архитектурные чертежи, такие как источник питания и освещение.

Электронные символы

Символы для различных электронных устройств показаны ниже. Щелкните каждую ссылку, приведенную ниже, чтобы просмотреть символы.Помимо обозначений схем, каждому устройству присваивается короткое имя. Хотя эти имена не утверждены в качестве стандартных обозначений, они обычно используются большинством людей. Эти обозначения также приведены в списке.

Провода | Источники питания | Резистор | Конденсатор | Диод | Транзистор | Логические ворота | Метры | Датчики | Переключатели | Аудио и радиоустройства | Устройства вывода

Обозначения проводов

Электронный компонент Обозначение цепи Описание
Провод Обозначение цепи провода Используется для подключения одного компонента к другому.
Провода соединены Обозначение соединенной цепи проводов

Одно устройство может быть подключено к другому с помощью проводов. Это представлено в виде «пятен» в местах, где они закорочены.

Несоединенные провода Обозначение «Провода, не входящие в цепь»

Когда цепи нарисованы, одни провода могут не касаться других. Это можно показать, только соединив их или нарисовав без пятен. Но наложение мостов обычно практикуется, так как здесь не возникает путаницы.

Обозначения источников питания

Электронный компонент Обозначение цепи Описание
Ячейка Обозначение сотовой цепи Используется для питания цепи.
Аккумулятор Обозначение цепи аккумулятора

Батарея состоит из нескольких элементов и используется с той же целью.Меньшая клемма — отрицательная, а большая — положительная. Сокращенно «B».

Источник постоянного тока Обозначение цепи питания постоянного тока Используется как источник постоянного тока, то есть ток всегда течет в одном направлении.
Источник переменного тока Обозначение цепи питания переменного тока Используется в качестве источника питания переменного тока, то есть ток будет иметь переменное направление.
Предохранитель Обозначение цепи предохранителя Используется в цепях, где существует вероятность чрезмерного протекания тока.Предохранитель разорвет цепь, если будет протекать чрезмерный ток, и убережет другие устройства от повреждений.
Трансформатор Обозначение цепи трансформатора

Используется как источник питания переменного тока. Состоит из двух катушек, первичной и вторичной, соединенных между собой железным сердечником. Между двумя катушками нет физического соединения. Для получения мощности используется принцип взаимной индуктивности. Сокращенно «Т».

Земля / Земля Обозначение цепи заземления

Используется в электронных схемах для обозначения 0 вольт источника питания.Его также можно определить как настоящую землю, когда он применяется в радиосхемах и силовых цепях.

Обозначения резисторов

Электронный компонент Обозначение цепи Описание
Резистор Обозначение цепи резистора

Резистор используется для ограничения силы тока, протекающего через устройство.Сокращенно «R».

Реостат Обозначение цепи реостата

Реостат используется для управления током с помощью двух контактов. Применимо для управления яркостью лампы, скоростью заряда конденсатора и т. Д.

Потенциометр Обозначение цепи потенциометра

Потенциометр используется для управления потоком напряжения и имеет три контакта. Применяются при изменении механического угла изменения электрического параметра.Сокращенно «POT».

Предустановка Обозначение предустановленной цепи

Presets — недорогие переменные резисторы, которые используются для управления потоком заряда с помощью отвертки. Приложения, в которых сопротивление определяется только в конце схемы.

Конденсаторные символы

Электронный компонент Обозначение цепи Описание
Конденсатор Обозначение цепи конденсатора

Конденсатор — это устройство, которое используется для хранения электрической энергии.Он состоит из двух металлических пластин, разделенных диэлектриком. Он применим в качестве фильтра, то есть для блокировки сигналов постоянного тока и разрешения сигналов переменного тока. Обозначается буквой «C».

Конденсатор — поляризованный Обозначение цепи поляризованного конденсатора Конденсатор можно использовать в схеме таймера, добавив резистор.
Конденсатор переменной емкости Обозначение цепи переменного конденсатора

Используется для изменения емкости поворотом ручки.Тип переменного конденсатора — это небольшой по размеру подстроечный конденсатор. Обозначения все те же.

Символы диодов

Электронный компонент Обозначение цепи Описание
Диод Обозначение диодной цепи

Диод используется для пропускания электрического тока только в одном направлении. Сокращенно «D».

Светоизлучающий диод (LED) Светодиодный индикатор цепи

Светодиод используется для излучения света, когда через устройство проходит ток. Сокращенно он обозначается как LED.

Стабилитрон Обозначение цепи стабилитрона

После пробоя напряжения устройство позволяет току течь и в обратном направлении. Он обозначается аббревиатурой «Z».

Фотодиод Обозначение схемы фотодиода

Фотодиод работает как фотодетектор и преобразует свет в соответствующее ему напряжение или ток.

Туннельный диод Обозначение цепи туннельного диода

Туннельный диод известен своей высокоскоростной работой из-за его применения в квантово-механических эффектах.

Диод Шоттки Обозначение цепи диода Шоттки

Диод Шоттки известен своим большим прямым падением напряжения и, следовательно, имеет большое применение в схемах переключения.

Обозначения транзисторов

Электронный компонент Обозначение цепи Описание
NPN транзистор Обозначение цепи транзистора NPN

Это транзистор со слоем полупроводника, легированного P, закрепленным между двумя слоями полупроводников, легированных азотом, которые действуют как эмиттер и коллектор.Сокращенно «Q».

PNP транзистор Обозначение цепи транзистора PNP

Это транзистор со слоем полупроводника с примесью азота, закрепленным между двумя слоями полупроводников с примесью фосфора, которые действуют как эмиттер и коллектор. Сокращенно «Q».

Фототранзистор Обозначение цепи фототранзистора

Фототранзистор работает аналогично биполярному транзистору с той разницей, что он преобразует свет в соответствующий ему ток.Фототранзистор также может действовать как фотодиод, если эмиттер не подключен.

Полевой транзистор Обозначение цепи полевого транзистора

Подобно транзистору, полевой транзистор имеет три вывода: затвор, исток и сток. Устройство имеет электрическое поле, которое контролирует проводимость канала носителей заряда одного типа в полупроводниковом веществе.

Полевой транзистор с N-каналом Обозначение цепи полевого транзистора с n-канальным переходом (JFET)

Полевой транзистор Junction Field Effect Transistor (JFET) — это простейший тип полевого транзистора, применяемый в коммутации и в резисторах с переменным напряжением.В N-канальном JFET кремниевый стержень N-типа имеет два меньших куска кремниевого материала P-типа, рассеянных с каждой стороны его средней части, образуя P-N-переходы.

Полевой транзистор с P-каналом Обозначение цепи полевого транзистора (FET) с p-канальным переходом

P-канальный JFET аналогичен по конструкции N-канальному JFET, за исключением того, что полупроводниковая основа P-типа зажата между двумя переходами N-типа. В этом случае основными носителями являются дыры.

Металлооксидный полупроводник FET Указано ниже

Сокращенно MOSFET. МОП-транзистор — трехполюсное устройство, управляемое смещением затвора. Он известен своей низкой емкостью и низким входным сопротивлением.

МОП-транзистор расширения Обозначение цепи электронного МОП-транзистора

Усовершенствованная структура полевого МОП-транзистора не имеет канала, сформированного при ее создании. Напряжение прикладывается к затвору, чтобы создать канал носителей заряда, чтобы ток возникал при приложении напряжения к клеммам сток-исток.Сокращенно e-MOSFET.

MOSFET истощения Обозначение цепи d-MOSFET

В конструкции, работающей в режиме обеднения, физически создается канал, и ток между стоком и истоком возникает из-за напряжения, приложенного к клеммам сток-исток. Сокращенно d-MOSFET.

Символы логических вентилей

Ворота Стандартный символ Символ IEC Описание
И Ворота И ВОРОТА Символ И ворота IEC Symbol

Если на всех входах логического элемента И ВЫСОКИЙ, то на выходе также будет ВЫСОКИЙ.Если любой из них имеет значение НИЗКИЙ, выход также будет НИЗКИЙ.

NAND
Gate
Символ ворот NAND Ворота NAND, IEC, символ

Краткая форма для ворот НЕ И. Из всех входов ВЫСОКИЙ, выход будет НИЗКИЙ. Если какой-либо из входов НИЗКИЙ, выход будет ВЫСОКИЙ.

OR Выход Символ ворот OR ИЛИ Ворота, символ IEC

Если любой из входов ВЫСОКИЙ, выход также будет ВЫСОКИЙ.Если оба входа LOW, выход также будет LOW.

NOR Gate Символ ворот NOR Ворота NOR, символ IEC

Краткая форма НЕ ИЛИ. Если оба входа LOW, выход также будет LOW. В других случаях выходной сигнал будет ВЫСОКИЙ.

EX-OR Ворота Символ ворот EX-OR Ворота EX-OR, символ IEC

Краткая форма эксклюзивного НОР. Если оба входа находятся в состоянии НИЗКИЙ или ВЫСОКИЙ, выход будет НИЗКИЙ.Если оба входа различаются, выход будет ВЫСОКИЙ.

Выход EX-NOR Символ ворот EX-NOR Выход EX-NOR, символ IEC

Краткая форма исключающего НЕ ИЛИ. Если оба входа одинаковы, выход будет ВЫСОКИЙ. Если оба они разные, результат также будет другим.

НЕ Ворота НЕ символ ворот НЕ символ ворот

Также известен как инверторный затвор.У этих ворот только один вход. Если вход ВЫСОКИЙ, выход будет НИЗКИЙ. Если на входе НИЗКИЙ, на выходе будет ВЫСОКИЙ.

Метры

Электронный компонент Обозначение цепи Описание
Вольтметр Обозначение цепи вольтметра Вольтметр используется для измерения напряжения в определенной точке цепи.
Амперметр Обозначение цепи амперметра

Амперметр используется для измерения тока, который проходит через цепь в определенной точке.

Гальванометр Обозначение цепи гальванометра

Гальванометр используется для измерения очень малых токов порядка 1 миллиампер или меньше.

Омметр Обозначение цепи омметра Сопротивление цепи измеряется омметром.
Осциллограф Обозначение цепи осциллографа

Осциллограф используется для измерения напряжения и периода времени сигналов, а также для отображения их формы.

Обозначения датчиков

Электронный компонент Обозначение цепи Описание
Светозависимый резистор (LDR) Обозначение цепи LDR

Сокращенно LDR. Светозависимый резистор используется для преобразования света в соответствующее ему сопротивление. Вместо того, чтобы напрямую измерять свет, он определяет содержание тепла и преобразует его в сопротивление.

Термистор Обозначение цепи термистора

Вместо прямого измерения света термистор определяет содержание тепла и преобразует его в сопротивление. Сокращенно «TH».

Обозначения переключателей

цепи переключателя Push to Break

Электронный компонент Обозначение цепи Описание
Нажимной переключатель Обозначение цепи нажимного переключателя Это обычный переключатель, пропускающий ток только при нажатии.
Нажимной выключатель Обозначение

Переключатель включения обычно удерживается во включенном состоянии (замкнутом). Он переходит в состояние ВЫКЛ. (Разомкнут) только при нажатии переключателя.

Однополюсный однопозиционный переключатель Обозначение цепи выключателя (SPST)

Также известен как переключатель ВКЛ / ВЫКЛ. Этот переключатель позволяет протекать току только тогда, когда он находится во включенном состоянии. Сокращенно SPST.

Однополюсный двухпозиционный переключатель Двухпозиционный переключатель (SPDT), обозначение цепи

Также известен как двухпозиционный переключатель. Его также можно назвать переключателем ВКЛ / ВЫКЛ / ВКЛ, поскольку он имеет положение ВЫКЛ в центре. Переключатель вызывает прохождение тока в двух направлениях, в зависимости от его положения. Сокращенно его можно обозначить как SPDT.

Двухполюсный однопозиционный переключатель Обозначение цепи двойного двухпозиционного переключателя (DPST)

Сокращенно DPST.Также может называться двойным переключателем ВКЛ-ВЫКЛ. Он используется для изоляции соединения под напряжением и нейтрали в главной электрической линии.

Двухполюсный двухпозиционный переключатель Обозначение цепи DPDT

Сокращенно DPDT. Переключатель использует центральное положение ВЫКЛ. И используется как реверсивный переключатель для двигателей.

Реле Обозначение цепи реле

Реле сокращенно «RY».Это устройство может легко переключать сеть переменного тока 230 Вольт. Он имеет три ступени переключения, называемых нормально разомкнутыми (NO). Нормально замкнутый (NC) и общий (COM).

Символы аудио и радиоустройств

Электронный компонент Обозначение цепи Описание
Микрофон Обозначение цепи микрофона

Это устройство используется для преобразования звука в соответствующую ему электрическую энергию.Сокращенно «MIC».

Наушники Обозначение цепи наушников Выполняет обратный процесс микрофона и преобразует электрическую энергию в звук.
Громкоговоритель Обозначение цепи громкоговорителя

Выполняет те же операции, что и наушники, но преобразует усиленную версию электрической энергии в соответствующий звук.

Пьезоэлектрический преобразователь Обозначение цепи пьезопреобразователя Это преобразователь, преобразующий электрическую энергию в звук.
Усилитель Обозначение цепи усилителя

Используется для усиления сигнала. В основном он используется для представления всей схемы, а не только одного компонента.

Антенна Обозначение воздушной цепи Это устройство используется для передачи / приема сигналов. Сокращенно «АЕ».

Устройства вывода

Электронный компонент Обозначение цепи Описание
Осветительная лампа Обозначение цепи лампы Используется для освещения выхода.
Контрольная лампа Обозначение цепи индикатора лампы Используется для преобразования электрической энергии в свет. Лучшим примером является сигнальная лампа на приборной панели автомобиля.
Нагреватель Обозначение цепи нагревателя Этот преобразователь используется для преобразования электрической энергии в тепло.
Индуктор Обозначение цепи индуктора

Индуктор используется для создания магнитного поля, когда определенный ток проходит через катушку с проволокой.Проволока намотана на сердечник из мягкого железа. Имеют применение в двигателях и цепях резервуаров. Сокращенно «L».

Двигатель Обозначение цепи двигателя

Это устройство используется для преобразования электрической энергии в механическую. Может также использоваться как генератор. Сокращенно «М».

Колокол Обозначение цепи звонка

Используется для создания звука на выходе в соответствии с производимой на входе электрической энергией.

Зуммер Обозначение цепи зуммера

Он используется для создания выходного звука, соответствующего входной электрической энергии.

Основы встроенной защиты двигателя для начинающих

Зачем нужна защита двигателя?

Во избежание неожиданных поломок, дорогостоящего ремонта и последующих потерь из-за простоя двигателя важно, чтобы двигатель был оснащен каким-либо защитным устройством.В этой статье речь пойдет о встроенной защите двигателя с тепловой защитой от перегрузки, чтобы избежать повреждения и поломки двигателя.

Основы встроенной защиты двигателя для начинающих (на фото: вид установленного внутри двигателя термостата; кредит: johndearmond.com)

Встроенное устройство защиты всегда требует внешнего автоматического выключателя, в то время как некоторые встроенные типы защиты двигателя даже требуют реле перегрузки.

Внутренняя защита / Встроенная в двигатель

Зачем нужна встроенная защита двигателя, если двигатель уже оснащен реле перегрузки и предохранителями? Иногда реле перегрузки не регистрирует перегрузку двигателя.

Вот пара примеров этого:

  1. Если двигатель накрыт и медленно нагревается до высокой температуры.
  2. В целом высокая температура окружающей среды.
  3. Если внешняя защита двигателя настроена на слишком высокий ток отключения или установлена ​​неправильно.
  4. Если двигатель в течение короткого периода времени перезапускается несколько раз, ток заблокированного ротора нагревает двигатель и, в конечном итоге, повреждает его.

Степень защиты, которую обеспечивает внутреннее защитное устройство, классифицируется в стандарте IEC 60034-11.

TP Обозначение

TP — сокращение для тепловой защиты. Существуют различные типы тепловой защиты, которые идентифицируются кодом TP (TPxxx) , который указывает:

  • Тип тепловой перегрузки, на которую рассчитана тепловая защита (1 цифра)
  • Количество уровней и тип действие (2 цифры)
  • Категория встроенной тепловой защиты (3 цифры)

Что касается моторов насосов, наиболее распространенными обозначениями TP являются:

  • TP 111 — Защита от замедления перегрузка
  • TP 211 — защита как от быстрой, так и от медленной перегрузки.

Внутренняя защита, встроенная в обмотки

Индикация допустимого уровня температуры при тепловой перегрузке двигателя. Категория 2 допускает более высокие температуры, чем категория 1.

Символ
(TP)
Техническая перегрузка с вариациями
(1 цифра)
Количество уровней и функциональная область (2 цифры) Категория
(3 цифры)
TP 111 Только медленный (т.е. постоянная перегрузка) 1 уровень при отключении 1
TP 112 2
TP 121 2 уровня при аварийном сигнале и отключении 1
TP 122 2
TP 211 Медленный и быстрый (т.е. постоянная перегрузка и состояние блокировки) 1 уровень при отключении 1
TP 212 2
TP 221 2 уровня при аварийном сигнале и отключении 1
TP 222 2
TP 311 Только быстро (т.е.е. состояние блокировки) 1 уровень при отсечении 1
TP 312 2

Информация о том, какой тип защиты применен к двигателю, может быть найдена на паспортной табличке с использованием TP (тепловая защита ) обозначение в соответствии с IEC 60034-11 .

Как правило, внутренняя защита может быть реализована с использованием двух типов защит:

  1. Тепловые защиты или
  2. Термисторы.

Тепловые защитные устройства — встроены в клеммную коробку

Тепловые защитные устройства или термостаты используют биметаллический дисковый переключатель мгновенного действия для размыкания или замыкания цепи при достижении определенной температуры. Термозащитные устройства также называются Klixons (торговая марка Texas Instruments).

Когда биметаллический диск достигает заданной температуры, он размыкает или замыкает набор контактов в цепи управления под напряжением . Доступны термостаты с контактами для нормально разомкнутого или нормально замкнутого режима, но одно и то же устройство нельзя использовать для обоих.

Термостаты предварительно откалиброваны производителем и не могут быть отрегулированы. Диски герметично закрыты и размещаются на клеммной колодке.

Верхняя паспортная табличка: TP 211 в двигателе MG 3,0 кВт, оборудованном PTC; Нижняя паспортная табличка: TP 111 в двигателе Grundfos MMG мощностью 18,5 кВт, оборудованном PTC.
Символы теплового выключателя двигателя

Символы (слева направо):

  1. Термовыключатель без нагревателя
  2. Термовыключатель с нагревателем
  3. Термовыключатель без нагревателя для трехфазных двигателей (защита точки звезды)

Термостат может либо активировать цепь аварийной сигнализации , если нормально разомкнут, либо обесточить контактор двигателя , если нормально замкнут и включен последовательно с контактором.

Поскольку термостаты расположены на внешней поверхности концов змеевика, они определяют температуру в этом месте. В случае с трехфазными двигателями термостаты считаются нестабильной защитой от останова или других быстро меняющихся температурных условий.

В однофазных двигателях термостаты действительно защищают от блокировки ротора.

Вернуться к указателю ↑

Термовыключатель — встроен в обмотки

В обмотки также могут быть встроены термозащитные устройства, см. Рисунок ниже.Они работают как чувствительные выключатели питания как для однофазных, так и для трехфазных двигателей. В однофазных двигателях до данного типоразмера двигателя около 1,1 кВт он может быть установлен непосредственно в главной цепи для использования в качестве устройства защиты на обмотке.

Обозначение тепловой защиты

Тепловая защита, подключаемая последовательно с обмоткой или цепью управления в двигателе.

Тепловая защита, встроенная в обмотки

Klixon и Thermik являются примерами теплового реле. Эти устройства также называются PTO (Protection Thermique à Ouverture).

Термовыключатели, чувствительные к току и температуре: Вверху: Klixons; Внизу: Thermik — PTO

Внутренний фитинг

В однофазных двигателях используется один термовыключатель. В трехфазных двигателях между фазами двигателя размещены 2 последовательно включенных термовыключателя. Таким образом, все три фазы контактируют с термовыключателем.

Термовыключатели могут быть установлены на конце змеевика, но в результате увеличивается время реакции. Коммутаторы должны быть подключены к внешней системе мониторинга.Таким образом двигатель защищен от медленной перегрузки. Термовыключатели не требуют реле усилителя.

Термовыключатели НЕ МОГУТ защитить от состояния блокировки ротора.

Вернуться к индексу ↑

Как работает термовыключатель?

Кривая справа показывает зависимость сопротивления от температуры для типичного термовыключателя. В зависимости от производителя термовыключателя кривая меняется.

TN обычно составляет около 150–160 ° C.

Зависимость сопротивления от температуры для типичного термовыключателя

Вернуться к указателю ↑

Подключение

Подключение трехфазного двигателя со встроенным термовыключателем и реле перегрузки.

Обозначение TP на схеме

Защита по стандарту IEC 60034-11: TP 111 (медленная перегрузка) . Чтобы работать с заблокированным ротором, двигатель должен быть оснащен реле перегрузки.

Автоматическое повторное включение (слева) и ручное повторное включение (справа)

Где:

  • S1 — Выключатель
  • S2 — Выключатель
  • K 1 — Контактор
  • t — Термовыключатель в двигателе
  • M — Двигатель
  • MV — Реле перегрузки

Термовыключатели могут быть нагружены следующим образом:

U max = 250 В переменного тока
I N = 1.5 A

I max = 5,0 A (ток включения и выключения)

Вернуться к индексу ↑

Термисторы — также встроены в обмотки

Второй тип внутренней защиты — это термисторы или датчики с положительным температурным коэффициентом (PTC) . Термисторы встроены в обмотки двигателя и защищают двигатель от заблокированного ротора, длительной перегрузки и высокой температуры окружающей среды.

В этом случае тепловая защита достигается путем контроля температуры обмоток двигателя с помощью датчиков PTC.Если обмотки превышают номинальную температуру срабатывания, датчик претерпевает быстрое изменение сопротивления относительно изменения температуры.

В результате этого изменения внутренние реле обесточивают управляющую катушку контактора внешнего прерывателя линии. По мере охлаждения двигателя и восстановления приемлемой температуры обмотки двигателя сопротивление датчика уменьшается до уровня сброса.

На этом этапе модуль автоматически перезагружается, если только он не был настроен на ручной сброс.Когда термисторы устанавливаются на концах катушки, термисторы могут быть классифицированы только как TP 111 . Причина в том, что термисторы не имеют полного контакта с концами катушки, и поэтому они не могут реагировать так быстро, как если бы они были изначально установлены в обмотку.

Термистор / PTC

Термисторная система измерения температуры состоит из датчиков положительного температурного коэффициента (PTC), установленных последовательно из трех — по одному между каждой фазой — и согласованного твердотельного электронного переключателя в закрытом модуле управления.Набор датчиков состоит из трех датчиков, по одному на фазу.

Защита PTC, встроенная в обмотки

Только температурно-чувствительный. Термистор должен быть подключен к цепи управления, которая может преобразовывать сигнал сопротивления, который снова должен отключать двигатель. Используется в трехфазных двигателях.

Сопротивление датчика остается относительно низким и постоянным в широком диапазоне температур и резко возрастает при заданной температуре или точке срабатывания.

Когда это происходит, датчик действует как твердотельный термовыключатель , а отключает питание пилотного реле .

Реле размыкает цепь управления машиной для отключения защищаемого оборудования. Когда температура обмотки возвращается к безопасному значению, модуль разрешает ручной сброс.

Вернуться к оглавлению ↑

Ссылка // Grundfos — Motor Book (Скачать здесь)

Буквенно-цифровые обозначения на электрических схемах ГОСТ 2.710-81

На основе ГОСТ 2.710-81. Эта страница не является исходным документом. Перевод может быть неточным.

Элементы электрических схем могут иметь как однобуквенное, так и двухбуквенное обозначение.

1. Буквы наиболее распространенных типов элементов приведены в таблице 1.

9001 9 Q

2.Примеры двухбуквенных кодов приведены в таблице 2

900 15

26

КМ 9002 2

Q

9000 6

en

28 Контакт X

1.Буквенные коды для обозначения функционального назначения элементов, перечисленных в таблице 1

9000 6

Первая буква кода (обязательно) Групповые виды элементов Примеры видов элементов
А Устройства Усилители, устройства телеуправления, лазеры, мазеры
В Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот, аналоговые или многозначные преобразователи или датчики для индикации или измерения Громкоговорители, микрофоны, термоэлектрические датчики, детекторы ионизирующего излучения, датчики, сельсины
С Конденсаторы
D Интегральные схемы, микросборки Интегральные аналоговые и цифровые схемы, логические элементы, устройства памяти, задержки приборы
Е Элементы разные Приборы осветительные, тепловые элементы
F Разрядники, предохранители, защитные устройства Дискретные элементы защиты по току и напряжению, предохранители, разрядники
G Генераторы, источники питания, кварцевые генераторы Батареи, электрохимические и электротермические источники
Н Устройства индикации и сигнализации Устройства звуковой и световой сигнализации, индикаторы
К Реле, контакторы, пускатели Реле тока и напряжения, электротермические реле, реле времени, контакторы, магнитные пускатели
L Дроссели, дроссели Дроссели для люминесцентного освещения
М Двигатели Двигатели переменного и постоянного тока
Р Приборы, измерительное оборудование Показывающие, регистрирующие и измерительные приборы, счетчики , часы
Выключатели и разъединители в силовых цепях Разъединители, закорачивающие выключатели, выключатели (силовые)
R Резисторы Переменные резисторы, потенциометры, варисторы, термисторы
S Коммутационные устройства в цепях управления, сигнализации и измерения Выключатели, переключатели, срабатывающие при различных воздействиях
T Трансформаторы, автотрансформаторы Трансформаторы тока и напряжения, стабилизаторы
U Преобразователи электрических величин в электрические, связь приборы Модуляторы, демодуляторы, дискриминаторы, инверторы, преобразователи частоты, выпрямители
В Электровакуумные, полупроводниковые приборы Электронные лампы, диоды, транзисторы, тиристоры, стабилитроны
Вт Линии и элементы сверхвысокая частота, антенны Волноводы, диполи, антенны
X Соединения контактные Штыри, гнезда, разборные соединения, токосъемники
Y Механические устройства с электромагнитным приводом Электромагнитные муфты, тормоза, картриджи
Z Концевые устройства, фильтры, ограничители Линия моделирования, кварцевые фильтры
Первая буква кода (обязательно) Группа видов элементов Примеры видов элементов Двухбуквенный код
А Устройство (общее обозначение)
В Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот, аналоговые или многозначные преобразователи или датчики для индикации или измерения Громкоговоритель ВА
Магнитострикционный элемент ВВ
Детектор ионизирующего излучения БД
Приемник Сельсина BE
Телефон (капсула) ВF
Датчик Цельсина ВС22 900

Термодатчик ВК
Фотоэлемент BL
Микрофон ВМ
Измеритель давления ВР
Пьезоэлемент BQ
Тахогенератор BR
Датчик BS

C Конденсаторы
D Интегральные схемы, микросборки Интегральная аналоговая схема DA
Интегральная схема, цифровая, логический элемент DD
Запоминающие устройства DS
Устройство задержки DI
Е Различные элементы Нагревательный элемент ЕК
Осветительные лампы EL
Пиропатрон ЕТ
Arresters 900 , предохранители, защита Активные устройства Дискретный элемент мгновенной защиты FA
Дискретный элемент защиты от электрического тока, инерционный FP
Предохранитель FU
Дискретный элемент защиты напряжения, разрядник FV
G Генераторы, источники питания Аккумулятор GB
H Устройства индикации и сигнализации Устройство звуковой сигнализации HA
Индикатор символический HG
Устройство световой сигнализации HL
К Реле, контакторы, пускатели Реле тока КА
Реле сигнальное КН
Реле электротермическое КК
Контактор, магнитный пускатель
Реле выдержки времени КТ
Реле напряжения кВ
L Дроссели, дроссели Дроссель люминесцентного освещения LL
М Двигатели
Р Приборы, измерительное оборудование
Примечание.Комбинация ПЭ не допускается
Амперметр РА
Счетчик импульсов ПК
Цимометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии РК
Омметр PR
Регистрирующее устройство PS
Часы, счетчик времени PT
Вольтметр PV
Ваттметр PW
Выключатели и разъединители в силовых цепях (электроснабжение, электроснабжение оборудования и др.)) Автоматический выключатель QF
Выключатель короткого замыкания QK
Разъединитель QS
R Резисторы Термистор RK
RP
Измерительный шунт RS
Варистор RU
S Коммутационные аппараты в цепях управления, сигнализации и измерения
Примечание.Обозначение SF используется для устройств, не имеющих силовых контактов
Переключатель SA
Кнопочный переключатель SB
Автоматический переключатель SF
Переключатели, срабатывающие при различных действиях:
Уровень SL
Давления SP
Положение SQ
Скорость вращения SR
Температура SK
Т Трансформаторы автотрансформаторы Трансформатор тока TA
Электромагнитный стабилизатор TS
Трансформатор напряжения TV
U Устройства связи
Преобразователи электрических величин в электрические
Модулятор UB
Демодулятор UR
Дискриминатор UI
Преобразователь частоты, инвертор, генератор частоты, выпрямитель UZ
В Электровакуумные и полупроводниковые элементы Диод Диод, зонд
Электровакуумный элемент ВЛ
Транзистор VT
Тиристор VS
W Линии и элементы СВЧ
Антенны
Разветвитель WE6

Разветвитель WE6

Короткий -цепной выключатель WK
Ventil WS
Трансформатор, фазовращатель WT
Аттенюатор WU
Антенна WA
Текущее сотрудничество лектор, скользящий контакт XA
Штифт XP
Разъем XS
Разъемное соединение XT
Высокочастотный разъем XW
Y Механические устройства с электромагнитным приводом Электромагнит YA
Тормоз с электромагнитным приводом YB
Муфта с электромагнитным приводом YC
Электромагнитный картридж YH
Z Конец приборы, фильтры
Ограничители
Ограничитель ZL
Кварцевый фильтр ZQ
Буквенный код Функциональное назначение Буквенный код Функциональное назначение
А Вспомогательный N Измерительный
В Направление движения (вперед, назад, вверх, вниз, по часовой стрелке, против часовой стрелки) Р Пропорционально
C Подсчет Q Статус (старт, стоп, предел)
D Дифференциация R Возврат, сброс
F Защитный S Запоминание, запись
G Тест T Синхронизация, задержка
Н Сигнал В Скорость (ускорение, замедление)
I Интеграция W Добавление
К Нажатие X Умножение
M Основное Y Аналоговый
Z Цифровой

404 | Винкотек

  • английский

  • китайский язык

  • Продукты


    Поиск товаров

    • Все продукты

    • По топологии

    • По жилью

    • По заявке


    Модули питания

    • Выпрямитель (+ Тормоз)

    • Сверхбыстрый выпрямитель

    • Шесть пакетов

    • Sixpack + выпрямитель

    • Sevenpack

    • PIM (CIB)

    • PIM + PFC (CIP)

    • IPM (CIB)

    • IPM (CIP / PIM + PFC)

    • Полумост

    • H-мост

    • Однофазный инвертор

    • H6.5

    • Бустер

    • Трехуровневый бустер FC

    • Бустер симметричный

    • Бак-Бустер Симметричный

    • PFC (однофазные приложения)

    • PFC (трехфазные приложения)

    • Трехуровневый NPC (I-тип)

    • Трехуровневый MNPC (T-Type)

    • Трехуровневый ANPC


    Резисторы

    • Тормозные резисторы
    • Пусковые резисторы


    Реле

    • Твердотельные реле (SSR)
  • Поддержка и документы

    • Техническая библиотека
    • Размеры корпуса / инструкции по обращению
    • Оценочная плата / эталонный дизайн
    • Программное обеспечение для моделирования
    • Продукты для конкретных приложений
    • Сертификаты
    • Запросить образец
    • Каталог товаров
    • Название продукта
    • Глоссарий Винкотек
    • Перекрестная ссылка
    • Ссылка на термистор
  • Технологии и инновации

    • Материал подложки — AlN
    • Материал подложки — Si₃N₄
    • Спеченный Die Attach
    • Предварительно нанесенный материал с фазовым переходом
    • Предварительно нанесенная термопаста
    • Шаблон TIM
    • Защита материала термоинтерфейса — ProCap
    • Технология прессовой посадки
    • Инструменты для запрессовки
    • Передовые полупроводниковые технологии
  • Компания

    • Профиль
    • Миссия
    • История
    • Качество
    • Лидерство
    • Устойчивость
    • Социальная ответственность
    • Контакт
  • Новости

    • Новости о продуктах
    • Новости компании
    • Выставки
    • Подписка на рассылку новостей
    • Видео
    • Вебинары
  • Карьера

    • Работа в Винкотек
    • Отзывы
    • Открытые позиции
    • Контакт

Закрыть меню

  1. Дом

Страница не найдена.

Вернуться домой.

  • Контакт

  • Запросить отзыв

  • Запросить образец

Оставайтесь на связи

  • Твиттер

  • LinkedIn

  • Facebook

  • YouTube

  • Син

  • Сина Weibo

  • BAIDU Pedia

  • WeChat

  • Новостная рассылка

  • Условия и положения

  • Политика конфиденциальности

  • Отказ от ответственности

  • Авторские права

  • Отпечаток

  • Карта сайта

Схема подключения материнской платы

Duet 3 6HC

нажмите на изображение для увеличения

Duet 3 Mainboard 6HC имеет следующие разъемы:

6-полосная барьерная планка: два контакта для основных VIN и GND; два контакта для питания VIN и GND для клемм OUT_0; положительный и отрицательный выводы OUT_0.OUT_0 предназначен для привода нагревателя станины. Сторона заземления OUT_0 переключается с помощью МОП-транзистора, а положительная сторона защищена предохранителем на 15 А.

4-контактный JST VH DRIVER_0 — DRIVER_5: Соединения шагового двигателя. (см. примечание ниже)

2-контактный JST VH OUT_1 — OUT_3: предназначены для нагревателей или вентиляторов экструдеров. Максимальный рекомендуемый ток 6А каждый. Если к этим выходам подключаются индуктивные нагрузки, необходимо использовать внешние обратные диоды.

4-контактные разъемы KK со смещенным патрубком OUT_4 — OUT_6: предназначены для вентиляторов с ШИМ-управлением.Разъем подходит для стандартного 4-контактного ШИМ-вентилятора ПК. В качестве альтернативы, 2-контактный вентилятор может быть подключен между контактом V_OULCn (+ ve) и контактом OUT_n_NEG (-ve). Положительный вывод на эти разъемы — это центральный контакт 3-контактного блока перемычек с маркировкой OUT4-OUT6_Select. Перемычка в верхнем положении запитает их от источника VIN с предохранителем. В качестве альтернативы вы можете подключить 3-контактный понижающий стабилизатор к 3-контактной перемычке для подачи необходимого напряжения на центральный контакт.

2-контактные разъемы KK с маркировкой OUT7 — OUT9: предназначены для вентиляторов.Максимальный рекомендуемый ток 2,5А каждый. В эти выходы встроены обратные диоды.

5-контактные разъемы KK с маркировкой IO_0 — IO_8: предназначены для концевых выключателей, Z-датчиков, мониторов накала и других функций низковольтного ввода-вывода. Каждый разъем обеспечивает питание как 3,3 В, так и 5 В. Входы выдерживают до 30 В. Выходы имеют уровни сигналов 3,3 В с резисторами серии 470R.

Осторожно! Распиновка 5-контактных разъемов отличается от 5-контактного разъема Z-щупа для Duet Maestro! Он был изменен, чтобы снизить риск короткого замыкания с + 5В до +3.3В.

Подключены 2 контакта KK с пометкой RESET_EXT: для внешнего нормально разомкнутого переключателя сброса.

3-контактный KK с маркировкой PS_ON: выход на МОП-транзистор с открытым стоком для управления источником питания в стиле ATX или SSR. Вывод + 5V также можно использовать для подачи внешнего питания 5V. Небольшое количество энергии 5 В может быть получено с этого вывода (через внутренний резистор 220 Ом), так что управляющие клеммы SSR могут быть подключены непосредственно между выводами + 5V и PS_ON. Примечание: для версии v0.На плате 5 этот разъем повернут на 180 градусов по сравнению с предполагаемой ориентацией на платах более поздних версий.

2-контактный KK с маркировкой GND и V +: Предназначен для питания постоянно включенного вентилятора или аналогичного устройства. Внимание! На платах v0.5 обозначения GND и V_FUSED на нижней стороне платы неверны! Те, что наверху, правильные. Примечание: на плате v0.5 этот разъем повернут на 180 градусов по сравнению с предполагаемой ориентацией на платах более поздних версий.

2-контактный разъем KK с маркировкой от TEMP_0 до TEMP_3: разъемов для термистора или датчиков PT1000.

2-контактный KK с маркировкой GND 12 В: Всегда под напряжением 12 В. Обратите внимание, что этот источник питания используется совместно с 12 В, который можно выбрать для out4-out6 и out 7-out9, поэтому общий потребляемый ток 12 В не должен превышать 800 мА.

3-контактный разъем KK с маркировкой Laser / VFD: out9 Уровень сигнала ШИМ сдвинут на 5 В, что позволяет использовать лазерный / VFD-привод или сервопривод для хобби. Обратите внимание, что управляющий сигнал out9 распределяется между этим заголовком и 2-контактным выходом OUT9.Используйте только один или другой, а не оба.

Разъем 2×5: Предназначен для подключения интерфейсных плат PT100 и термопар (те же платы, что и в серии Duet 2).

4-контактный разъем для светодиодных лент DotStar : предназначен для подключения и питания светодиодных лент DotStar. В прошивке 3.01 также есть экспериментальная поддержка светодиодных лент NeoPixel. При использовании NeoPixel подключите вывод Duet DO к Neopixel DI и оставьте вывод Duet CLK неподключенным. Можно управлять максимум 50 светодиодами NeoPixel. Внимание! Общий ток, потребляемый Raspberry Pi (включая любые подключенные USB-устройства), светодиодами DotStar и другими устройствами, питающимися от шин 5 В и 3,3 В на Duet, не должен превышать 3,0 А.

6-контактный разъем SWD : предназначен для отладки микропрограмм, а также обеспечивает резервный механизм для программирования плат расширения.

Диагностический светодиод : непрерывно мигает, когда основная плата работает нормально, примерно на полсекунды горит и полсекунды не горит.На плате расширения также есть диагностический светодиод. Когда плата расширения запускается, этот светодиод быстро гаснет. Если плата расширения подключена к основной плате с совместимой прошивкой, светодиод на плате расширения переключится на мигание синхронно со светодиодом основной платы, как только будет установлена ​​временная синхронизация по шине CAN.

  • 4-проводной двигатель и OUT1, OUT2 и OUT3 — это разъемы серии JST VH. Для них требуется как минимум провод 22AWG (рекомендуется 20AWG или 0,5 мм 2 .Большинство проводов шаговых двигателей размера NEMA17 не будет достаточно толстым для использования в обычном режиме; но вы можете удвоить оголенную часть провода на себя, чтобы набухнуть, и надеть небольшую термоусадочную трубку поверх изоляции, чтобы увеличить изоляцию. Вам понадобится подходящий инструмент для обжима обжимных штифтов, например Engineer PA21 (используйте отверстие губки 2,2 мм, чтобы обжать оголенный провод, и 2,5 мм, чтобы обжать изоляцию). В качестве альтернативы вы можете припаять провод к обжимному контакту
  • Конфигурация питания 5 В по умолчанию: внутреннее — 5V-EN с перемычкой, 5V-> SBC с перемычкой (Duet питает SBC), SBC-> 5V без перемычки.Если вы хотите, чтобы SBC подал 5 В на Duet, снимите перемычку с Internal-5V-EN и установите перемычку на SBC-5V (оставив перемычку 5V-> SBC на месте). ПРИМЕЧАНИЕ это обходит защиту 5 В, и отказ SBC может повредить Duet.
  • Два банка слаботочных выходов (OUT4-6, OUT7-9) могут быть отдельно выбраны для питания от VIN или внутреннего 12V. Общий ток, потребляемый вентилятором на 12 В, не должен превышать 800 мА.
  • Отдельный вход питания OUT0 позволяет подавать другое напряжение для сильноточного выхода OUT0 (например.g для обогревателя большой кровати) Если это не требуется, необходимо подать питание по VIN как на POWER IN, так и на OUT0 POWER IN, чтобы OUT 0 был запитан.
  • SBC_3.3V предназначен исключительно для обеспечения одинаковых логических уровней между Duet и SBC, не пытайтесь использовать этот вывод для подачи или вывода 3.3V

нажмите на изображение для увеличения

Осторожно! На платах v0.5 обозначения GND и V_FUSED на нижней стороне платы неверны! На приведенной выше схеме подключения правильные.То же самое для блока перемычек OUT7 — OUT9, который обеспечивает питание этих разъемов соответственно (см. Ниже).

Осторожно! На платах v0.5 не подключайте ничего к выводу OUT разъема IO_5, потому что на платах прототипов этот вывод используется для передачи сигналов на Raspberry Pi. Вывод IO_5_OUT будет доступен на платах более поздних версий.

щелкните изображение, чтобы увеличить

Электрические символы для принципиальных схем

Эта статья поможет вам узнать об электрических символах.

Часть 1: Что такое электрические символы

Электрические символы — это стандартный способ обозначения электрической цепи. Это упрощает работу с графическим представлением и его реализацию. Электрические символы представляют различные компоненты, устройства и функции, присутствующие в цепи. Это помогает показать детали электрической схемы, чтобы инженер мог должным образом спланировать схему, прежде чем приступить к работе над ней.

Часть 2: Типы электрических символов

Существует множество электрических символов, включая общие электронные символы, исторические электронные символы. Пользователи также могут следовать различным стандартам, включая стандарт IEEE, IEC (Международная электротехническая комиссия), Std., ANSI, JIC, Австралийский стандарт и другие.

Основные электрические символы

Заземляющий или заземляющий электрод

Символ заземления или клемма заземления работают как защита от поражения электрическим током.Это контрольная точка с нулевым потенциалом, откуда электрик измеряет ток.

Антенна

Антенна — это в основном устройство или стержни, которые могут улавливать различные волны и сигналы, включая электромагнитные волны, электрические сигналы и многое другое.

Батарея: одноэлементная

Символ батареи состоит из двух непропорциональных параллельных линий. Линии обозначают ряды ячеек в батарее.

Источник: постоянное напряжение

Источник — это источник питания для электронного устройства, когда есть знаки плюс и минус, которые указывают на постоянный ток, когда у него есть волна, которая означает переменный ток.

Предохранитель

Предохранитель защищает цепь от возгорания, отключая ее, когда ток, протекающий по цепи, превышает установленный предел. У предохранителя есть провод, который плавится при отключении соединения.

Индуктор

Индуктор или реактор подобны катушке, присутствующей в магнитном поле или потоке для сохранения энергии.

Двигатель

Двигатель — это электронное устройство, которое преобразует электрическую энергию в механическую.

Лампа

Лампочка как электрический символ выглядит как круг с крестом посередине, и она дает световой сигнал, загораясь, когда через нее проходит ток.

Трансформатор

Трансформаторы присутствуют в цепи переменного тока после того, как они связаны магнитным потоком. Они уменьшают напряжение в цепи, поддерживая частоту.

Коаксиальный штекер

Коаксиальный штекер в электрической цепи работает как линия передачи. Он передает радиочастотные сигналы и сигналы кабельного телевидения. Коаксиальные вилки на схеме электрических символов выглядят как кружок над стрелкой и другая стрелка, проходящая через нее.

Переключатель

Переключатели бывают самых разнообразных, например, однополюсные, одноходовые, кнопочные, двухпозиционные, релейные и т. Д. Переключатель подключает цепь, когда она замкнута, и отключает цепь, когда она разомкнута.

Резистор

Резисторы на электрической схеме выглядят как волнистые линии с заостренными концами. Резисторы контролируют ток в цепи, разделяя напряжение, завершая линии передачи и многое другое.

Конденсатор

Обозначение конденсатора имеет две клеммы с двумя пластинами. Имеется изогнутая поверхность с более низким напряжением, которая определяет конденсатор как поляризованный.

Диод

Диод — это устройство, которое позволяет току течь в одном направлении после поляризации анодом и катодом.

Диод LED

Светодиод Diode похож на обычный символ диода с маленькими стрелками, указывающими на излучение света.

Провода

Электрический провод

Прямая линия представляет собой электрический провод или линию электропередачи на электрической схеме, и она работает как проводник электрического тока на принципиальной схеме.

Не подключен провод

Неподключенный провод показывает, когда в цепи есть два неподключенных провода. Дизайнер может нарисовать две параллельные линии с полукругом на одной линии в средних частях, где он делит третью линию пополам, чтобы обозначить несоединенные провода.

Подключенный провод

Подключенный провод в цепи позволяет току перемещаться из одной точки в другую. Обозначение подключенного провода выглядит как две параллельные линии, выходящие из двух точек, в то время как одна расширяется. Подключенный провод представляет собой соединение между двумя проводниками.

Переключатели

Тумблер SPST

Однополюсный однопозиционный переключатель — это переключатель ВКЛ / ВЫКЛ, полюса которого соответствуют количеству подключаемых полюсов.

Тумблер SPDT

Однополюсный двухпозиционный переключатель позволяет току в цепи регулировать свое положение в двух направлениях.

Кнопочный переключатель (Н.О.)

Кнопочный переключатель, который обычно разомкнут, требует включения переключателя. Пользователь должен нажать кнопку, чтобы включить его. В противном случае он открыт.

Кнопочный переключатель (N.С.)

Кнопочный переключатель обычно замкнут, что означает, что они обычно находятся в состоянии ВКЛ, и пользователю нужно отпустить его, чтобы выключить.

DIP-переключатель

DIP-переключатель позволяет пользователю выбрать значение от 0 до 5 вольт. Они не заземлены и поэтому требуют внешних источников.

Реле SPST

Реле SPST имеет четыре клеммы, две клеммы для подключения или отключения, а две другие — для двух катушек.

Джемпер

Перемычка, небольшой металлический разъем, работает как переключатель ВКЛ / ВЫКЛ, и они широко используются вместе для настройки аппаратных устройств.

Паяльный мостик

Паяные перемычки служат постоянными переключателями. Когда пользователь соединяет две части моста, он замыкается при его отключении.Им нужно демонтировать это.

Реле SPDT

SPDT Relay — это способ переключения между двумя цепями и имеет катушку, общую клемму,

Источники / символы источника питания

Электропитание переменного тока

Символ представляет собой источник переменного или переменного тока в цепи. Текущий поток постоянно меняет направление.

Источник питания постоянного тока

Источник постоянного тока является поставщиком электроэнергии в цепи, а постоянный ток имеет ток в одном направлении.

Константа

Постоянный источник — это независимый источник тока, который отвечает за постоянный ток.

Управляемый

Управляемый источник тока работает в зависимости от текущего входа. Он присутствует в электрической цепи для передачи или поглощения тока. У символа есть круг и стрелка, показывающая текущий поток.

Управление источником напряжения

Управляемый источник напряжения в цепи выглядит как ромбовидный четырехугольник с положительным и отрицательным знаком.Напряжение в цепи контролирует контролируемые источники напряжения.

Одноэлементный аккумулятор

Одноэлементный аккумулятор в цепи выглядит как две непревзойденные параллельные линии, одна большая и одна маленькая, представляющие одну ячейку.

Многоклеточная батарея

Многоячеечная батарея имеет несколько маленьких и больших линий, которые представляют несколько ячеек, идентифицируемых как катод и анод.

Генератор

Генератор в цепи действует либо как источник напряжения, либо как источник тока.Более того, на этом основании в схему может вписаться и генератор.

Земля

Земля Земля

Земляное заземление — это земля с нулевым потенциалом, которая может проводить к земле.

Шасси Земля

Заземление корпуса защищает пользователя от поражения электрическим током, создавая барьер между пользователем и цепью.

Общие положения

Это произвольная точка отсчета относительно потенциала земли.

Резистор и переменный резистор

Резистор (IEEE)

Это символ фиксированного резистора, он выглядит как волны с заостренными головками и подключается к двум точкам на конце.

Резистор (IEC)

Резистор представляет собой двухполюсное устройство, а символ стандартного резистора МЭК выглядит как полоса, соединенная с двумя точками.

Потенциометр (IEEE)

Это трехконтактный резистор, который создает регулируемое напряжение в электрической цепи.

Потенциометр (IEC)

Это трехконтактный резистор, который создает регулируемое напряжение в электрической цепи.

Резистор с отводом

Резистор с ответвлениями использует один или несколько выводов в устройствах, которые являются делителями напряжения.

Аттенюатор

Аттенюатор — это схема, рассеивающая ток для понижения напряжения.

Мемристор

Мемристор — это полупроводник, который служит точкой соединения конденсаторов, катушек индуктивности и резисторов.

Переменный резистор (IEEE)

Устройство помогает создавать переменный ток, создавая переменное сопротивление.

Предустановка

Предварительная установка — это компонент, который обеспечивает переменное сопротивление электрической цепи.

Магниторезистор

Магниторезистор показывает изменение сопротивления при воздействии на него внешнего магнитного поля.

Переменный резистор (IEC)

На символе переменного сопротивления согласно IEC есть полоса, похожая на символ резистора. Однако для отображения переменного тока есть стрелка.

Подстроечный резистор

Подстроечный резистор или подстроечный резистор регулируют цепь и помогают откалибровать новое устройство.

Термистор

Это термометр сопротивления, зависящий от температуры.

Фоторезистор / светозависимый резистор (LDR)

Это устройство, которое помогает создавать сопротивление путем преобразования энергии света или яркости.

Конденсатор

Конденсатор

Конденсатор — это электрическая цепь, которая выглядит как прямая и полукруглая линия, расположенные рядом.

Конденсатор

Чтобы обозначить неполяризованный конденсатор в цепи, пользователь может использовать параллельные метки с линиями, идущими по сторонам.

Поляризованный конденсатор

Поляризованный конденсатор представляет собой прямую пластину и изогнутую. Прямая пластина обозначает анод, а изогнутая пластина — катод.

Поляризованный конденсатор

Две отдельные прямые линии представляют собой поляризованный конденсатор, одна из которых является катодом, а другая пластина или линия означает анод.

Конденсатор переменной емкости

Это конденсатор, емкость которого можно изменять механически или электронным способом.

Проходной конденсатор

Проходной конденсатор имеет диэлектрический слой и помогает передавать сигналы по замкнутому пути.

Индукторы

Индуктор

Индуктор — это электронное устройство, которое хранит электронную энергию в виде магнитной энергии.

Индуктор с железным сердечником

Индукторы с железным сердечником имеют высокую индуктивность, и это представляют собой катушка и стержень.

Катушки индуктивности Ферритовый сердечник

Две пунктирные линии с катушкой представляют катушку индуктивности с ферритовым сердечником, и это информация, которую необходимо знать.

Центр индуктивности с ответвлениями

Индуктор с центральным отводом — это элемент в цепи, который помогает соединять сигналы.

Переменный индуктор

Переменные катушки индуктивности с переменной индуктивностью выглядят как катушки индуктивности со стрелкой, обозначающей ее переменную природу.

Диод

Диод

Это устройство направляет ток в одном направлении.

Стабилитрон

Стабилитрон — одно из устройств, помогающих поддерживать фиксированное напряжение

Диод Шоттки

Это полупроводник с меньшим падением прямого напряжения.

Варикап диод

Диоды варикапа показывают широкий диапазон емкости, и он зависит от напряжения.

Туннельный диод

Это полупроводник, который создает отрицательное сопротивление в процессе туннелирования.

Светоизлучающий диод

Это полупроводник, который загорается при прохождении через него тока.

Фотодиод

Фотодиод — это светочувствительный диод.

Диод Шокли

Этот четырехслойный полупроводник имеет структуру PNPN.

Тиристор

Это твердотельный полупроводник, который работает как бистабильный переключатель.

Диод постоянного тока

Диод постоянного тока по своей природе является ограничивающим или регулирующим ток.

Лазерный диод

Лазерный диод — это полупроводник, преобразующий электрическую энергию в свет.

Транзистор

Транзистор биполярный NPN

Биполярный транзистор NPN передает электронику от точки эмиттера к точке коллектора.

Транзистор биполярный PNP

Это транзистор, который контролирует поток электронов от эмиттера к коллектору.

Транзистор Дарлингтона

Это устройство, имеющее составную структуру с двумя биполярными транзисторами.

JFET-N Транзистор

Транзисторы JEFT-N используют электроны в качестве носителя заряда в цепи.

JFET-P Транзистор

Первичная его формация — это P-тип с двумя небольшими частями n-типа.

NMOS транзистор

Транзисторы NMOS работают, создавая инверсионный слой n-типа в корпусе p-типа транзистора.

PMOS транзистор

Транзисторы PMOS работают, создавая инверсионный слой p-типа в корпусе транзистора n-типа.

Логические ворота

Не выход

Not Gate может использовать только один вход и выход, противоположный пользовательскому вводу.

и ворота

Логический элемент AND может работать с двумя или более входами, и выходы могут быть точными, если входы действительны.

Nand Gate

Он может использовать два или более входа, обеспечивая точные выходные данные, если только все входы не являются действительными.

или ворота

«OR Gate» также имеет два или более входов. Чтобы получить фактический выход в OR Gate, по крайней мере, один из входов должен быть истинным.

Nor GATE

Это логический вентиль с двумя или более входами, и ни один из входов не должен подтверждаться для получения точного выхода.

Xor ВОРОТА

Он использует два или более входа, и когда они разные, они могут генерировать допустимый результат.

D Вьетнамки

Логический вентиль D-триггера имеет два входа и два выхода.Два входа — это входы часов и вход данных.

Мультиплексор

Это логический вентиль, который направляет несколько входов в стандартный одиночный выход.

Демультиплексор (от 1 до 4)

Для создания нескольких цифровых выходов требуется один вход.

Буфер с тремя состояниями

Это логический инвертор, который позволяет ему выдавать либо фактический, либо инвертированный выходной сигнал.

Усилитель звука

Базовый усилитель

Символ первичного усилителя представляет собой треугольник с одним входом и одним выходом.

Операционный усилитель

Операционный усилитель усиливает слабые электрические сигналы, которые имеют два входных контакта для получения одного выходного контакта.

Антенна

Антенна

Это общий символ воздушной антенны, в которой используются три открытых конца наверху.

Дипольная антенна

В нем используются два проводника одинаковой длины, поэтому он выглядит как две параллельные линии.

Рамочная антенна

Он имеет цикл и работает с обычным источником.

Трансформеры

Трансформаторы

Для увеличения или уменьшения переменного напряжения электрики используют трансформаторы. К двум катушкам подключен провод.

Железный сердечник

Это трансформатор с одним железным сердечником и двумя намотанными на него катушками.

с центральной резьбой

Они используются в индукторах для связи сигналов.

Разнообразный

Двигатель

Это устройство, преобразующее электрическую энергию в кинетическую.

Трансформаторы

Трансформаторы выглядят как катушки, в которых используется материал сердечника.

Электрический звонок

Это также устройство для преобразования электрической энергии в звук.

Зуммер

Это устройство для преобразования электрической энергии в звуковую.

Предохранитель

Это предохранительное устройство, которое тает при чрезмерном токе.

Предохранитель

Предохранитель в цепи предотвращает короткое замыкание, нарушая ток.

АВТОБУС

Шина в цепи обозначает поток мощности.

АВТОБУС

Шина в цепи работает для данных или сигналов.

АВТОБУС

Символ автобуса может выглядеть как двусторонняя линия с пустым пространством внутри.

Октопара

Это устройство использовало свет для передачи сигналов между двумя отдельными цепями.

Громкоговоритель

Громкоговоритель — это устройство, преобразующее электрическую энергию в звук.

Микрофон

Это устройство, преобразующее звуковую энергию в электрическую.

Операционный усилитель

Усиливает слабые сигналы.

Триггер Шмитта

Он присутствует в схеме для преобразования аналогового входа в цифровой выход.

Аналого-цифровой

Он меняет аналоговый вход на цифровой.

Цифро-аналоговый

Он работает для преобразования цифрового сигнала в аналоговый.

Кристаллический осциллятор

Он использует механический резонанс для создания электрического сигнала.

Кристаллический осциллятор

Он использует частоту для формирования колебаний.

Постоянный ток

Это символ, обозначающий односторонний ток.

Лампочка

Лампочки светятся, когда через них проходит ток.

Термопара

Это датчик для определения изменения температуры.

Часть 3: Как использовать электрические символы

Вам легко создать электрическую схему, если вы знаете, где найти тысячи электрических символов.Вы можете посмотреть видео ниже и узнать, как построить электрическую схему. Как вариант, вы можете шаг за шагом следовать инструкциям в виде слов и картинок.

Шаг 1 : Запустите EdrawMax на вашем компьютере. Обширную коллекцию шаблонов электрических схем можно найти в категории Электротехника . Щелкните значок Basic Electrical , чтобы открыть библиотеку, содержащую все символы для создания электрических схем.

Шаг 2.1 : Войдя в рабочую область EdrawMax, перетащите нужный символ прямо на холст. Вы можете изменить размер выбранного символа, перетащив маркеры выбора. Двусторонняя стрелка показывает направление, в котором вы можете переместить мышь, и вы можете перемещать символ только тогда, когда появляется четырехсторонняя стрелка.

Шаг 2.2 : Вы также можете изменить форму символа с помощью плавающего меню / кнопки действия.Он показывает, когда символ выбран или когда указатель находится над символом. Например, резистор может иметь 12 разновидностей.

Шаг 3 : Когда ваша электрическая схема будет завершена, вы можете экспортировать ее в JPG, PNG, SVG, PDF, Microsoft Word, Excel, PowerPoint, Visio, HTML одним щелчком мыши. Таким образом, вы можете поделиться своими рисунками с людьми, которые не используют EdrawMax, без необходимости искать способы преобразования форматов файлов.

Пример подключения и принципиальной схемы

Вот пример принципиальной схемы 100-ваттного усилителя мощности.Есть сигнал, который проходит через несколько конденсаторов и усилителей, и когда сигнал проходит через них, он усиливается. Выходным устройством в схеме является громкоговоритель.

Часть 4: Производитель электрических схем и электрических схем — EdrawMax

Электрические символы облегчают инженерам создание электрической схемы для своей работы. Хотя несколько устройств делают это не очень простым, пользователь может работать с онлайн-инструментом Edrawmax, который может предложить пользователю удобный интерфейс.Инструмент имеет библиотеку с широким набором электрических символов, которые они могут использовать. Существуют готовые шаблоны для неопытных пользователей, которые упрощают их работу. Когда работа будет завершена, можно легко экспортировать файл в различные форматы и легко поделиться им с другими.

EdrawMax: швейцарский нож для всего, что вам нужно для построения диаграмм

  • Легко создавайте более 280 типов диаграмм.
  • Предоставьте различные шаблоны и символы в соответствии с вашими потребностями.
  • Интерфейс перетаскивания и прост в использовании.
  • Настройте каждую деталь с помощью интеллектуальных и динамичных наборов инструментов.
  • Совместимость с различными форматами файлов, такими как MS Office, Visio, PDF и т. Д.
  • Не стесняйтесь экспортировать, печатать и делиться своими схемами.

Часть 5: Дополнительные электрические символы

Условные обозначения принципиальной схемы

Символы логических вентилей

Символы переключателей

Символы полупроводников

Символы пути передачи

Соответствующие символы

Обозначения компонентов интегральных схем

Обозначения клемм и разъемов

.

Related Posts

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *